يعرض 1 - 18 نتائج من 18 نتيجة بحث عن '"simplex search method"', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: Bursa Uludağ Üniversitesi/Makine Mühendisliği Bölümü/Fen Bilimleri Yüksekokulu, Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü, orcid:0000-0002-7327-8471, orcid:0000-0003-1065-2419, orcid:0000-0003-2738-8917, Beyazoğlu, Ebubekir, Ateş, Murat, YALINDAĞ, RÜMEYSA, PULAT, ERHAN, DLL-8342-2022, AAH-1579-2021, CEZ-1292-2022

    وصف الملف: application/pdf

    Relation: Makale - Uluslararası Hakemli Dergi; Sustainability; https://doi.org/10.3390/su142315856; https://hdl.handle.net/11452/48489; 000896281200001; 14; 23

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
  11. 11
    Academic Journal

    المؤلفون: Li, T., Wang, Y., Liu, F., Turner, I.

    المصدر: Numerical Algorithms

    Relation: https://rdcu.be/cgBVc; Li, T., Wang, Y., Liu, F., & Turner, I. (2019) Novel parameter estimation techniques for a multi-term fractional dynamical epidemic model of dengue fever. Numerical Algorithms, 82(4), pp. 1467-1495.; https://eprints.qut.edu.au/208858/; Science & Engineering Faculty

  12. 12
    Conference

    المؤلفون: Yang, Zaiyue, Chan, Che Wai, Wang, Yiwen

  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المصدر: IMA Journal of Applied Mathematics

    Relation: Liu, Fawang, Burrage, Kevin, & Hamilton, Nicholas (2013) Some novel techniques of parameter estimation for dynamical models in biological systems. IMA Journal of Applied Mathematics, 78(2), pp. 235-260.; https://eprints.qut.edu.au/218566/; Faculty of Science and Technology; Science & Engineering Faculty

  15. 15
    Academic Journal

    المؤلفون: Yang, Zaiyue, Chan, Che Wai, Wang, Yiwen

  16. 16
  17. 17

    المؤلفون: 黎乃仁, Li, Nai-jen

    المساهمون: 淡江大學電機工程學系碩士班, 許陳鑑, Hsu, Chen-chien

    وصف الملف: 143 bytes; application/octet-stream

    Relation: [1] N. Chopin, “A sequential particle filter for static models,” Biometrika, vol. 89, no. 3, pp. 539–552, 2002. [2] M. Isard and A. Blake, “Condensation conditional density propagation for visual tracking,” International Journal of Computer Vision, 1998, pp. 5-28. [3] Z. Khan, T. Balch and F. Dellaert, “MCMC-based particle filtering for tracking a variable number of interacting targets,” IEEE Transactions on pattern analysis and machine intelligence, 2005, pp. 1805-1819. [4] A. Hermoso-Carazo and J. Linares-Pérez, “Different approaches for state filtering in nonlinear systems with uncertain observations,” Applied Mathematics and Computation, vol. 187, 2007, pp. 708-724. [5] Y. Rui and Y. Chen, “Better proposal distributions: object tracking using unscented particle filter,” IEEE Computer Vision and Pattern Recognition, pp. 786-793, 2001. [6] P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo, and J. M´ıguez, “Particle filtering,” IEEE Signal Processing Magazine, vol. 20, no. 5, pp. 19-38, 2003. [7] P. M. Djuric, T. Lu, and M. F. Bugallo, “Multiple particle filtering,” ICASSP’07, pp. III-1181-III-1184, 2007. [8] Y. C. Ho and R. C. K. Lee, “A Bayesian approach to problems in stochastic estimation and control,” IEEE Transactions on Automatic Control, vol. AC-9, pp. 333–339, 1964. [9] H. Jayesh, Kotecha and Petar M. Djuric, “Gaussian Particle Filtering,” IEEE Transactions on Signal Processing, vol. 51, No.10, 2003, pp. 2592-2601. [10] N. de Freitas, “Rao-Blackwellised particle filtering for fault diagnosis,” IEEE Aerospace, 2002. [11] F. J. Pei, P. Y. Cui and Y. Z. Chen, “Adaptive MCMC Particle Filter for Nonlinear and Non-Gaussian State Estimation,” Innovative Computing Information and Control, pp. 494-494. 2008. [12] G. Kitagawa and W. Gersch, Smoothness Priors Analysis of Time Series, New York: Springer-Verlag, 1996. [13] Brad L. Miller and David E. Goldberg, “Genetic Algorithms, Tournament Selection, and the Effects of Noise,” IlliGAL Report No. 95006 July 1995. [14] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp, “A Tutorial on Particle Flters for Online Nonlinear/Non-Gaussian Bayesian Tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188, 2002. [15] N. Gordon, D. Salmond, and A. F. M. Smith, “Novel approach to nonlinear and non-Gaussian Bayesian state estimation,” IEE Proceedings F Radar and Signal Processing, vol. 140, pp. 107–113, 1993. [16] Ruixin Niu, Pramod K. Varshney, Mark Alford, Adnan Bubalo, Eric Jones, and Maria Scalzo, “Curvature nonlinearity measure and filter divergence detector for nonlinear tracking problems,” Information Fusion, pp. 1-8, 2008. [17] P. M. Djuric and M. F. Bugallo, ”Improved target tracking with particle filtering,” IEEE Aerospace, pp. 1-7, 2009. [18] M. F. Bugallo, T. Lu, and P. M. Djuric, “Target tracking by multiple particle filtering,” IEEE Aerospace, pp. 1-7, 2007. [19] Xu Shifang, Xie Li and Liu Jilin, “Robot localization based on MCMC particle filter,” Joural of Zhejiang University(Engineering Science), 2007, pp. 1083-1087. [20] Y. Zhou, W. Liu, and P. Huang, “Laser-activated RFID-based Indoor Localization System for Mobile Robots,” Robotics and Automation, pp. 4600-4605, 2007. [21] S. Lenser and M. Veloso, “Sensor resetting localization for poorly modelled mobile robots,” Robotics and Automation, 2000. [22] H. Andreasson, A. Treptow, and T. Duckett, “Self-localization in non-stationary environments using omni-directional vision,” Robotics and Autonomous Systems, vol. 55, 2007, pp. 541-551. [23] H. Kim, J. Choi, and M. Park, “Indoor localization system using multi-modulation of ultrasonic sensors and digital compass,” Intelligent Robots and Systems, pp. 1359-1364, 2008. [24] G. Jin, X. Lu, and M. Park, “An indoor localization mechanism using active RFID tag,” Sensor Networks, Ubiquitous, and Trustworthy Computing, vol. 1, 2006. [25] J. González, J. Blanco, C. Galindo, A. Ortiz-de-Galisteo, J. Fernández-Madrigal, F. Moreno, and J. Martínez, “Mobile robot localization based on Ultra-Wide-Band ranging: A particle filter approach,” Robotics and Autonomous Systems, vol. 57, 2009, pp. 496-507. [26] 鍾鎮謙、宋開泰,運用雷射測距儀之機器人定位設計,國立交通大學電機與控制工程學系碩士論文,台灣,民國96年。 [27] F. Yan, Y. Zhuang, and W. Wang, “Large-scale Topological Environmental Model Based Particle Filters for Mobile Robot Indoor Localization,” Robotics and Biomimetics, pp. 858-863, 2006. [28] N. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Computer Journal, vol. 7, 1965, pp. 308-313. [29] C. Andrieu, M. Davy, and A. Doucet, “Improved auxiliary particle filtering: applications to time-varying spectral analysis,” IEEE Workshop on Statistical Signal Processing, pp. 309-312, 2001. [30] R. Kurazume, H. Yamada, K. Murakami, Y. Iwashita, and T. Hasegawa, ”Target tracking using SIR and MCMC particle filters by multiple cameras and laser range finders,” Intelligent Robots and Systems, pp. 3838-3844 , 2008. [31] Georges Oppenheim, Anne Philippe, and Jean de Rigal “The particle filters and their applications,” Chemometrics and Intelligent Laboratory Systems, vol. 91, pp. 87-93, 2008. [32] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlinear state space models,” Computational and Graphical Statistics, vol. 5, no. 1, 1996, pp. 1-25. [33] F. Daum and J. Huang, “Curse of dimensionality and particle filters,” IEEE Aerospace, 2003. [34] Miroslav Simandl, Ondřej Straka, ” Functional sampling density design for particle filters,” Signal Processing, vol 88, 2008, pp. 2784-2789. [35] O. Straka and M. Simandl, “Using the Bhattacharyya distance in functional sampling density of particle filter,” IFAC World Congress, pp. 1006-1011, 2005. [36] M. Simandl and O. Straka, “Sampling density design for particle filters,” IFAC Symposium on System Identification, vol. 1, 2003. [37] B. Carlin, N. Polson, and D. Stoffer, “A Monte Carlo approach to nonnormal and nonlinear state-space modeling,” American Statistical Association, vol. 87, no. 418, pp. 493–500, 1992. [38] Marco A. Luersen and Rodolphe Le Riche, “Globalized Nelder–Mead method for engineering optimization,” Computers and Structures, vol. 82, pp. 2251-2260, 2004. [39] S. Thrun , W. Burgard, and D. Fox, Probabilistic Robotics, MIT Press, Cambridge, MA, 2005. [40] John Lin, Ying Wu, and Thomas S. Huang “Articulate hand motion capturing based on a Monte Carlo Nelder-Mead simplex tracker,” Pattern Recognition, vol. 4, pp. 975-978, 2004. [41] F. Walters, L. R. Parker, S.L. Morgan, and S. N. Deming, Sequential Simplex Optimization, CRC Press, Boca Raton, USA, 1991.; U0002-2508200912024900; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35789; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/35789/1/

  18. 18

    المؤلفون: 高春暉, Gao, Chun-hui

    المساهمون: 淡江大學電機工程學系碩士班, 許陳鑑, Hsu, Chen-chien

    وصف الملف: 143 bytes; application/octet-stream

    Relation: [1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc. IEEE Int. Conf. Neural Networks, Piscataway, NJ, Vol. 4, 1995, pp. 1942-1948. [2] K. Deb and R. C. Eberhart, Swarm Intelligence, Academic Press, London, 2001. [3] Z. L. Gaing, “A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System,” IEEE Transactions on Energy Conversion, Vo1. 19, No. 2, 2004, pp. 384-391. [4] J. F. Schutte, B. Koh, J. A. Reinbolt, R. T. Haftka, A. D. George, and B. J. Fregly, “Evaluation of a Particle Swarm Algorithm for Biomechanical Optimization,” Journal of Biomechanical Engineering, Vo1. 127, No. 3, 2005, pp. 465-474. [5] J. F. Schutte and A. A. Groenwold, “A Study of Global Optimization Using Particle Swarms,“ Journal of Global Optimization, Vol. 31, No. 1, 2005, pp. 93-108. [6] P. N. Suganthan, “Particle swarm optimizer with neighborhood operator,” Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, July, 1999, pp. 1958-1962. [7] J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka, and A. D. George, “Parallel global optimization with the particle swarm algorithm,” Numerical Methods in Engineering, Vol. 61, No.13, 2004, pp. 2296-2315. [8] K. E. Parsopoulos and M. N. Vrahatis, “Pecent approaches to global optimization problems through Particle Swarm Optimization,” Natural Computing, Vo1. 1, 2002, pp. 235-306. [9] Y. Shi and R. C. Eberhart, “ Parameter selection in particle swarm optimization,” in Evolutionary Programming VII: Proc. EP98, New York, Vol. 1447, 1998, pp. 591-600. [10] Y. Shi, R. Eberhart, “A modified particle swarm optimizer,” Proceedings of the IEEE Conference on Evolutionary Computation, 1998, pp. 69-73. [11] M. Clerc, “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization,” Proc. 1999 Congress on Evolutionary Computation, Washington, DC, Vol. 3, 1999, pp. 1951-1957. [12] H. Yoshida, K. Kawata, Y. Fukuyama, and Y. Nakanishi, “A particle swarm optimization for reactive power and voltage control considering voltage Security Assessment,” IEEE Transactions on Power Systems, Vol. 15, No. 4, 2000, pp. 1232-1239. [13] N. Shigenori, G. Takamu, Y. Toshiku, and F. Yoshikazu, “A hybrid particle swarm optimization for distribution state estimation,” IEEE Transaction on Power Systems, February, Vol. 18, No. 1, 2003, pp. 60-68. [14] A. Salman, I. Ahmad, and S. Al-Madani, “Particle swarm optimization for task assignment problem,” Microprocessors and Microsystems, Vol. 26, No. 8, 2002, pp. 363-371. [15] I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection,” Information Processing Letters, Vol. 85, No. 6, 2003, pp. 317-325. [16] N. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Computer Journal, Vol. 7, 1965, pp. 308-313. [17] L. Yu, Q. Zheng, S. Zhewen, and L. Jiang, “Center particle swarm optimization,” Neurocomputing, Vol. 70, No.4-6, 2007, pp. 672-679. [18] J.S.H. Tsai, C.S. Shieh, and Y.Y. Sun, “Digital modeling and robust digital redesign of sampled-data uncertain systems via the interval tuning bilinear approximation method,” Journal of the Franklin Institute, Vol. 338, 2001, pp. 615-630. [19] B. Barmish, New Tools for Robustness of Linear Systems, Macmillan Publihing Company, New York, 1994. [20] C. T. Chen, Analog & digital control system design, Saunders College Publishing, 1993. [21] K. strom, Computer-controlled systems, Prentice-Hall, 1990. [22] G. Frank, J. Powell, and M. Workman, Digital Control of Dynamic Systems, Addition-Wesley, 1990. [23] D. Williamson, Digital control and implementation - Finite wordlength considerations, Prentice Hall, 1991. [24] R. Middleton and G. Goodwin, Digital control and estimation - A unified approach, Prentice-Hall, 1990. [25] Doyle JC, Glover K, Khargonekar PP, Francis BA. “State-space solutions to standard H2 and H1 control problems,” IEEE Trans Automatic Control, Vol. 34, No. 8, 1989, pp. 831–847. [26] Qu Z., Robust control of nonlinear uncertain systems. New York: John Wiley & Sons, 1998. [27] Geir E. Dullerud, Fernando G. Paganini, A course in robust control theory: a convex approach. New York: Springer, 2000. [28] H. Hu and C. Hollot, “Robustness of sampled-data control systems having parametric uncertainty: a conic sector approach,” IEEE Transactions on Automatic Control, Vol. 38, pp. 1541-1545, 1993. [29] S. P. Bhattacharyya, H. Chapellat, and L. Keel, Robust Control – The Parametric Approach, Prentice Hall. 1995. [30] C. C. Hsu, S. C. Chang, and C. Y. Yu, “Multiobjective Evolutionary Approach to the Design of Optimal Controllers for Interval Plants Based on Parallel Computation,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E89-A, No.9, Sep, 2006, pp.2363-2373. [31] C. C. Hsu and C. Y. Yu, “Design of optimal controller for interval plant from signal energy point of view via evolutionary approaches,” IEEE Transactions on Systems, Man, and Cybernetics-Part B, Vol. 34, No. 3, June, 2004, pp. 1609-1617. [32] Y. N. Rosenvasser, K. Yu. Polyakov, and B. P. Lampe, “Application of Laplace Transformation for Digital Redesign of Continuous Control Systems,” IEEE Transactions on automatic control, Vol. 44, No. 4, April, 1999, pp. 883-886. [33] L. S. Shieh, B. B. Decrocq, and J. L. Zhang, “Optimal digital redesign of cascaded analogue controllers,” in Optimal Control Application and Methods, vol. 12, 1991, pp. 205–219. [34] L. S. Shieh, J. L. Zhang, and J. W. Sunkel, “A new approach to the digital redesign of continuous-time controllers,” in Control Theory and Advanced Technology, vol. 8, 1992, pp. 37–57. [35] J. P. Keller and B. D. O. Anderson, “A New Approach to the Discretization of Continuous-Time Controllers,” IEEE Trans. on AC, Vol.37, No.2, 1992, pp. 214-223. [36] Chen-Chien Hsu, Kai-Ming Tse, and Chi-Hsu Wang, “Digital redesign ofmcontinuous systems with improved suitability using genetic algorithms,” Electronics Letters, Vol. 33, No. 15, 1997, pp. 1345-1347. [37] Yuichi Chida and Tomoaki Nishimura, “A New Method of Discretization of the Continuous-Time Controllers Based on the Matching of Frequency Response,” SICE-ICASE International Joint Conference 2006, Bexco, Busan, Korea, Oct, 2006, pp. 18-21. [38] Nadra Rafee, Tongwen Chen, and Om P. Malik, “A Technique for Optimal Digital Redesign of Analog Controllers,” IEEE Transactions on control systems technolgy, Vol. 5, No. 1, January, 1997, pp. 89-99. [39] M. Clerc and J. Kennedy, “The particle swarm explosion, stability, and convergence in a multidimensional complex space,” IEEE Transaction on Evolutionary Computation, Vol. 6, No. 1, 2002, pp. 58-73. [40] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” Proceedings IEEE Int’l. Conf. on Systems, Man, and Cybernetics, Vol. 5, 1997, pp. 4104-4108. [41] R.C. Eberhart, Y. Shi, “Tracking and optimizing dynamic systems with particle swarms,” Proceedings of Congress on Evolutionary Computation, Seoul, Korea, Vol. 1, 2001, pp. 94-100. [42] S. K. S. Fan and E. Zahara., “A hybrid simplex search and particle swarm optimization for unconstrained optimization,” European Journal of Operational Research, Vol. 181, No.2, 2007, pp. 527-548. [43] X. Hu, R.C. Eberhart, “Tracking dynamic systems with PSO: Where’s the cheese?” Proceedings of The Workshop on Particle Swarm Optimization, Indianapolis, USA, 2001. [44] A. Ratnaweera, S. Halgamuge, and H. Watson, “Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients,” IEEE Transaction on System, Man and Cybernetics, Vol. 8, No. 3, 2004, pp. 240-255. [45] S. K. S. Fan, Y. C. Liang, and E. Zahara, “A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search,” Computers and Industrial Engineering, Vol. 50, No.4, 2006, pp. 401- 425. [46] C. W. Reynolds, “Flocks, herds, and schools: a distributed behavioral model,” Computer Graphics, Vol. 21, No.4, 1987, pp. 25-34. [47] F. van den Bergh, An analysis of particle swarm optimizers, Ph. D. dissertation, University of Pretoria, Pretoria, 2001. [48] J.J. More’, B.S. Garbow, K.E. Hillstrom, “Testing unconstrained optimization software,” ACM Transactions on Mathematical Software, Vol. 7, No. 1, 1981, pp. 17- 41. [49] S. K. S. Fan, Y. C. Liang, and E. Zahara , “Hybrid simolex search and particle swarm optimization for the global optimization of multimodal functions,“ Engineering Optimization , Vol. 36, No. 4, 2004, pp. 401- 418. [50] R. Chelouah and P. Siarry, “Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions,” European Journal of Operational Research, Vol. 148, No.2, 2003, pp. 335-348. [51] R. Chelouah and P. Siarry, “Tabu search applied to global optimization,” European Journal of Operational Research, Vol. 123, No. 2, 2000, pp. 256-270. [52] R. Chelouah and P. Siarry, “A continuous genetic algorithm designed for the global optimization of multimodal functions,” Journal of Heuristics, Vol. 6, No.2, 2000, pp. 191-213. [53] P. Siarry, G. Berthiau, F. Durbin, and J. Haussy, “Enhanced simulated annealing for globally minimizing functions of many continuous variables,” ACM Transactions on Mathematical Software, Vol. 23, No. 2, 1997, pp. 209-228. [54] G. L. Bilbro and W. E. Snyder, “Optimization of functions with many minima,” IEEE Transaction on System, Man and Cybernetics, Vol. 21, No.4, 1991, pp. 840-849. [55] H. Chapellat and S.P. Bhattacharyya, “A generalization of Kharitonov’s theorem; Robust stability of interval plants,” IEEE Transactions on Automatic Control, Vol.34, No. 3, March, 1989, pp. 306-311. [56] H. Hu and C. Hollot, “Robustness of sampled-data control systems having parametric uncertainty: a conic sector approach,” IEEE Transactions on Automatic Control, Vol. 38, 1993, pp. 1541-1545. [57] S. Filali and V. Wertz, “Using genetic algorithms to optimize the design parameters of generalized predictive controllers,” International Journal of Systems Science, Vol. 32, No. 4, 2001, pp. 503-512. [58] M. Jamshidi, R. Krohling, L. Coelho and P. Flemming, Robust Control Systems with GeneticAlgorithms, CRC Press, 2003. [59] W. D. Chang, “Nonlinear system identification and control using a real-coded genetic algorithm,” Applied Mathematical Modeling, Vol. 31, No. 3, 2007, pp. 541-550. [60] N. Tan and D.P. Atherton, “Frequency response of uncertain systems: a 2q-convex parpolygonal approach,” IEE Proc. Control Theory and Appl., Vol. 147, No. 5, 2000, pp.547-555. [61] Ching-Hung Lee, Yi-Hsiung Lee, “A novel robust PID controllers design by fuzzy neural network,” Proceedings of the American Control Conference, Vol. 2, 2002, pp. 1561-1566.; U0002-1107200814521800; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35888; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/35888/1/