يعرض 1 - 20 نتائج من 129 نتيجة بحث عن '"riesgo de extinción"', وقت الاستعلام: 1.18s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Lucas, Pablo Miguel, Di Marco, Moreno, Cazalis, Victor, Luedtke, Jennifer, Neam, Kelsey, Brown, Mary H., Langhammer, Penny F., Mancini, Giordano, Santini, Luca

    Relation: info:eu-repo/semantics/altIdentifier/pmid/38946355; info:eu-repo/semantics/altIdentifier/wos/WOS:001260141800001; numberofpages:18; journal:CONSERVATION BIOLOGY; https://hdl.handle.net/11573/1716647; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85197293878

  2. 2
  3. 3
    Academic Journal
  4. 4
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المساهمون: Armenteras Pascual, Dolors, Urbina Cardona, Nicolás, Ecología del paisaje y modelación de ecosistemas

    وصف الملف: application/pdf

    Relation: https://doi.org/10.1016/j.pecon.2019.11.002; Acosta-Galvis, A. R. (2015). Una nueva especie del género Pristimantis (aura: craugastoridae) del complejo de páramos Merchán-Iguape (Boyacá, Colombia). Biota Colombiana, 107–127. Agudelo-Hz, W., & Armenteras-Pascual, D. (2017). Cambio climático en ecosistemas andinos de Colombia: una revisión de sus efectos sobre la Biodiversidad, En: González-Pinto, A.L. (Ed.). (2017). Biodiversidad y Cambio Climático en Colombia: Avances, perspestivas y reflexiones. Bogotá D.C., Colombia. Jard. Aguilera, A. M., Escabias, M., & Valderrama, M. J. (2006). Using principal components for estimating logistic regression with high-dimensional multicollinear data. Computational Statistics and Data Analysis, 50(8), 1905–1924. https://doi.org/10.1016/j.csda.2005.03.011 Aiello-Lammens, M. E., Boria, R. a., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545. https://doi.org/10.1111/ecog.01132 Albornoz-Espinel, M. M., Cáceres-Martínez, C. H., & Acevedo-Rincón, A. A. (2017). Protected areas assessment for the conservation of threatened amphibians in the Cordillera Oriental of Colombia. Herpetology Notes, 10(November), 685–696. Almeida-Gomes, M., & Rocha, C. F. D. (2014). Landscape connectivity may explain anuran species distribution in an Atlantic forest fragmented area. Landscape Ecology, 29(1), 29–40. https://doi.org/10.1007/s10980-013-9898-5 Almeida-Gomes, M., Vieira, M. V., Rocha, C. F. D., Metzger, J. P., & De Coster, G. (2016). Patch size matters for amphibians in tropical fragmented landscapes. Biological Conservation, 195, 89–96. https://doi.org/10.1016/j.biocon.2015.12.025 Alroy, J. (2015). Current extinction rates of reptiles and amphibians. Proceedings of the National Academy of Sciences, 2015, 201508681. https://doi.org/10.1073/pnas.1508681112 AmphibiaWeb. (2019). AmphibiaWeb. . Anderson, R. P., & Gonzalez, I. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecological Modelling, 222(15), 2796–2811. https://doi.org/10.1016/j.ecolmodel.2011.04.011 Anderson, R. P., Lew, D., & Peterson, A. T. (2003). Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling, 162(3), 211–232. https://doi.org/10.1016/S0304-3800(02)00349-6 Andrén, H. (1994). Effects of Habitat Fragmentation on Birds and Mammals in Landscapes with Different Proportions of Suitable Habitat: A Review. Oikos, 71(3), 355. https://doi.org/10.2307/3545823 Armenteras, D., Espelta, J. M., Rodríguez, N., & Retana, J. (2017). Deforestation dynamics and drivers in different forest types in Latin America: Three decades of studies (1980–2010). Global Environmental Change, 46(June), 139–147. https://doi.org/10.1016/j.gloenvcha.2017.09.002 Armenteras, D., Gast, F., & Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biological Conservation, 113(2), 245–256. https://doi.org/10.1016/S0006-3207(02)00359-2 Armenteras, D., & Vargas, O. (2016). Patrones Del Paisaje Y Escenarios De Restauración En Colombia: Acercando Escalas. Acta Biológica Colombiana, 21(1Supl), 229–239. https://doi.org/10.15446/abc.v21n1Supl.50848 Armesto, L. O., & Señaris, J. C. (2017). Anuros del norte de los andes: Patrones de riqueza de especies y estado de conservación. Papeis Avulsos de Zoologia, 57(39), 491–526. https://doi.org/10.11606/0031-1049.2017.57.39 Arroyo, S., Jerez, A., & Ramirez-Pinilla, M. P. (2003). Anura from a cloud forest in the eastern Cordillera of Colombia. Caldasia, 25(1), 153–167. Auffret, A. G., Plue, J., & Cousins, S. A. O. (2015). The spatial and temporal components of functional connectivity in fragmented landscapes. Ambio, 44(1), 51–59. https://doi.org/10.1007/s13280-014-0588-6 Báez, S., Jaramillo, L., Cuesta, F., & Donoso, D. A. (2016). Effects of climate change on Andean biodiversity: a synthesis of studies published until 2015. Neotropical Biodiversity, 2(1), 181–194. https://doi.org/10.1080/23766808.2016.1248710 Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., … Ferrer, E. A. (2011). Has the Earth’s sixth mass extinction already arrived? Nature, 471(7336), 51. https://doi.org/10.1038/nature09678 Barragán Altamirano, D. (2015). Effects of future climate change and habitat loss in the distribution of frog species in the Ecuadorian Andes. Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Exactas y Naturales, Escuela de Ciencias Biológicas. Barve, N., Barve, V., Jimenez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., … Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011 Bascompte, J., & Sole, R. V. (1996). Habitat Fragmentation and Extinction Thresholds in Spatially Explicit Models. The Journal of Animal Ecology, 65(4), 465. https://doi.org/10.2307/5781 Basham, E. W., González del Pliego, P., Acosta-Galvis, A. R., Woodcock, P., Medina Uribe, C. A., Haugaasen, T., … Edwards, D. P. (2016). Quantifying carbon and amphibian co-benefits from secondary forest regeneration in the Tropical Andes. Animal Conservation, 19(6), 548–560. https://doi.org/10.1111/acv.12276 Bax, V., & Francesconi, W. (2019). Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. Journal of Environmental Management, 232(November 2018), 387–396. https://doi.org/10.1016/j.jenvman.2018.11.086 Becker, C Guilherme, & Zamudio, K. R. (2011). Tropical amphibian populations experience higher disease risk in natural habitats. Proceedings of the National Academy of Sciences, 108(24), 9893–9898. https://doi.org/10.1073/pnas.1014497108 Becker, Carlos Guilherme, Fonseca, C. R., Haddad, C. F. B., Batista, R. F., & Prado, P. I. (2007). Habitat Split and the Global Decline of Amphibians. Science, 318(5857), 1775–1777. https://doi.org/10.1126/science.1149374 Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x; Bellard, C., Leclerc, C., Leroy, B., Bakkenes, M., Veloz, S., Thuiller, W., & Courchamp, F. (2014). Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography, 23(12), 1376–1386. https://doi.org/10.1111/geb.12228 Bernal, M. H., & Lynch, J. D. (2013). Thermal tolerance in anuran embryos with different reproductive modes: relationship to altitude. TheScientificWorldJournal, 2013, 183212. https://doi.org/10.1155/2013/183212 Bernal, M., & Lynch, J. (2008). Review and analysis of altitudinal distribution of the Andean anurans in Colombia. In Zootaxa (Vol. 1826). https://doi.org/10.11646/zootaxa.1826.1.1 Bishop, P. J., Angulo, A., Lewis, J. P., Moore, R. D., Rabb, G. B., & Garcia Moreno, J. (2012). The Amphibian Extinction Crisis - what will it take to put the action into the Amphibian Conservation Action Plan? P. J. Bishop, A. Angulo, J. P. Lewis, R.D. Moore, G. B. Rabb and J. Garcia Moreno. Surveys and Perspectives Integrating Environment and Society, 5(2), 97–111. Blaustein, A. R., Han, B. A., Relyea, R. A., Johnson, P. T. J., Buck, J. C., Gervasi, S. S., & Kats, L. B. (2011). The complexity of amphibian population declines: Understanding the role of cofactors in driving amphibian losses. Annals of the New York Academy of Sciences, 1223(1), 108–119. https://doi.org/10.1111/j.1749-6632.2010.05909.x Blaustein, A. R., Root, T. L., Kiesecker, J. M., Belden, L. K., Olson, D. H., Green, D. M., … Kiesecker, J. M. (2001). Amphibian Breeding and Climate Change. Conservation Biology, 17(2), 626–627. https://doi.org/10.1046/j.1523-1739.2003.02506.x Blaustein, A. R., Walls, S. C., Bancroft, B. A., Lawler, J. J., Searle, C. L., & Gervasi, S. S. (2010). Direct and indirect effects of climate change on amphibian populations. Diversity, 2(2), 281–313. https://doi.org/10.3390/d2020281 Böhm, M., Collen, B., Baillie, J. E. M., Bowles, P., Chanson, J., Cox, N., … Zug, G. (2013). The conservation status of the world’s reptiles. Biological Conservation, 157, 372–385. https://doi.org/10.1016/j.biocon.2012.07.015 Böhm, M., Williams, R., Bramhall, H. R., Mcmillan, K. M., Davidson, A. D., Garcia, A. A. A. A. A., … Collen, B. (2016). Correlates of extinction risk in squamate reptiles: The relative importance of biology, geography, threat and range size. Global Ecology and Biogeography, 25(4), 391–405. https://doi.org/10.1111/geb.12419 Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012 Breiner, F. T., & Bergamini, A. (2018). Improving the estimation of area of occupancy for IUCN Red List assessments by using a circular buffer approach. Biodiversity and Conservation. https://doi.org/10.1007/s10531-018-1555-5 Breiner, F. T., Guisan, A., Nobis, M. P., & Bergamini, A. (2017). Including environmental niche information to improve IUCN Red List assessments. Diversity and Distributions, 23(5), 484–495. https://doi.org/10.1111/ddi.12545 Brook, B. W., Sodhi, N. S., & Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology and Evolution, 23(8), 453–460. https://doi.org/10.1016/j.tree.2008.03.011 Brooks, T. M., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. a. B., Rylands, A. B., Konstant, W. R., … Hilton-Taylor, C. (2002). Habitat Loss and Extinction in the Hotspots of Biodiversity. Conservation Biology, 16(4), 909–923. https://doi.org/10.1046/j.1523-1739.2002.00530.x Brown, J. H. (2014). Why are there so many species in the tropics? Journal of Biogeography, 41(1), 8–22. https://doi.org/10.1111/jbi.12228 Brüning, L. Z., Krieger, M., Meneses-Pelayo, E., Eisenhauer, N., Ramirez Pinilla, M. P., Reu, B., & Ernst, R. (2018). Land-use heterogeneity by small-scale agriculture promotes amphibian diversity in montane agroforestry systems of northeast Colombia. Agriculture, Ecosystems and Environment, 264(October 2017), 15–23. https://doi.org/10.1016/j.agee.2018.05.011 Buytaert, W., & Ramírez-Villegas J. (2012). Generación de escenarios desagregados del cambio climatico para los Andes Tropicales. In F. Cuesta, M. Bustamante, M. . Becerra, J. Postigo, & J. Peralvo (Eds.), Panorama andino de cambio climático: Vulnerabilidad y adaptación en los Andes Tropicales (pp. 37–57). Lima: CONDESAN, SGCAN. Casajus, N., Périé, C., Logan, T., Lambert, M.-C., Blois, S. de, & Dominique Berteaux. (2016). An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change. PloS One, 11(3), 1–17. https://doi.org/10.1371/journal.pone.0152495 Castroviejo-Fisher, S., Guayasamin, J. M., Gonzalez-Voyer, A., & Vilà, C. (2014). Neotropical diversification seen through glassfrogs. Journal of Biogeography, 41(1), 66–80. https://doi.org/10.1111/jbi.12208 Catenazzi, A. (2015). State of the World’s Amphibians. Annual Review of Environment and Resources, 40(1), 150724171620008. https://doi.org/10.1146/annurev-environ-102014-021358 Chaudhary, A., & Mooers, A. O. (2018). Terrestrial vertebrate biodiversity loss under future global land use change scenarios. Sustainability (Switzerland), 10(8). https://doi.org/10.3390/su10082764 Chejanovski, Z. A., & Wiens, J. J. (2014). Climatic niche breadth and species richness in temperate treefrogs. Journal of Biogeography, 41(10), 1936–1946. https://doi.org/10.1111/jbi.12345 Cole, E. M., Bustamante, M. R., Almeida-Reinoso, D., & Funk, W. C. (2014). Spatial and temporal variation in population dynamics of Andean frogs: Effects of forest disturbance and evidence for declines. Global Ecology and Conservation, 1, 60–70. https://doi.org/10.1016/j.gecco.2014.06.002 Cooper, J. C., & Soberón, J. (2018). Creating individual accessible area hypotheses improves stacked species distribution model performance. Global Ecology and Biogeography, 27(1), 156–165. https://doi.org/10.1111/geb.12678 Cortés-Gomez, A. M., Ruiz-Agudelo, C. A., Valencia-Aguilar, A., & Ladle, R. J. (2015). Ecological functions of neotropical amphibians and reptiles: A review. Universitas Scientiarum, 20(2), 229–245. https://doi.org/10.11144/Javeriana.SC20-2.efna Cortés, A. M., Ramírez-Pinilla, M. P., Suárez, H. A., & Tovar, E. (2008). Edge Effects on Richness, Abundance and Diversity of Frogs in Andean Cloud Forest Fragments. South American Journal of Herpetology, 3(3), 213–222. https://doi.org/10.2994/1808-9798-3.3.213 Crooks, K. R., Burdett, C. L., Theobald, D. M., King, S. R. B., Di, M., Rondinini, C., … Boitani, L. (2017). Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proceedings of the National Academy of Sciences, 114(29), 7635–7640. https://doi.org/10.1073/pnas.1705769114 Currie, D. J., Mittelbach, G. G., Cornell, H. V, Field, R., Guégan, J. F., Hawkins, B. A., … Turner, J. R. G. (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, Vol. 7, pp. 1121–1134. https://doi.org/10.1111/j.1461-0248.2004.00671.x Cushman, S. a. (2006). Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biological Conservation, 128(2), 231–240. https://doi.org/10.1016/j.biocon.2005.09.031 Cushman, S. A. (2006). Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biological Conservation, 128(2), 231–240. https://doi.org/10.1016/j.biocon.2005.09.031 D’Amen, M., & Bombi, P. (2009). Global warming and biodiversity: Evidence of climate-linked amphibian declines in Italy. Biological Conservation, 142(12), 3060–3067. https://doi.org/10.1016/j.biocon.2009.08.004 Di Marco, M., Santini, L., & Universit, S. (2015). Human pressures predict species’ geographic range size better than biological traits. Global Change Biology, 21(6), 2169–2178. https://doi.org/10.1111/gcb.12834 Díaz, S., Tilman, D., & Fargione, J. (2005). Chapter 11: Biodiversity regulation of ecosystem services. Ecosystems and Human Well Being: Current State and Trends, 297–329. Retrieved from https://www.millenniumassessment.org/documents/document.280.aspx.pdf Diffenbaugh, N. S., & Field, C. B. (2013). Changes in ecologically critical terrestrial climate conditions. Science, 341(6145), 486–492. https://doi.org/10.1126/science.1237123 Driscoll, D. A., Banks, S. C., Barton, P. S., Lindenmayer, D. B., & Smith, A. L. (2013). Conceptual domain of the matrix in fragmented landscapes. Trends in Ecology and Evolution, 28(10), 605–613. https://doi.org/10.1016/j.tree.2013.06.010 Duarte-Marín, S., González-Acosta, C., & Vargas-salinas, F. (2018). Estructura y composición de ensamblajes de anfibios en tres tipos de hábitat en el Parque Nacional Natural Selva de Florencia, Cordillera Central de Colombia. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat., 42(163), 227–236. Duellman, W E. (1988). Patterns of Species Diversity in Anuran Amphibians in the American Tropics. Annals of the Missouri Botanical Garden, 75(1), 79–104. https://doi.org/10.2307/2399467 Duellman, William E. (1988). Patterns of Species Diversity in Anuran Amphibians in the American Tropics. Annals of the Missouri Botanical Garden, 75(1), 79. https://doi.org/10.2307/2399467 Eastman, R. (2012). IDRISI Selva. Guía para GIS y Procesamiento de Imágenes (Clark Univ). Echeverría-Londoño, S., Newbold, T., Hudson, L. N., Contu, S., Hill, S. L. L. L., Lysenko, I., … Purvis, A. (2016). Modelling and projecting the response of local assemblage composition to land use change across Colombia. Diversity and Distributions, 22(11), 1099–1111. https://doi.org/10.1111/ddi.12478 Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1(4), 330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x Elith, J., & Leathwick, J. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, …, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x Escabias, M., Aguilera, A. M., & Valderrama, M. J. (2005). Modeling environmental data by functional principal component logistic regression. Environmetrics, 16(1), 95–107. https://doi.org/10.1002/env.696 Etter, A., & van Wyngaarden, W. (2000). Patterns of Landscape Transformation in Colombia, with Emphasis in the Andean Region. AMBIO: A Journal of the Human Environment, 29(7), 432–439. https://doi.org/10.1579/0044-7447-29.7.432 Fahrig, L. (2003). E Ffects of H Abitat F Ragmentation on B Iodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 Fahrig, L. (2013). Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40(9), 1649–1663. https://doi.org/10.1111/jbi.12130 Feeley, K. J., & Silman, M. R. (2010). Land-use and climate change effects on population size and extinction risk of Andean plants. Global Change Biology, 16(12), 3215–3222. https://doi.org/10.1111/j.1365-2486.2010.02197.x Ficetola, G. F., Rondinini, C., Bonardi, A., Baisero, D., & Padoa-Schioppa, E. (2015a). Habitat availability for amphibians and extinction threat: a global analysis. Diversity and Distributions, 21(3), 302–311. https://doi.org/10.1111/ddi.12296 Ficetola, G. F., Rondinini, C., Bonardi, A., Baisero, D., & Padoa-Schioppa, E. (2015b). Habitat availability for amphibians and extinction threat: A global analysis. Diversity and Distributions, 21(3), 302–311. https://doi.org/10.1111/ddi.12296 Fischer, J., & Lindenmayer, D. B. (2007). Landscape modification and habitat fragmentation : a synthesis. 265–280. https://doi.org/10.1111/j.1466-8238.2006.00287.x Flechas, S. V., Paz, A., Crawford, A. J., Sarmiento, C., Acevedo, A. A., Arboleda, A., … Amézquita, A. (2017). Current and predicted distribution of the pathogenic fungus Batrachochytrium dendrobatidis in Colombia , a hotspot of amphibian biodiversity. Biotropica, 0(Early view), 1–10. https://doi.org/10.1111/btp.12457 Foden, W. B., Butchart, S. H. M., Stuart, S. N., Vié, J.-C., Akçakaya, H. R., Angulo, A., … Mace, G. M. (2013). Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PloS One, 8(6), e65427. https://doi.org/10.1371/journal.pone.0065427 Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., … Snyder, P. K. (2005). Global Consequences of Land Use. Science, 309(5734), 570–574. https://doi.org/10.1126/science.1111772 Fordham, D. A., Brook, B. W., Hoskin, C. J., Pressey, R. L., Van Der Wal, J., & Williams, S. E. (2016). Extinction debt from climate change for frogs in the wet tropics. Biology Letters, 12(10), 3–7. https://doi.org/10.1098/rsbl.2016.0236 FORERO-MEDINA, G., JOPPA, L., & PIMM, S. L. (2011). Constraints to Species’ Elevational Range Shifts as Climate Changes. Conservation Biology, 25(1), 163–171. https://doi.org/10.1111/j.1523-1739.2010.01572.x Forman, R. T. T. (1995). Land Mosaics: The Ecology of Landscapes and Regions. United Kingdom: Cambridge University Press. Fox, J., Weisberg, S., & Price, B. (2019). Package “car”: An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage., (September 2012), 2016. Retrieved from http://socserv.socsci.mcmaster.ca/jfox/Books/Companion Franklin, J. (2013). Species distribution models in conservation biogeography: developments and challenges. Diversity and Distributions, 19(10), 1217–1223. https://doi.org/10.1111/ddi.12125 Frost, D. (2019). Amphibian Species of the World: an Online Reference. Version 6.0 (Date of access). Electronic Database accessible at. Galante, P. J., Alade, B., Muscarella, R., Jansa, S. A., Goodman, S. M., & Anderson, R. P. (2018). The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity. Ecography, 41(5), 726–736. https://doi.org/10.1111/ecog.02909 Gallant, A. L., Klaver, R. W., Casper, G. S., & Lannoo, M. J. (2007). Global Rates of Habitat Loss and Implications for Amphibian Conservation. Copeia, 2007(4), 967–979. https://doi.org/10.1643/0045-8511(2007)7[967:grohla]2.0.co;2 Garavito, N. T., Newton, A. C., Golicher, D., & Oldfield, S. (2015). The Relative Impact of Climate Change on the Extinction Risk of Tree Species in the Montane Tropical Andes. 1–19. https://doi.org/10.1371/journal.pone.0131388 Gaston, K. J., & Fuller, R. a. (2009). The sizes of species’ geographic ranges. Journal of Applied Ecology, 46(1), 1–9. https://doi.org/10.1111/j.1365-2664.2008.01596.x Gonzales, I., Noguera-Urbano, E., Velasquez-Tibatá, J., & Ochoa-Quintero, J. (2019). Especies endémicas, áreas protegidas y deforestación. In L. . Moreno, G. . Andrade, & M. . Goméz (Eds.), Bioodiversidad 2018. Estado y tendencias de la biodiversidad continental de Colombia. (Instituto, p. 203). Bogota, D.C. Colombia. Graesser, J., Aide, T. M., Grau, H. R., & Ramankutty, N. (2015). Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environmental Research Letters, 10(3), 034017. https://doi.org/10.1088/1748-9326/10/3/034017 Greenberg, D. A., & Mooers, A. Ø. (2017). Linking speciation to extinction: Diversification raises contemporary extinction risk in amphibians. Evolution Letters, 1(1), 40–48. https://doi.org/10.1002/evl3.4 Griffiths, R. a., Sewell, D., & McCrea, R. S. (2010). Dynamics of a declining amphibian metapopulation: Survival, dispersal and the impact of climate. Biological Conservation, 143(2), 485–491. https://doi.org/10.1016/j.biocon.2009.11.017 Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x Gutiérrez-Lamus, D. L., Serrano, V. h, & Ramirez Pinilla, M. P. (2004). Composition and abundance of Anura in two forest types (natural and planted) in the Eastern Cordillera of Colombia. Caldasia, 26(1), 245–264. Hannah, L., Ikegami, M., Hole, D. G., Seo, C., Butchart, S. H. M., Peterson, A. T., & Roehrdanz, P. R. (2013). Global Climate Change Adaptation Priorities for Biodiversity and Food Security. PLoS ONE, 8(8), e72590. https://doi.org/10.1371/journal.pone.0072590 Hanski, I. (2015). Habitat fragmentation and species richness. Journal of Biogeography, 42(5), 989–993. https://doi.org/10.1111/jbi.12478 Harris, R. M. B., Grose, M. R., Lee, G., Bindoff, N. L., Porfirio, L. L., & Fox-Hughes, P. (2014). Climate projections for ecologists. Wiley Interdisciplinary Reviews: Climate Change, 5(5), 621–637. https://doi.org/10.1002/wcc.291 Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J. F., Kaufman, D. M., … Turner, J. R. G. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, Vol. 84, pp. 3105–3117. https://doi.org/10.1890/03-8006 Hernández, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(June), 773–785. https://doi.org/DOI 10.1111/j.0906-7590.2006.04700.x Herrera-Montes, A., Olaya-M, L. A., & Castro-Herrera, F. (2004). Incidencia de la perturbación antrópica en la diversidad, la riqueza y la distribución de Eleutherodactylus (Anura: Leptodactylidae) en un bosque nublado del suroccidente colombiano. Caldasia, 26(1), 265–274. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276 Hof, C., Araújo, M. B., Jetz, W., & Rahbek, C. (2011). Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 480(7378), 516–519. https://doi.org/10.1038/nature10650 Hofstede, R., Calles, J., López, V., Polanco, R., Torres, F., Ulloa, J., … Cerra, M. (2014). LOS PÁRAMOS ANDINOS ¿Qué Sabemos?. ESTADO DE CONOCIMIENTO SOBRE EL IMPACTO DEL CAMBIO CLIMÁTICO EN EL ECOSISTEMA PÁRAMO. In UICN, Quito, Ecuador. Hutter, C. R., Lambert, S. M., & Wiens, J. J. (2017). Rapid Diversification and Time Explain Amphibian Richness at Different Scales in the Tropical Andes, Earth’s Most Biodiverse Hotspot. The American Naturalist, (October), 000–000. https://doi.org/10.1086/694319 Hutter, C. R., Liu, V., Kell, T., Lyons, J. A., & Guayasamin, J. M. (2016). The Natural History, Distribution, and Conservation of Lonely Rainfrogs, Pristimantis eremitus. Herpetologica, 72(1), 13–22. https://doi.org/10.1655/Herpetologica-D-14-00020 IDEAM, PNUD, MADS, DNP, & CANCILLERÍA. (2015). Nuevos Escenarios de Cambio Climático para Colombia 2011-2100 Herramientas Científica para los Tomadores de Decisione- Enfoque Nacional - Departamental: Tercera Comunicación Nacional de Cambio Climático. In BMC Genetics (Vol. 13). https://doi.org/10.1186/1471-2156-13-58 IPCC. (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (V. B. and P. M. M. (eds. ). [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, Ed.). Isaacs Cubides, P. J., & Urbina-cardona, N. (2011). Anthropogenic Disturbance and Edge Effects on Anuran Assemblages Inhabiting Cloud Forest Fragments in Colombia. Natureza & Conservação, 9(1), 39–46. https://doi.org/10.4322/natcon.2011.004 IUCN. (2019). Red List of Threatened Species. Version 2019-2. . Retrieved from https://www.iucnredlist.org/ IUCN Standards and Petitions Subcommittee. (2017). Guidelines for Using the IUCN Red List Categories and Criteria. Version 13. Iucn, 13(March), 108. Retrieved from http://www.iucnredlist.org/documents/RedListGuidelines.pdf. Jantz, S. M., Barker, B., Brooks, T. M., Chini, L. P., Huang, Q., Moore, R. M., … Hurtt, G. C. (2015). Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation. Conservation Biology, 29(4), n/a-n/a. https://doi.org/10.1111/cobi.12549 Janzen, D. H. (1967). Why mountain passes are higher in the tropics? The American Naturalist, 101(919), 233–249. Jetz, W., Wilcove, D. S., & Dobson, A. P. (2007). Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5(6), e157. https://doi.org/10.1371/journal.pbio.0050157 Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology and Evolution, 19(2), 101–108. https://doi.org/10.1016/j.tree.2003.10.013 Jolliffe, I. T. (2002). Principal Component Analysis, Secon Edition. New York, NY: Springer. Kattan, G. H., Franco, P., Rojas, V., & Morales, G. (2004). Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. Journal of Biogeography, 31(11), 1829–1839. https://doi.org/10.1111/j.1365-2699.2004.01109.x Keith, D. A., Akçakaya, H. R., & Murray, N. J. (2018). Scaling range sizes to threats for robust predictions of risks to biodiversity. Conservation Biology, 32(2), 322–332. https://doi.org/10.1111/cobi.12988 Keymer, J. E., Marquet, P. A., Velasco-Hernández, J. X., & Levin, S. A. (2000). Extinction Thresholds and Metapopulation Persistence in Dynamic Landscapes. The American Naturalist, 156(5), 478–494. https://doi.org/10.1086/303407 Knutti, R., Masson, D., & Gettelman, A. (2013). Climate model genealogy: Generation CMIP5 and how we got there. Geophysical Research Letters, 40(6), 1194–1199. https://doi.org/10.1002/grl.50256 Korner-Nievergelt, F., Roth, T., von Felten, S., Guélat, J., Almasi, B., & Korner-Nievergelt, P. (2015). Bayesin Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan (Acade). Retrieved from http://www.ghbook.ir/index.php?name=فرهنگ و رسانه های نوین&option=com_dbook&task=readonline&book_id=13650&page=73&chkhashk=ED9C9491B4&Itemid=218&lang=fa&tmpl=component Körner, C., Oshawa, M., Spehn, E., Berge, E., Bugmann, H., Groombridge, B., … Watanabe, T. (2005). Millenium Report: Ecosystems and Human Well-being: Current State and Trends - Mountain Systems. 683–711. Retrieved from http://millenniumassessment.org/documents/document.293.aspx.pdf Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., … Wilting, A. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19(11), 1366–1379. https://doi.org/10.1111/ddi.12096 Kramer, A. M., Dennis, B., Liebhold, A. M., & Drake, J. M. (2009). The evidence for Allee effects. Population Ecology, 51(3), 341–354. https://doi.org/10.1007/s10144-009-0152-6 La Marca, E., Lips, K. R., Lotters, S., Puschendorf, R., Ibanez, R., Rueda-Almonacid, J. V., … Young, B. E. (2005). Catastrophic Population Declines and Extinctions in Neotropical Harlequin Frogs (Bufonidae: Atelopus)1. Biotropica, 37(2), 190–201. https://doi.org/10.1111/j.1744-7429.2005.00026.x Laurance, W. F., Nascimento, H. E. M., Laurance, S. G., Andrade, A., Ewers, R. M., Harms, K. E., … Ribeiro, J. E. (2007). Habitat Fragmentation, Variable Edge Effects, and the Landscape-Divergence Hypothesis. PLoS ONE, 2(10), e1017. https://doi.org/10.1371/journal.pone.0001017 Lawler, J. J., Shafer, S. L., Bancroft, B. A., & Blaustein, A. R. (2009). Projected Climate Impacts for the Amphibians of the Western Hemisphere. Conservation Biology, 24(1), 38–50. https://doi.org/10.1111/j.1523-1739.2009.01403.x Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01 Lips, K. R., Burrowes, P. A., Mendelson, J. R., & Parra-Olea, G. (2005). Amphibian Declines in Latin America: Widespread Population Declines, Extinctions, and Impacts1. Biotropica, 37(2), 163–165. https://doi.org/10.1111/j.1744-7429.2005.00023.x Liu, C., Newell, G., & White, M. (2016). On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution, 6(1), 337–348. https://doi.org/10.1002/ece3.1878 Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence‐only data. Journal of Biogeography, 40(4), 778–789. https://doi.org/10.1111/jbi.12058 Lucas, P. M., González-Suárez, M., & Revilla, E. (2019). Range area matters, and so does spatial configuration: predicting conservation status in vertebrates. Ecography. https://doi.org/10.1111/ecog.03865 Lustig, A., Stouffer, D. B., Roigé, M., & Worner, S. P. (2015). Towards more predictable and consistent landscape metrics across spatial scales. Ecological Indicators, 57, 11–21. https://doi.org/10.1016/j.ecolind.2015.03.042 Lynch, J., Ruiz-Carranza, P., & Ardila-Robayo, M. (1997). Biogeographic patterns of Colombian frogs and toads. Rev. Acad. Colomb. Cienc., Vol. 21, pp. 237–248. Maclean, I. M. D., & Wilson, R. J. (2011). Recent ecological responses to climate change support predictions of high extinction risk. Proceedings of the National Academy of Sciences of the United States of America, 108(30), 12337–12342. https://doi.org/10.1073/pnas.1017352108 Mahmoud, M., Liu, Y., Hartmann, H., Stewart, S., Wagener, T., Semmens, D., … Winter, L. (2009). A formal framework for scenario development in support of environmental decision-making. Environmental Modelling & Software, 24(7), 798–808. https://doi.org/10.1016/j.envsoft.2008.11.010 Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L., & Hannah, L. (2006). Global Warming and Extinctions of Endemic Species from Biodiversity Hotspots. Conservation Biology, 20(2), 538–548. https://doi.org/10.1111/j.1523-1739.2006.00364.x Marengo, J. A., Pabón, J. D., Díaz, A., Rosas, G., Ávalos, G., Montealegre, E., … Rojas, M. (2011). Climate change: evidence and future scenarios for the Andean region. Climate Change and Biodiversity in the Tropical Andes., (September 2016), 110.127. Marsh, D. M., & Pearman, P. B. (1997). Effects of habitat fragmentation on the abundance of two species of leptodactylid frogs in an Andean Montane forest. Conservation Biology, 11(6), 1323–1328. https://doi.org/10.1046/j.1523-1739.1997.95519.x May, R. Von, Catenazzi, A., Angulo, A., Jason, L., Carrillo, J., Chávez, G., … Seimon, T. (2008). Current state of conservation knowledge on threatened amphibian species in Peru. 1(4), 376–396. McCaffery, R., Richards-Zawacki, C. L., & Lips, K. R. (2015). The demography of Atelopus decline: Harlequin frog survival and abundance in central Panama prior to and during a disease outbreak. Global Ecology and Conservation, 4, 232–242. https://doi.org/10.1016/j.gecco.2015.07.003 McCain, C. M. (2009). Vertebrate range sizes indicate that mountains may be “higher” in the tropics. Ecology Letters, 12(6), 550–560. https://doi.org/10.1111/j.1461-0248.2009.01308.x McMenamin, S. K., Hadly, E. a, & Wright, C. K. (2008). Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 16988–16993. https://doi.org/10.1073/pnas.0809090105 Medina-Rangel, G. F., & López-Perilla, Y. R. (2014). DIVERSIDAD DE ANFIBIOS Y REPTILES EN LA ALTA MONTAÑA DEL SURORIENTE DE LA SABANA DE BOGOTÁ , Colombia. Herpetotropicos, 10(1), 17–30. Méndez-Narváez, J., & Bolivar-G, W. (2016). Complementary Ecological Approaches to Understand Decreases in Frog Diversity in Altered Andean Ecosystems. South American Journal of Herpetology, (1), 1–11. https://doi.org/10.2994/SAJH Meza-Joya, F. L., & Torres, M. (2016). Spatial diversity patterns of Pristimantis frogs in the Tropical Andes. Ecology and Evolution, 6(7), 1901–1913. https://doi.org/10.1002/ece3.1968 Morales-Rivas, M., Otero-García, J., van der Hammen, T., Torres-Perdigón, A., Cadena-Vargas, C. E., Pedraza-Peñaloza, C. A., … Cárdenas-Valencia, L. (2007). Atlas de Páramos de Colombia. Instituto de Investigaciones de Recursos Biológicos Alexander von Humboldt. Bogota, D.C. Morales, M., & Armenteras, D. (2013). Estado de conservación de los bosques de niebla de los andes colombianos, un análisis multiescalar. Boletín Científico - Centro de Museos - Museo de Historia Natural, 17(1), 64–72. Retrieved from http://www.scielo.org.co/pdf/bccm/v17n1/v17n1a06.pdf Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., … Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756. https://doi.org/10.1038/nature08823 Murray, N. J., Keith, D. A., Bland, L. M., Nicholson, E., Regan, T. J., Rodríguez, J. P., & Bedward, M. (2017). The use of range size to assess risks to biodiversity from stochastic threats. Diversity and Distributions, 23(5), 474–483. https://doi.org/10.1111/ddi.12533 Muscarella, R., Galante, P. J., Soley-guardia, M., Boria, R. A., Kass, J. M., & Anderson, R. P. (2014). ENMeval : An R package for conducting spatially independent evaluations and estimating optimal model complexity for M AXENT ecological niche models. 1198–1205. https://doi.org/10.1111/2041-210X.12261 Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501 Navas, C. A. (2002). Herpetological diversity along Andean elevational gradients: links with physiological ecology and evolutionary physiology. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 133(3), 469–485. https://doi.org/10.1016/S1095-6433(02)00207-6 Navas, C. a. (2006). Patterns of distribution of anurans in high Andean tropical elevations: Insights from integrating biogeography and evolutionary physiology. Integrative and Comparative Biology, 46(1), 82–91. https://doi.org/10.1093/icb/icj001 Newbold, T. (2018). Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings of the Royal Society of London B: Biological Sciences, 285(1881). Retrieved from http://rspb.royalsocietypublishing.org/content/285/1881/20180792 Newbold, T., Hudson, L. N., Arnell, A. P., Contu, S., De Palma, A., Ferrier, S., … Purvis, A. (2016). Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science, 353(6296), 288 LP – 291. https://doi.org/10.1126/science.aaf2201 Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50. https://doi.org/10.1038/nature14324 Nori, J., Lemes, P., Urbina-Cardona, N., Baldo, D., Lescano, J., & Loyola, R. (2015). Amphibian conservation, land-use changes and protected areas: A global overview. Biological Conservation, 191, 367–374. https://doi.org/10.1016/j.biocon.2015.07.028 Nowakowski, A. J., Thompson, M. E., Donnelly, M. A., & Todd, B. D. (2017). Amphibian sensitivity to habitat modification is associated with population trends and species traits. Global Ecology and Biogeography, 26(6), 700–712. https://doi.org/10.1111/geb.12571 Nowakowski, A. J., Veiman-Echeverria, M., Kurz, D. J., & Donnelly, M. A. (2015). Evaluating connectivity for tropical amphibians using empirically derived resistance surfaces. Ecological Applications, 25(4), 928–942. https://doi.org/10.1890/14-0833.1 Nowakowski, A. J., Watling, J. I., Whitfield, S. M., Todd, B. D., Kurz, D. J., & Donnelly, M. A. (2017). Tropical amphibians in shifting thermal landscapes under land-use and climate change. Conservation Biology, 31(1), 96–105. https://doi.org/10.1111/cobi.12769 Ocampo-Peñuela, N., Jenkins, C. N., Vijay, V., Li, B. V., & Pimm, S. L. (2016). Incorporating explicit geospatial data shows more species at risk of extinction than the current Red List. Science Advances, 2(11), e1601367. https://doi.org/10.1126/sciadv.1601367 Oliver, T. H., & Morecroft, M. D. (2014). Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdisciplinary Reviews: Climate Change, 5(3), 317–335. https://doi.org/10.1002/wcc.271 Ortega-Andrade, H. M., Prieto-Torres, D. A., Gómez-Lora, I., & Lizcano, D. J. (2015). Ecological and geographical analysis of the distribution of the Mountain Tapir (Tapirus pinchaque) in Ecuador: Importance of protected areas in future scenarios of global warming. PLoS ONE, 10(3), 1–20. https://doi.org/10.1371/journal.pone.0121137 Owens, H. L., Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberón, J., … Peterson, A. T. (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling, 263, 10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011 Pabón-Caicedo, J.D. (2002). Cambios en los patrones de temperatura media anual del aire y precipitación anual en los páramos de Colombia. In J. Hincapié, C. Castillo, & S. Argüello (Eds.), Transformación y cambio en el uso del suelo en los páramos de Colombia en las últimas décadas. Páramos Y Ecosistemas Alto Andinos de Colombia En Condiciones HotSpot & Global Climatic Tensor. Bogota, D.C.: IDEAM. Pabón-Caicedo, José Daniel. (2012). CAMBIO CLIMÁTICO EN COLOMBIA: TENDENCIAS EN LA SEGUNDA MITAD DEL SIGLO XX Y ESCENARIOS POSIBLES PARA EL SIGLO XXI. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 36(139), 261–278. Pacifici, M., Visconti, P., Butchart, S. H. M., Watson, J. E. M., Cassola, F. M., & Rondinini, C. (2017). Species’ traits influenced their response to recent climate change. Nature Climate Change, 7(3), 205–208. https://doi.org/10.1038/nclimate3223 Pearson, R. G., Raxworthy, C. J., Nakamura, M., Peterson, A. T., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x Pearson, R. G., Stanton, J. C., Shoemaker, K. T., Aiello-lammens, M. E., Ersts, P. J., Horning, N., … Akçakaya, H. R. (2014). Life history and spatial traits predict extinction risk due to climate change. 4(March), 217–221. https://doi.org/10.1038/NCLIMATE2113 Pereira, H. M., Leadley, P. W., Proença, V., Alkemade, R., Scharlemann, J. P. W. W., Fernandez-Manjarrés, J. F., … Walpole, M. (2010). Scenarios for global biodiversity in the 21st century. Science, 330(6010), 1496–1501. https://doi.org/10.1126/science.1196624 Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008 Peterson, G. D., Cumming, G. S., & Carpenter, S. R. (2003). Scenario Planning: a Tool for Conservation in an Uncertain World. Conservation Biology, 17(2), 358–366. https://doi.org/10.1046/j.1523-1739.2003.01491.x Pfeifer, M., Lefebvre, V., Peres, C. A., Banks-Leite, C., Wearn, O. R., Marsh, C. J., … Ewers, R. M. (2017). Creation of forest edges has a global impact on forest vertebrates. Nature, 551(7679), 187–191. https://doi.org/10.1038/nature24457 Phillips, H. R. P., Halley, J. M., Urbina-Cardona, J. N., & Purvis, A. (2018). The effect of fragment area on site-level biodiversity. Ecography, 41(7), 1220–1231. https://doi.org/10.1111/ecog.02956 Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. International Journal of Global Environmental Issues, 6(2–3), 231–252. https://doi.org/10.1016/j.ecolmodel.2005.03.026 Pounds, J. A., Bustamante, M. R., Coloma, L. A., Consuegra, J. A., Fogden, M. P. L. L., Foster, P. N., … Young, B. E. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature, 439(7073), 161–167. https://doi.org/10.1038/nature04246 Powers, R. P., & Jetz, W. (2019). Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nature Climate Change, Vol. 9, pp. 323–329. https://doi.org/10.1038/s41558-019-0406-z R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Radosavljevic, A., & Anderson, R. P. (2014). Making better M AXENT models of species distributions : complexity , overfitting and evaluation. 629–643. https://doi.org/10.1111/jbi.12227 Rahbek, C., & Museum, Z. (1995). The elevational gradient of species richness: a uniform pattern? Ecography, 18(2), 200–205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x Ramirez-Villegas, J., Cuesta, F., Devenish, C., Peralvo, M., Jarvis, A., & Arnillas, C. A. (2014). Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. Journal for Nature Conservation, 22(5), 391–404. https://doi.org/10.1016/j.jnc.2014.03.007 RAXWORTHY, C. J., PEARSON, R. G., RABIBISOA, N., RAKOTONDRAZAFY, A. M., RAMANAMANJATO, J.-B., RASELIMANANA, A. P., … STONE, D. A. (2008). Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Global Change Biology, 14(8), 1703–1720. https://doi.org/10.1111/j.1365-2486.2008.01596.x Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., … Rafaj, P. (2011). RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1), 33–57. https://doi.org/10.1007/s10584-011-0149-y Rodríguez, E. N., Armenteras-Pascual, D., & Alumbreros, J. R. (2013). Land use and land cover change in the Colombian Andes: dynamics and future scenarios. Journal of Land Use Science, 8(2), 154–174. https://doi.org/10.1080/1747423X.2011.650228 Rodríguez, N., Armenteras, D., Morales, M., & Romero, M. (2006). Ecosistemas de los Andes colombianos. In Instituto de investigación de recursos biológicos Alexander Von Humbolt. Rodríguez, N., Armenteras, D., & Retana, J. (2013). Effectiveness of protected areas in the Colombian Andes: Deforestation, fire and land-use changes. Regional Environmental Change, 13(2), 423–435. https://doi.org/10.1007/s10113-012-0356-8 Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H., & Hudson, P. J. (2008). Evaluating the links between climate, disease spread, and amphibian declines. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17436–17441. https://doi.org/10.1073/pnas.0806368105 Rudas, G., Marcelo, D., Armenteras, D., Rodríguez, N., Morales, M., Delgado, L. C., & Sarmiento, A. (2007). Biodiversidad Y actividad Humana : Relaciones En Ecosistemas de bosque subandino en Colombia. In Instituto de Investigación de Recursos Biológicos Alexander von Humnoldt. Rueda-Almonacid, J. V., Rodríguez-Mahecha, J. V., La Marca, E., Lotters, S., Kahn, T., & Angulo, A. (2005). Ranas Arlequines. In Conservación Internacional Serie Libretas de Campo (Vol. 6). Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., … Wall, D. H. (2000). Global Biodiversity Scenarios for the Year 2100 Science (New York, N.Y.), 287(5459), 1770–1774. https://doi.org/10.1126/science.287.5459.1770 Schneider-Maunoury, L., Lefebvre, V., Ewers, R. M., Medina-rangel, G. F., Peres, C. A., Somarriba, E., … Pfeifer, M. (2016). Abundance signals of amphibians and reptiles indicate strong edge effects in Neotropical fragmented forest landscapes. BIOC, 200, 207–215. https://doi.org/10.1016/j.biocon.2016.06.011 Schnell, J. K., Harris, G. M., Pimm, S. L., & Russell, G. J. (2013). Estimating Extinction Risk with Metapopulation Models of Large-Scale Fragmentation. Conservation Biology, 27(3), 520–530. https://doi.org/10.1111/cobi.12047 SEIMON, T. A., SEIMON, A., DASZAK, P., HALLOY, S. R. P., SCHLOEGEL, L. M., AGUILAR, C. A., … E SIMMONS, J. (2007). Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Global Change Biology, 13(1), 288–299. https://doi.org/10.1111/j.1365-2486.2006.01278.x Selwood, K. E., McGeoch, M. a., & Mac Nally, R. (2015). The effects of climate change and land-use change on demographic rates and population viability. Biological Reviews, 90(3), 837–853. https://doi.org/10.1111/brv.12136 Shcheglovitova, M., & Anderson, R. P. (2013). Estimating optimal complexity for ecological niche models : A jackknife approach for species with small sample sizes. Ecological Modelling, 269, 9–17. https://doi.org/10.1016/j.ecolmodel.2013.08.011 Sheridan, J. A., & Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1(8), 401–406. https://doi.org/10.1038/nclimate1259 Sirami, C., Caplat, P., Popy, S., Clamens, A., Arlettaz, R., Jiguet, F., … Martin, J. L. (2017). Impacts of global change on species distributions: obstacles and solutions to integrate climate and land use. Global Ecology and Biogeography, 26(4), 385–394. https://doi.org/10.1111/geb.12555 Smith, P., Gregory, P. J., Van Vuuren, D., Obersteiner, M., Havlík, P., Rounsevell, M., … Bellarby, J. (2010). Competition for land. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2941–2957. https://doi.org/10.1098/rstb.2010.0127 Soberón, J. M. (2010). Niche and area of distribution modeling: a population ecology perspective. Ecography, 33(1), 159–167. https://doi.org/10.1111/j.1600-0587.2009.06074.x Soberón, J., & Peterson, a T. (2005). Interpretation of Models of Fundamental Ecological Niches and Species ’ Distributional Areas. Biodiversity Informatics, 2, 1–10. https://doi.org/10.1093/wber/lhm022 Stuart, S., Hoffmann, M., Chanson, J., Cox, N., Berridge, R., Ramani, P., & Young, B. (2008). Threatened Amphibians of the World. In Lynx Edicions, Barcelona, Sppain; IUCN, Gland, Switzerland; and Conservation International, Virginia, USA. Stuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S. L., Fischman, D. L., & Waller, R. W. (2004). Status and trends of amphibian declines and extinctions worldwide. Science, 306(5702), 1783–1786. https://doi.org/10.1126/science.1103538 Suárez-Badillo, H. . & M. P. R.-P. (2004). Anuros Del Gradiente Altitudinal De La Estación Experimetal Y Demostrativa El Rasgón. Caldasia, 26(2), 395–416. https://doi.org/10.2307/23641840 Subcomité de Estándares y Peticiones de la UICN. (2017). Directrices de uso de las Categorías y Criterios de la Lista Roja de la UICN. Versión 13 (Vol. 13). Retrieved from http://www.iucnredlist.org/documents/RedListGuidelines.pdf Swift, T. L., & Hannon, S. J. (2010). Critical thresholds associated with habitat loss: a review of the concepts, evidence, and applications. Biological Reviews of the Cambridge Philosophical Society, 85(1), 35–53. https://doi.org/10.1111/j.1469-185X.2009.00093.x Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics. https://doi.org/10.1016/j.aci.2018.08.003 Theobald, D. M., Crooks, K. R., & Norman, J. B. (2011). Assessing effects of land use on landscape connectivity: Loss and fragmentation of western U.S. forests. Ecological Applications, 21(7), 2445–2458. https://doi.org/10.1890/10-1701.1 Thompson, M. E., & Donnelly, M. A. (2018). Effects of Secondary Forest Succession on Amphibians and Reptiles: A Review and Meta-analysis. (1), 10–19. https://doi.org/10.1643/CH-17-654 Thompson, M. E., Nowakowski, A. J., & Donnelly, M. A. (2015). The importance of defining focal assemblages when evaluating amphibian and reptile responses to land use. 30(2), 249–258. https://doi.org/10.1111/cobi.12637 Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., … Edmonds, J. A. (2011). RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109(1), 77–94. https://doi.org/10.1007/s10584-011-0151-4 Thuiller, W., Broennimann, O., Hughes, G., Alkemade, J. R. M., Midgley, G. F., Corsi, F., … Africa, S. (2006). Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Global Change Biology, 12(3), 424–440. https://doi.org/10.1111/j.1365-2486.2006.01115.x Titeux, N., Henle, K., Mihoub, J.-B., Regos, A., Geijzendorffer, I. R., Cramer, W., … Brotons, L. (2016). Biodiversity scenarios neglect future land-use changes. Global Change Biology, 22(7), 2505–2515. https://doi.org/10.1111/gcb.13272 Titeux, N., Henle, K., Mihoub, J.-B., Regos, A., Geijzendorffer, I. R., Cramer, W., … Brotons, L. (2017). Global scenarios for biodiversity need to better integrate climate and land use change. Diversity and Distributions, 23(11), 1231–1234. https://doi.org/10.1111/ddi.12624 Todd, B. D., Scott, D. E., Pechmann, J. H. K., & Gibbons, J. W. (2011). Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community. Proceedings. Biological Sciences / The Royal Society, 278(1715), 2191–2197. https://doi.org/10.1098/rspb.2010.1768 Toral, E. C., Feinsinger, P., & Crump, M. L. (2002). Frogs and a cloud-forest edge in Ecuador. Conservation Biology, 16(3), 735–744. https://doi.org/10.1046/j.1523-1739.2002.00250.x Turner, M. G., & Gardner, R. H. (2015). Landscape Ecology in Theory and Practice. In Springer-Verlag New York. https://doi.org/10.1007/978-1-4939-2794-4 Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348(6234), 571 LP – 573. Retrieved from http://science.sciencemag.org/content/348/6234/571.abstract Urbina-Cardona, J. N. (2011). Gradientes andinos en la diversidad y patrones de endemismos en anfibios y reptiles de Colombia: Posibles respuestas al cambio climático. Facultad de Ciencias Basicas, 7(1), 74–91. Urbina-Cardona, N., & Santos-Barrera, G. (2011). The role of the matrix-edge dynamics of amphibian conservation in tropical montane fragmented landscapes. Revista Mexicana de Biodiversidad, 82, 679–687. Valencia-Aguilar, A., Cortés-Gómez, A. M., & Ruiz-Agudelo, C. A. (2013). Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. International Journal of Biodiversity Science, Ecosystem Services and Management, 9(3), 257–272. https://doi.org/10.1080/21513732.2013.821168 Vasconcelos, T. S., da Silva, F. R., dos Santos, T. G., Prado, V. H. M., & Provete, D. B. (2019). Biogeographic Patterns of South American Anurans. https://doi.org/10.1007/978-3-030-26296-9 Vasconcelos, T. S., Do Nascimento, B. T. M., & Prado, V. H. M. (2018). Expected impacts of climate change threaten the anuran diversity in the Brazilian hotspots. International Journal of Business Innovation and Research, 17(3), 7894–7906. https://doi.org/10.1002/ece3.4357 Velasquez-E, B. E., Castro-herrera, F., Bolívar-G, W., & Herrera-montes, M. I. (2008). Infección por el hongo quitrido Batrachochytrium Dendrobatidis en anuros de la Cordillera Occidental de Colombia. Herpetotropicos, 4(2), 65–70. Velásquez-Tibatá, J., Salaman, P., & Graham, C. H. (2013). Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Regional Environmental Change, 13(2), 235–248. https://doi.org/10.1007/s10113-012-0329-y Villard, M.-A., & Metzger, J. P. (2014). REVIEW: Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. Journal of Applied Ecology, 51(2), 309–318. https://doi.org/10.1111/1365-2664.12190 Visconti, P., Bakkenes, M., Baisero, D., Brooks, T., Butchart, S. H. M., Joppa, L., … Rondinini, C. (2016). Projecting Global Biodiversity Indicators under Future Development Scenarios. Conservation Letters, 9(1), 5–13. https://doi.org/10.1111/conl.12159 Vonesh, J. R., & De la Cruz, O. (2002). Complex life cycles and density dependence: Assessing the contribution of egg mortality to amphibian declines. Oecologia, 133(3), 325–333. https://doi.org/10.1007/s00442-002-1039-9 Wang, X., Blanchet, F. G., & Koper, N. (2014). Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods in Ecology and Evolution, 5(7), 634–646. https://doi.org/10.1111/2041-210X.12198 Wanger, T. C., ISKANDAR, D. T., MOTZKE, I., BROOK, B. W., SODHI, N. S., CLOUGH, Y., & TSCHARNTKE, T. (2010). Effects of Land-Use Change on Community Composition of Tropical Amphibians and Reptiles in Sulawesi, Indonesia. Conservation Biology, 24(3), 795–802. https://doi.org/10.1111/j.1523-1739.2009.01434.x Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2), 335–342. https://doi.org/10.1890/10-1171.1 Warren, D. L., & Seifert, S. N. (2014). Ecological niche modeling in Maxent : the importance of model complexity and the performance of model selection criteria in Maxent : the niche importance of model Ecological modeling and the performance of model selection criteria complexity. 21(2), 335–342. Warren, D. L., Wright, A. N., Seifert, S. N., & Shaffer, H. B. (2014). Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diversity and Distributions, 20(3), 334–343. https://doi.org/10.1111/ddi.12160 Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., … Zimmermann, N. E. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x Zank, C., Becker, F. G., Abadie, M., Baldo, D., Maneyro, R., & Borges-Martins, M. (2014). Climate change and the distribution of neotropical red-bellied toads (melanophryniscus, anura, amphibia): how to prioritize species and populations? PloS One, 9(4), e94625. https://doi.org/10.1371/journal.pone.0094625; https://repositorio.unal.edu.co/handle/unal/75751

  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المساهمون: Santini, L., Butchart, S. H. M., Rondinini, C., Benitez-Lopez, A., Hilbers, J. P., Schipper, A. M., Cengic, M., Tobias, J. A., Huijbregts, M. A. J.

    Relation: info:eu-repo/semantics/altIdentifier/pmid/30653250; info:eu-repo/semantics/altIdentifier/wos/WOS:000485281800011; volume:33; issue:5; firstpage:1084; lastpage:1093; numberofpages:10; journal:CONSERVATION BIOLOGY; http://hdl.handle.net/11573/1444726; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85062352341

  15. 15
    Academic Journal
  16. 16
    Academic Journal

    المصدر: Revista Colombiana de Ciencias Pecuarias; Vol. 32 No. 1 (2019): January - March 2019; 58-63 ; Revista Colombiana de Ciencias Pecuarias; Vol. 32 Núm. 1 (2019): Enero - Marzo 2019; 58-63 ; Revista Colombiana de Ciencias Pecuarias; v. 32 n. 1 (2019): Janeiro - Março 2019; 58-63 ; 2256-2958

    وصف الملف: application/pdf

  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
  20. 20
    Academic Journal