-
1Academic Journal
المؤلفون: Zhou, Weiwei, Burke, Peter
المصدر: ACS Applied Materials and Interfaces. 9(17)
مصطلحات موضوعية: biosensor, glass slide, indium-tin oxide, silicon nanoribbon, silicon wafer, single-walled carbon nanotube film, tethered bilayer lipid membranes, Biosensing Techniques, Lipid Bilayers, Nanotubes, Carbon, Silanes, Silicon
وصف الملف: application/pdf
URL الوصول: https://escholarship.org/uc/item/90m895v9
-
2Academic Journal
المؤلفون: Xingxing Xu (4280095), Yingtao Yu (11043430), Qitao Hu (6261506), Si Chen (164760), Leif Nyholm (191789), Zhen Zhang (86004)
مصطلحات موضوعية: Biophysics, Biochemistry, Medicine, Microbiology, Molecular Biology, Space Science, Biological Sciences not elsewhere classified, Chemical Sciences not elsewhere classified, Physical Sciences not elsewhere classified, probe DNA, SAM, immobilizing thiol-modified probe DNA, FET gate surface, gold gate, DNA hybridization, FET-based potentiometric DNA, silicon nanoribbon FET, redox buffer effect, FET sensor surface, gold gate surface, Thiol-Modified Gold Electrodes Labe., probe DNA functionalization, Analogous redox buffer effects, Redox Buffering Effects
-
3Academic Journal
المؤلفون: Kristina A. Malsagova, Tatyana O. Pleshakova, Vladimir P. Popov, Igor N. Kupriyanov, Rafael A. Galiullin, Andrey F. Kozlov, Ivan D. Shumov, Anna L. Kaysheva, Fedor V. Tikhonenko, Alexander I. Archakov, Yuri D. Ivanov
المصدر: Micromachines; Volume 12; Issue 2; Pages: 147
مصطلحات موضوعية: autism spectrum disorders, microRNA, silicon nanoribbon, sensor chip, DNA oligonucleotides, Raman spectroscopy
وصف الملف: application/pdf
Relation: D:Materials and Processing; https://dx.doi.org/10.3390/mi12020147
الاتاحة: https://doi.org/10.3390/mi12020147
-
4
المؤلفون: Chen, Xi
مصطلحات موضوعية: Nanotechnology, Chemistry, Nanoscience, antifouling coating, artificial membranes, biosensing, carbon nanotubes, silicon nanoribbon sensors
وصف الملف: application/pdf
URL الوصول: https://escholarship.org/uc/item/77h148tn
-
5
المؤلفون: Afrasiabi, Roodabeh, Soderberg, Lovisa M., Joensson, Haakan N., Björk, Per, Svahn, Helene A., Linnros, Jan
المصدر: Micromachines. 7(8)
مصطلحات موضوعية: Droplet microfluidics, NanoFET, PH measurement, Silicon nanoribbon, Drops, Electrophoresis, Field effect transistors, Fluidic devices, Integrated control, Nanoribbons, Silicon, Biochemical reactions, Droplet-based microfluidics, Integrated microfluidic systems, Label-free detection method, PH measurements, Microfluidics
وصف الملف: print
-
6
المؤلفون: Parmeggiani, Matteo, Dev, Apurba, Björk, Per, Linnros, Jan
المصدر: Sensors and actuators. B, Chemical. 262:974-981
مصطلحات موضوعية: Electrokinetic effect, Ion sensitive field-effect transistor, Microfluidics, pH sensing, Silicon nanoribbon, Streaming potential, Electrodynamics, Field effect transistors, Flow velocity, Ion sensitive field effect transistors, Ions, Nanoribbons, pH effects, pH sensors, Surface potential, Enhanced sensitivity, Mathematical descriptions, Nanoscale biosensors, Qualitative assessments
وصف الملف: print
-
7
المؤلفون: Afrasiabi, R., Jokilaakso, N., Schmidt, T., Björk, Per, Karlström, A. E., Linnros, J.
المصدر: Sensors and actuators. B, Chemical. 209:586-595
مصطلحات موضوعية: Electrical measurements pH sensitivity, Microwave heating, Silanization, Silicon nanoribbon field-effect transistors, Surface characterization, Biocompatibility, Chemical modification, Electric field effects, Electric variables measurement, Electrolytes, Gates (transistor), Nanoribbons, pH effects, pH sensors, Self assembled monolayers, Silicon compounds, Silicon oxides, Solutions, Surface properties, Surface treatment, 3-aminopropyltriethoxysilane, Back ground electrolyte, Chemical surface modification, Electrical measurement, PH sensitivity, Silanizations, Silicon nanoribbon, Power field effect transistors
وصف الملف: print
-
8
المؤلفون: Apurba Dev, Jan Linnros, Matteo Parmeggiani, Per Björk
مصطلحات موضوعية: Electrokinetic effect, Ion sensitive field-effect transistor, Microfluidics, pH sensing, Silicon nanoribbon, Streaming potential, Electronic, Optical and Magnetic Materials, Instrumentation, Condensed Matter Physics, Surfaces, Coatings and Films, 2506, Electrical and Electronic Engineering, Materials Chemistry, Metals and Alloys, Materials science, 020209 energy, Nanotechnology, Hardware_PERFORMANCEANDRELIABILITY, 02 engineering and technology, Gating, Streaming current, Coatings and Films, Electrokinetic phenomena, Hardware_INTEGRATEDCIRCUITS, 0202 electrical engineering, electronic engineering, information engineering, Electronic, Enhanced sensitivity, Instrumentation (computer programming), Optical and Magnetic Materials, Ion sensitive, 021001 nanoscience & nanotechnology, Surfaces, Ion sensor, 0210 nano-technology
-
9Academic Journal
المؤلفون: Bernaski., Jessica L.
المساهمون: Morris, Robert.
مصطلحات موضوعية: Artificial skin, Sensory enhancement, Human enhancement, Electronic skin in prosthetics, Sensor arrays, WiseSkin, Transmission of sensory information, Single crystalline silicon nanoribbon (SiNR), Sensory feedback, Self healing electronic skin, Prosthesis, Artificial organs, Sensory neurons, Tactile sensors, Thermoreceptors, Skin-grafting
وصف الملف: application/pdf
Relation: Bernaski, Jessica L. (2016, Spring). Electronic skin: expanding sensory capabilities. Wheaton Journal of Neuroscience Senior Seminar Research, 1. Retrieved from: http://hdl.handle.net/11040/24358; https://digitalrepository.wheatoncollege.edu/handle/11040/24358
-
10
المؤلفون: 邱雅琴, Ya Chin Chiou
المساهمون: 陳力俊, Lih Juann Chen
مصطلحات موضوعية: 矽奈米帶, 鎳矽化物奈米帶, 穿透式電子顯微鏡臨場加熱, 富鎳之鎳矽化物, 活化能, 模擬影像, silicon nanoribbon, nickel silicide nanoribbon, In situ TEM, Ni-rich nickel silicide, activation energy, simulated image
Time: 27
وصف الملف: 155 bytes; text/html
Relation: 1. S. Iijima, “Helical Microtube of Graphitic Carbon,” Nature 1991, 354, 56-58. 2.M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of Nanowire Superlatteice Structures for Nanoscale Photonics and Electronics,” Nature 2002, 415, 617-620. 3.X. Duan, Y. H., Y. Chi, J. Wang, and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature 2001, 409, 66-69. 4.Y. Cui, X. Duan, J. Wang, and C. M. Lieber, “Doping and Electrical Transport in Silicon Nanowires,” J. Phys. Chem. B 2000, 104, 5213-5216. 5.M. S. Gudiksen, J. Wang, and C. M. Lieber, “Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires,” J. Phys. Chem. B 2001, 105, 4062-4064. 6.X. Duan, and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 2001, 12, 298-302. 7.D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct Evidence of Quantum Confinement from the Size Dependence of the Photoluminescence of Silicon Quantum Wires,” Phys. Rev. B 1999, 59, R2498-R2501. 8.J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science 2000, 287, 1471-1473. 9.Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors,” Nano Lett. 2003, 3, 149-152. 10.G. F. Zheng, W. Lu, S. Jin, and C. M. Lieber, “Synthesis and Fabrication of High-Performance N-type Silicon Nanowire Transistors,” Adv. Mater. 2004, 16, 1890-1893. 11.Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic Gates and Computation from Assebled Nanowire Building Blocks,” Science 2001, 294, 1313-1317. 12.Y. Cui, Q. Weir, H. park, and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science 2001, 293, 1289-1292. 13.A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 1998, 279, 208-211. 14.Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires,” Appl. Phys. Lett. 1999, 75, (12), 1700-1702. 15.N, Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide,” Chem. Phys. Lett. 1999, 299, (2), 237-242. 16.Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature-Controlled Growh of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders,” J. Phys. Chem. B 2001, 105, 2507-2514. 17.N. Wang, Y. H. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 1998, 58, R16024-R16026. 18.N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “SiO2-enhanced synthesis of Si nanowires by laser ablation,” Appl. Phys. Lett. 1998, 73. 19.Y. H. Tang, Y. F. Zhang, H. Y. Peng, N. Wang, C. S. Lee, and S. T. Lee, “Si nanowires synthesized by laser ablation of mixed SiC and SiO2 powders,” Chem. Phys. Lett. 1999, 314, 16-20. 20.D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled Growth of Oriented Amorphous Silicon Nanowires via A Solid-Liquid-Solid (SLS) Mechanism,” Physica E 2001, 9, 305-309. 21.K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synhesis of Large-Area Silicon Nanowire Arrays via Self- Assembling Nanoelectrochemistry,” Adv. Mater. 2002, 14, 1164-1167. 22.K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Dendrite- Assisted Growth of Silicon Nanowires in Electroless Metal Depositon,” Adv. Funct. Mater. 2003, 13, 127-132. 23.K. Q. Peng, Z. P. Huang, and J. Zhu, “Fabrication of Large-Area Silicon Nanowire p-n Junction Diode Arrays,” Adv. Mater. 2004, 16, (1), 73-76. 24.k. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, “Uniform, Axial-Orientation Alignment of One- Dimensional Single-Crystal Silicon Nanostructure Arrays,” Angew. Chem. Int. Ed. 2005, 44, 2737-2742. 25.K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xiu, S. T. Lee, and J. Zhu, “Fabrication of Single- Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles,” Adv. Funct. Mater. 2006, 16, 387-394. 26.C. Li, G. J. Fang, S. Sheng, Z. Q. Chen, J. b. Wang, S. A. Ma, and X. Z. Zhao, “Raman Spectroscopy and Field Electron Emission Properties of Aligned Silicon Nanowire Arrays,” Physica E 2005, 30, 169-173. 27.K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications,” small 2005, 1, (11), 1062- 1067. 28.R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide- Assisted Growth of Semiconducting Nanowires,” Adv. Mater. 2003, 15, 635-640. 29.W. S. Shi, H. Y. Peng, N. Wang, C. S. Lee, R. Kalish, and S. T. Lee, “Free-standing Single Crystal Silicon Nanoribbons,” J. Am. Chem. Soc. 2001, 123, 11095-11096. 30.R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 1964, 4, 89-90. 31.J. Westwater, D. P. Gosain, S. Tomiya, and S. Usui, “Growth of Silicon Nanowires via Gold/Silane Vapor- Liquid-Solid Reaction,” J. Vac. Sci. Technol. B 1997, 15, 554-557. 32.Y. Y. Wu and P. D. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 2000, 12, (605- 607). 33.C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic Growth and Characterization fo Gallium Nitride Nanowires,” J. Am. Chem. Soc. 2001, 123, 2791- 2798. 34.Z. H. Wu, X. Y. Mei, D. Kim, M. Blumin, and H. E. Ruda, “Growth of Au-Catalyzed Ordered GaAs Nanowire Arrays by Molecular-Beam Epitaxy,” Appl. Phys. Lett. 2002, 81, 5177-5179. 35.Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, “Catalytic Growth and Photoluminescence Properties of Semiconductor Single-Crystal ZnS Nanowires,” Chem. Phys. Lett. 2002, 357, 314-318. 36.X. C. Wu and Y. R. Tao, “Growth of CdS Nanowires by Physical Vapor Depostion,” J. Cryst. Growth 2002, 242, 309-312. 37.M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. 2001, 13, 113-116. 38.D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous Silica Nanowires: Intensive Blue Light Emitters,” Appl. Phys. Lett. 1998, 73, 3076-3078. 39.Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Germanium Nanowires Sheathed with An Oxide Layer,” Phys. Rev. B 2000, 61, 4518-4521. 40.S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, “Semiconductor Nanowires from oxides,” J. Mater. Res. 1999, 14, 4503. 41.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Microstructures of Gallium Nitride Nanowires Synthesized by Oxide-Assisted Method,” Chem. Phys. Lett. 2001, 345, 377-380. 42.W. S. Shi, H. Y. Peng, N. Wang, C. S. Lee, R. Kalish, and S. T. Lee, “Oxide-Assisted Growth and Optical Characterization of Gallium-Arsenide Nanowires,” Appl. Phys. Lett. 2001, 78, 3304-3306. 43.J. Q. Hu, X. L. Ma, Z. Y. Xie, N. Wong, C. S. Lee, and S. T. Lee, “Characterization of Zinc Oxide Crystal Whiskers Grown by Thermal Evaporation,” Chem. Phys. Lett. 2001, 344, 97-100. 44.K. Maex, “Silicides for integrated circuits: TiSi2 and CoSi2,” Mater. Sci. Eng. 1993, R11, 53. 45.M. K. Datta, S. K. Pabi, and B. S. Murty, “Phase fields of nickel silicides obtained by mechanical alloying in the nanocrstalline state,” J. Appl. Phys. 2000, 87, 8393-8400. 46.J. Crofton, P. G. Mcmullin, J. R. Williams, M. J. Bozack, “High-temperature ohmic contact to n-type 6H- SiC using nickel,” J. Appl. Phys. 1995, 77, 1317-1319. 47.M. K. Datta, S. K. Pabi, and B. S. Murty, “Thermal stability of nanocrystalline Ni silicides synthesized by mechanical alloying,” Mater. Sci. Eng. 2000, A284, 219- 225. 48.G. Majni, M. Costato, and F. Panini, “The Growth Processes of Thin Film Silicides in Si/Ni Planar Systems,” Thin Solid Films 1985, 125, 71-78. 49.K. N. Tu, W. K. Chu, and J. W. Mayer, “Structure and Growth Kinetics of Ni2Si of Silicon,” Thin Solid Films 1975, 25, 403-413. 50.J. O. Olowolafe, M.-A. Nicolet, and J. W. Mayer, “Influence of the Nature of the Si Substrate on Nickel Silicide Formed From Thin Ni Films,” Thin Solid Films 1976, 38, 143-150. 51.C. -D. Lien, M.-A. Nicolet, and S. S. Lau, “Kinetics of Silicides on Si and Evaporated Silicon Substrates,” Thin Solid Films 1986, 143, 63-72. 52.F. d'Heurle, C. S. Petersson, J. E. E. Baglin, S. J. La Placa, and C. Y. Wong, “Formation of thin films of NiSi: Metatable structure, diffusion mechanisms in intermetallic compounds,” J. Appl. Phys. 1984, 55, (12), 4208-4218. 53.M. Levit, I. Grimberg, and B-Z. Weiss, “Morphology and kinetics of the interaction between Ni90Ti10 alloy thin film and 6H-SiC single crystal,” J. Mater. Res. 1998, 13, 3247-3255. 54.J. F. Lin, J. P. Bird, Z. He, P. A. Bennett, and D. J. Smith, “Signatures of quantum transport in self- assembled epitaxial nicke silicide nanowires,” Appl. Phys. Lett. 2004, 85, 281-283. 55.Y. L. Chueh, L. J. Chou, S. L. Cheng, L. J. Chen, and C. J. Tsai, “Synthesis and characterization of metallic TaSi2 nanowires,” Appl. Phys. Lett. 2005, 87, 223113. 56.C. A. Decker, R. Solanki, J. L. Freeouf, and J. R. Carruthers, “Directed growth of nickel silicide nanowires,” Appl. Phys. Lett. 2004, 84, 1389-1391. 57.S. Y. Chen, and L. J. Chen, “Nitride-mediated epitaxy of self -assembled NiSi2 nanowires on (001)Si,” Appl. Phys. Lett. 2005, 87, 253111. 58.M. Stevens, Z. He, D. J. Smith, and P. S. Bennent, “Structure and orientation of epitaxial titanium silicide nanowires determined by electron microdiffraction,” J. Appl. Phys. 2003, 93, 5670-5674. 59.J. Nogami, B. Z. Liu, M. V. Katkov, C. Ohbuchi, and N. O. Birge, “Self-assembled rare-earth silicide nanowires on Si(100),” Phys. Rev. B 2001, 63, 233305. 60.Y. Chen, D. A. Ohlberg, G. Medeiros-Ribeiro, A. Chang, and R. S. Williams, “Self-assembled growth of epitaxial erbium disilicide nanowires on silicon(001),” Appl. Phys. Lett. 2000, 76, 4004-4006. 61.C. Preinesberger, S. K. Becker, S. Vandre, T. Kalka, and M. Dahne, “Structure of DySi2 nanowires on Si(001),” J. Appl. Phys. 2002, 91, 1695-1697. 62.J. Kim, and W. A. Anderson, “Spontaneous nickel monosilicide nanowire formation by metal induced growth,” Thin Solid Films 2005, 483, 60-65. 63.J. A. Kittl, D. A. Prinslow, P. P. Apte, and M. F. Pas, “Kinetics and nucleation mode of the C49 to C54 phase transformation in TiSi2 thin films on deep-sub-micron n+ type polycrystalline silicon lines,” Appl. Phys. Lett. 1995, 67, 2308-2310. 64.G. B. Kim, D.-J. Yoo, H. K. Baik, J. -M. Myoung, S. M. Lee, S. H. Oh, and C. G. Park, “Improved thermal stability of Nisilicide on Si (100) through reactive deposition of Ni,” J. Vac. Sci. Technol. B 2003, 21, 319-322. 65.X. Q. Yan, H. J. Yuan, J. X. Wang, D. F. Liu, Z. P. Zhou, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, and S. S. Xie, “Synthesis and characerization of large amount of branched Ni2Si nanowires,” Appl. Phys. A 2004, 79, 1853-1856. 66.K. S. Lee, Y. H. Mo, K. S. Nahm, H. W. Shim, E. K. Suh, J. R. Kim, and J. J. Kim, “Anomalous growth and characterization of carbon-coated nickel silicide nanowires,” Chem. Phys. Lett. 2004, 384, 215-218. 67.Z. Zhang, P.-E. Hellstrom, M. Ostling, and S. L. Zhang, “Electrically robust ultralong nanowires of NiSi, Ni2Si, and Ni31Si12,” Appl. Phys. Lett. 2006, 88, 043104. 68.Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 2004, 430, 61-65. 69.L. Dong, J. Bush, V. Chirayos, R. Solanki, and J. Jiao, “Dielectrophoretically Controlled Fabrication of Single- Crytal Nickel Silicide Nanowire Interconnects,” Nano Lett. 2005, 5, 2112-2115. 70.J. M. Gibson, J. L. Batstone, R. T. Tung, and F. C. Unterwald, “Origin of A- or B- Type NiSi2 Determined by In Situ Transmission Electron Microscopy and Diffraction during Growth,” Phys. Rev. Lett. 1988, 60, 1158-1161. 71.M. W. Kleinschmit, M. Yeadon, and J. M. Gibson, “Nucleation of single-crystal CoSi2 with oxide-mediated epitaxy,” Appl. Phys. Lett. 1999, 75, 3288-3290. 72.T. Yokota, M. Murayama, and J. M. Howe, “In situ transmission Electron Microscopy Investigation of Melting in Submicron Al-Si Slloy Particles under Electron-Beam Irradiation,” Phys. Rev. Lett. 2003, 91, 265504. 73.M. Tanaka, F. Chu, M. Shimojo, M. Takeguchi, K. Mitsuishi, and K. Furuya, “Position-and size-controlled fabrication of iron silicide nanorods by electron-beam- induced deposition using an ultrahigh-vacuum transmission electron microscope,” Appl. Phys. Lett. 2005, 86, 138104. 74.V. Teodorescu, L. Nistor, H. Bender, A. Steegen, A. Lauwers, K. Maex, and J. V. Landuyt, “In situ transmission electron microscopy study of Nisilicide Phases formed on (001) Si active lines,” J. Appl. Phys. 2001, 90, 167-174. 75.M. Aizawa, A. M. Cooper, M. Mala, and J. M. Buriak, “Silver Nano-Inukshuks on Germanium,” Nano Lett. 2005, 5, 815-819. 76.K. Q. Peng, and J. Zhu, “Simultaneous gold deposition and formation of silicon nanowire,” J. Electroanal. Chem. 2003, 558, 35-39. 77. J. A. Kittl, A. Lauwers, M. A. Pawlak, M. J. H. van Dal, A. Veloso, K. G. Anil, G. Pourtois, C. Demeurisse, T. Schram, B. Brijs, M. de Potter, C. Vrancken, and K. Maex, “Ni fully silicide gates for 45 nm CMOS applications,” Microelecron. Eng. 2005, 82, 441-448. 78. K. N. Tu, “Analysis of marker motion in thin-film silicide formation,” J. Appl. Phys. 1977, 48, 3379-3382. 79. Y. Ding and Z. L. Wang, “Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy,” J. Phys. Chem. B 2004, 108, 12280-12291.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/28505
-
11
المؤلفون: Chen, Xi
مصطلحات الفهرس: Nanotechnology, Chemistry, Nanoscience, antifouling coating, artificial membranes, biosensing, carbon nanotubes, silicon nanoribbon sensors, Academic Dissertation, Dissertations, Academic Chemistry University of California, Merced, Academic theses., Academic theses., Thèses et écrits académiques.
-
12Electronic Resource
المؤلفون: Afrasiabi, Roodabeh, Jokilaakso, Nima, Schmidt, Torsten, Björk, P., Eriksson Karlström, Amelie, Linnros, Jan
مصطلحات الفهرس: Silicon nanoribbon field-effect transistors, Microwave heating, Silanization, Surface characterization, Electrical measurements, pH sensitivity, Materials Chemistry, Materialkemi, Article in journal, info:eu-repo/semantics/article, text
URL:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161089
Sensors and actuators. B, Chemical, 0925-4005, 2015, 209, s. 586-595