يعرض 1 - 20 نتائج من 169 نتيجة بحث عن '"semigrupo"', وقت الاستعلام: 0.74s تنقيح النتائج
  1. 1
    Dissertation/ Thesis
  2. 2
    Dissertation/ Thesis

    المؤلفون: Cantier, Laurent

    Thesis Advisors: Antoine Riolobos, Ramon, Perera Domènech, Francesc

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  3. 3

    المساهمون: Branco, Mário João de Jesus, Cunha, Gracinda Maria dos Santos Gomes Moreira da, Repositório da Universidade de Lisboa

    وصف الملف: application/pdf

  4. 4
    Academic Journal

    المساهمون: Instituto Politécnico de Beja. Portugal, Universidad de Extremadura. Departamento de Matemáticas, Universidade de Évora. Portugal

    وصف الملف: 18 p.; application/pdf

    Relation: https://doi.org/10.1007/s00009-022-02233-w; http://hdl.handle.net/10662/17177; Branco, M.B., Colaço, I. & Ojeda, I. The Frobenius Problem for Generalized Repunit Numerical Semigroups. Mediterr. J. Math. 20, 16 (2023). https://doi.org/10.1007/s00009-022-02233-w; Mediterranean Journal of Mathematics; 20; 16-1; 16-18; orcid:0000-0003-3173-5934

  5. 5
    Academic Journal

    المصدر: Boletín de Matemáticas; Vol. 27 Núm. 1 (2020); 25-42 ; Boletín de Matemáticas; Vol. 27 No. 1 (2020); 25-42 ; 2357-6529 ; 0120-0380

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/bolma/article/view/101043/82746; J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly 99 (1992), no. 4, 332-334.; T. Ceccherini-Silberstein and M. Coornaert, Sensitivity and Devaney's chaos in uniform spaces, J. Dyn. Control Syst. 19 (2013), no. 3, 349-357.; X. Dai and X. Tang, Devaney chaos, Li-Yorke chaos, and multi-dimensional Li{Yorke chaos for topological dynamics, J. Differential Equations 263 (2017), no. 9, 5521-5553.; R. L. Devaney, An introduction to chaotic dynamical systems, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986.; J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966.; R. Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969.; R. Engelking, General topology, 2 ed., Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.; A. I. Gerko, On the disjointness of some types of extensions of topological transformation semigroups, Mat. Zametki 73 (2003), no. 4, 527-544 (Russian), translation in Math. Notes 73 (2003), no. 4, 496-510.; L. Google and M. Megrelishvili, Semigroup actions: proximities, compactifications and normality, Topology Proc. 35 (2010), 37-71.; M. Holz, K. Steffens, and E. Weitz, Introduction to cardinal arithmetic, Birkhauser{Verlag, Basel, 1999.; J. van Mill, On the G-compactications of the rational numbers, Monatsh. Math. 157 (2009), no. 3, 257-266.; Sh. H. Li, !{chaos and topological entropy, Trans. Amer. Math. Soc. 339 (1993), no. 1, 243-249.; P. Oprocha, Distributional chaos revisited, Trans. Amer. Math. Soc. 361 (2009), no. 9, 4901-4925.; S. Ruette and L. Snoha, For graph maps, one scrambled pair implies Li-Yorke chaos, Proc. Amer. Math. Soc. 142 (2014), no. 6, 2087-2100.; M. Sabbaghan, F. Ayatollah Zadeh Shirazi, and A. Hosseini, Co-decomposition of a transformation semigroup, Ukrainian Math. J. 65 (2014), no. 11, 1670-1680.; M. Sabbaghan, K. Tso, and T.-S. Wu, Abelian minimal transformation semigroups, Topology Appl. 60 (1994), no. 3, 201-227.; E. Shah, Devaney's chaos for maps on G-spaces, Taiwanese J. Math. 22 (2018), no. 2, 339-348.; S. Shah and T. Das, On e-chaos, Int. J. Math. Anal. (Ruse) 7 (2013), no. 9-12, 571-578.; F. Ayatollah Zadeh Shirazi, M. A. Mahmoodi, and M. Raeisi, On distality of a transformation semigroup with one point compactification of a discrete space as phase space, Iran. J. Sci. Technol. Trans. A Sci. 40 (2016), no. 4, 209-217.; L. A. Steen and J. A. Seebach, Counterexamples in topology, Holt, Rinehart and Winston, Inc., 1970.; H. Wang, X. Long, and H. Fu, Sensitivity and chaos of semigroup actions, Semigroup Forum 84 (2012), no. 1, 81-90.; X. Wang and Y. Huang, Devaney chaos revisited, Topology Appl. 160 (2013), no. 3, 455-460.; https://revistas.unal.edu.co/index.php/bolma/article/view/101043

  6. 6
    Academic Journal
  7. 7
    Dissertation/ Thesis
  8. 8
    Dissertation/ Thesis
  9. 9
  10. 10
    Academic Journal

    المصدر: Revista Colombiana de Matemáticas; Vol. 55 Núm. 1 (2021); 21-41 ; Revista Colombiana de Matemáticas; Vol. 55 No. 1 (2021); 21-41 ; 2357-4100 ; 0034-7426

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/recolma/article/view/99097/81495; D. Bakry, Functional inequalities for Markov semigroups., Probability measures on groups: recent directions and trends, Tata Inst. Fund. Res., Mumbai, 2006.; D. Bakry and O. Mazet, Characterization of Markov semigroups on R associated to some families of orthogonal polynomials, Sem. Prob. XXXVII. Lec. Notes in Math 1832 Springer (2003), 60-80.; E. Berezhnoi, Two-weighted estimations for the Hardy-Littlewood maximal function in ideal banach spaces, Proc Amer Math Soc 127 (1999), no. 1, 79-87.; D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces, Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser-Springer, 2013.; E. Dalmasso and R. Scotto, Riesz transforms on variable Lebesgue spaces with Gaussian measure, Integral Transforms and Special Functions 28 (2017), no. 5, 403-420.; L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer, 2011.; E. Fabes, C. Gutiérrez, and R. Scotto, Weak-type estimates for the Riesz transforms associated with the gaussian measure, Rev Mat Iber 10 (1994), no. 2, 229-281.; S. Pérez, Estimaciones puntuales y en normas para operadores relacionados con el semigrupo de Ornstein-Uhlenbeck, Tesis doctoral, Universidad Autónoma de Madrid, 1996.; E. Pineda and W. Urbina, Non tangential convergence for the Ornstein-Uhlenbeck semigroup, Divulgaciones Matemáticas 16 (2007), no. 1, 107-124.; E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press., 1970.; W. Urbina, Semigroups of operators for classical orthogonal polynomials and functional inequalities, Séminaires et Congrès (25), CIMPA Workshop Mérida, Venezuela, French Mathematical Society (SMF), 2012.; W. Urbina, Gaussian harmonic analysis, Springer Monographs in Mathematics, Springer-Nature, 2019.; https://revistas.unal.edu.co/index.php/recolma/article/view/99097

  11. 11
    Academic Journal
  12. 12
    Dissertation/ Thesis

    المؤلفون: RAMOS, Liomar Carvalho

    المساهمون: SIMSEN, Jacson, http://lattes.cnpq.br/1268167759247908

    وصف الملف: application/pdf

    Relation: RAMOS, Liomar Carvalho. Estudo de sistemas dinâmicos multívocos monótonos. 2024. 64 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Itajubá, Itajubá, 2024.; https://repositorio.unifei.edu.br/jspui/handle/123456789/4023

  13. 13
    Conference

    المؤلفون: Perera Domenech, Francisco

    مصطلحات موضوعية: C*-álgebra, semigrupo de Cuntz, ultraproducto

    Relation: Conferencia del profesor Francisco Perera Domenech; Seminario de Álgebra, Facultad de Ciencias, Málaga, España; 24 de julio de 2019; https://hdl.handle.net/10630/18171

  14. 14

    المساهمون: Gomes, Gracinda Maria dos Santos, 1956-, Repositório da Universidade de Lisboa

    وصف الملف: application/pdf

  15. 15
    Dissertation/ Thesis
  16. 16
    Book
  17. 17
    Academic Journal

    المؤلفون: Stewart, Ian

    المساهمون: University of Warwick. United Kingdom

    وصف الملف: 24 p.; application/pdf

    Relation: https://doi.org/10.17398/2605-5686.34.1.99; http://hdl.handle.net/10662/9982; STEWART, I. (2019). Tetrahedral chains and a curious semigroup. Extracta Mathematicae 34 (1), 99-122. E-ISSN 2605-5686; Extracta Mathematicae; 99; 122; 34

  18. 18
    Academic Journal

    المصدر: Revista Colombiana de Matemáticas; Vol. 53 Núm. 1 (2019); 73-85 ; Revista Colombiana de Matemáticas; Vol. 53 No. 1 (2019); 73-85 ; 2357-4100 ; 0034-7426

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/recolma/article/view/81044/71564; W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352.; C. R. Day, Spectral mapping theorem for integrated semigroups, Semigroup Forum 47 (1993), no. 1, 359-372.; K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000.; J. P. Labrousse, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, Rend. Circ. Math. Palermo 2 XXIX (1980), 161-258.; J. P. Labrousse, Inverses généralisés d'opérateurs non-bornés, Proc. Amer. Math. Soc. 115 (1992), 125-129.; M. Mbekhta and A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Acta Sci. Math. (Szeged) 59 (1994), 525-543.; V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Oper. Theory Advances and Applications (2007).; A. Tajmouati, H. Boua, and M. Karmouni, Quasi-Fredholm, Saphar Spectra For C0 Semigroups Generators, Italian journal of pure and applied mathematics 36 (2016), 359-366.; H. R. Thieme, Integrated Semigroups and Integrated Solutions to Abstract Cauchy Problems, Journal of Mathematical Analysis and Applications 152 (1990), 416-447.; https://revistas.unal.edu.co/index.php/recolma/article/view/81044

  19. 19
    Academic Journal

    المصدر: Revista Colombiana de Matemáticas; Vol. 53 Núm. 1 (2019); 57-72 ; Revista Colombiana de Matemáticas; Vol. 53 No. 1 (2019); 57-72 ; 2357-4100 ; 0034-7426

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/recolma/article/view/81042/71562; C. Bandle and H. Brunner, Blowup in diffusion equations: a survey, J. Comput. Appl. Math. 97 (1998), 3-22.; J. Bebernes and D. Eberly, Mathematical problems from combustion theory, Springer-Verlag, 1989.; M. Birkner, J. A. López-Mimbela, and A. Walkonbinger, Comparison results and steady states for the fujita equation with fractional laplacian, Annales de L'Institute Henri Poncare-Analyse non Linéare 22 (2005), 83-97.; K. Bogdan, T. Grzywny, and M. Ryznar, Dirichlet heat kernel for unimodal lévy processes, Stochastic Process. Appl. 124 (2014), 3612-3650.; M. Bogoya, Sobre la explosión de una ecuación de difusión no local con término de reacción, Boletín de Matemáticas 24 (2017), no. 2, 117-130.; E. B. Davies and B. Simon, Ultracontractivity and the heat kernel for schrödinger operators and dirichlet laplacians, J. Funct. Anal. 59 (1984), 335-395.; K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. 243 (2000), 45-126.; M. Fila, H. Ninomiya, and J. L. Vázquez, Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems, Discr. Cont. Dyn. Systems 14 (2006), 63-74.; A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana. Univ. Math. J. 34 (1985), 425-447.; Y. Fujishima, Global existence and blow-up of solutions for the heat equation with exponential nonlinearity, J. Differential Equations 264 (2018), 6809-6842.; H. Fujita, On the blowing up of solutions of the cauchy problem for ut = du + u1 + a, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124.; H. Fujita, On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, IL, 1968), Amer. Math. Soc., Providence, R. I. (1970), 105-113.; P. Groisman, J. D. Ross, and H. Zaag, On the dependence of the blowup time with respect to the initial data in a semilinear parabolic problem, Commun. Partial Differ. Equations 28 (2003), 737-744.; T. Grzywny, Intrinsic ultracontractivity for lévy processes, Probab. Math. Statist. 28 (2008), 91-106.; M. Guedda and M. Kirane, Critically for some evolution equations, Differential Equations 37 (2001), 540-550.; Jr. J. A. Mann and W. A. Woyczynski, Growing fractal interfaces in the presence of self-similar hopping surface diffusion, Phys. A. 291 (2001), 159-183.; S. Kaplan, On the growth of solutions of quasilinear parabolic equations, Commun. Pure Appl. Math. 16 (1963), 305-333.; E. T. Kolkovska, J. A. López-Mimbela, and A. Pérez, Blow-up and life span bounds for a reaction-diffusion equation with a time-dependent generator, Elec. J. Diff. Equations 2008 (2008), 1-18.; T. Kulczycki and M. Ryznar, Gradient estimates of harmonic functions and transition densities for lévy processes, Trans. Amer. Math, Soc. 368 (2016), 281-318.; J. A. López-Mimbela and A. Pérez, Finite time blow up and stability of a semilinear equation with a time dependent lévy generator, Stoch. Models 22 (2006), 735-752.; Global and nonglobal solutions of a system of nonautonomous semilinear equations with ultracontractive lévy generators, J. Math. Anal. Appl. 423 (2015), 720-733.; J. A. López-Mimbela and A. Torres, Intrinsic ultracontractivity and blowup of a semilinear dirichlet boundary value problem, Aportaciones Mat., Modelos Estocásticos, Sociedad Matemática Mexicana 14 (1998), 283-290.; V. Marino, F. Pacella, and B. Sciunzi, Blow up of solutions of semilinear heat equations in general domains, Commun. Contemp. Math. 17 (2015), no. 2.; L. E. Payne and G. A. Philippin, Blow-up phenomena in parabolic problems with time dependent coeficients under dirichlet boundary conditions, Proc. Amer. Math. Soc. 141 (2013), 2309-2318.; L. E. Payne and P. W. Schaefer, Lower bound for blow-up time in parabolic problems under dirichlet conditions, J. Math. Anal. Appl. 328 (2007), 1196-1205.; A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, 1983.; A. Pérez and J. Villa, A note on blow-up of a nonlinear integral equation, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 891-897.; M. Pérez-Llanos and J. D. Rossi, Blow-up for a non-local diffusion problem with neumann boundary conditions and a reaction term, Nonlinear Analysis 70 (2009), 1629-1640.; A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in quasilinear parabolic equations, The Gruyter Expositions in Mathematics, 19; Walter de Gruyter & Co., 1995.; K.-I. Sato, Lévy processes and infinitely divisible distributions, Cambridge Stud. Adv. Math, vol. 68, Cambridge University Press, 1999.; M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, Lévy flights and related topics in physics, Lecture Notes in Physics 450; Springer-Verlag, 1995.; S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math. 12 (1975), 45-51.; V. Varlamov, Long-time asymptotics for the nonlinear heat equation with a fractional laplacian in a ball, Studia Math. 142 (2000), 71-99.; J. Villa-Morales, An osgood condition for a semilinear reaction-diffusion equation with time-dependent generator, Arab J. Math. Sci. 22 (2016), 86-95.; X. Wang, On the cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc. 337 (1993), 549-590.; F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), 29-40.; https://revistas.unal.edu.co/index.php/recolma/article/view/81042

  20. 20
    Academic Journal