-
1Academic Journal
المؤلفون: Manzoni-Barbosa, Felipe, Machado-Araujo, Maristela, Turchetto, Felipe, Carpenedo-Aimi, Suelen, Griebeler, Adriana Maria, Pasquetti-Berghetti, Álvaro Luis, Dal-Souto-Frescura, Viviane
المصدر: BOSQUE; Vol. 44 No. 3 (2023); 629-637 ; BOSQUE; Vol. 44 Núm. 3 (2023); 629-637 ; 0717-9200 ; 0304-8799
مصطلحات موضوعية: cascarilla de arroz carbonizada, especie amenazada, Pau-ferro-do-sul, rendimiento cuántico, fluorescencia, carbonized rice husk, endangered species, quantum yield, fluorescence
وصف الملف: application/pdf
Relation: http://revistas.uach.cl/index.php/bosque/article/view/7296/8345; http://revistas.uach.cl/index.php/bosque/article/view/7296
-
2Academic Journal
المؤلفون: Ramírez-Jiménez, Jamer Alexis, Marchiori, Paulo Eduardo Ribeiro, Córdoba-Gaona, Oscar de Jesús
المصدر: Revista Facultad Nacional de Agronomía Medellín
مصطلحات موضوعية: Fruit yield, Photosynthesis, Quantum yield, Scion-rootstock interaction, Rendimiento de fruta, Fotosíntesis, Rendimiento cuántico, Interacción patrón-vástago
وصف الملف: application/pdf
Relation: RAMÍREZ-JIMÉNEZ, J. A.; MARCHIORI, P. E. R.; CÓRDOBA-GAONA, O. de J. Grafting effect on photosynthetic activity and yield of tomato under a plastic house in Colombia. Revista Facultad Nacional de Agronomía Medellín, Medellín, v. 74, n. 3, Sept./Dec. 2021. DOI:10.15446/rfnam.v74n3.93102.; http://repositorio.ufla.br/jspui/handle/1/50256
-
3Academic Journal
المصدر: Revista Facultad de Ingeniería Universidad de Antioquia; No. 98 (2021): Revista Facultad de Ingeniería (Jan-Mar 2021); 83-93 ; Revista Facultad de Ingeniería Universidad de Antioquia; Núm. 98 (2021): Revista Facultad de Ingeniería (Ene-Mar 2021); 83-93 ; 2422-2844 ; 0120-6230
مصطلحات موضوعية: photonic flux, selective photooxidation, dioxomolybdenum complex, quantum yield, Chemical kinetics, flujo fotónico, fotooxidación selectiva, complejo dioxo-Molibdeno, rendimiento cuántico, Cinética química
وصف الملف: application/pdf
-
4Academic Journal
المؤلفون: Souza, José Thyago Aires, Ribeiro, João Everthon da Silva, Ramos, João Paulo Farias, Araújo, Jucilene Silva, Ferreira, Thiago Costa, Oliveira, Raucha Carolina de
المصدر: Research, Society and Development; Vol. 10 No. 9; e40010918165 ; Research, Society and Development; Vol. 10 Núm. 9; e40010918165 ; Research, Society and Development; v. 10 n. 9; e40010918165 ; 2525-3409
مصطلحات موضوعية: Xerofilia, cactus forrajeros, manejo del suelo, rendimiento cuántico, Xerófila, palma forrageira, manejo de solo, rendimento quântico, Xerophyte, forage spineless cacti, soil management, quantum yield
وصف الملف: application/pdf
Relation: https://rsdjournal.org/index.php/rsd/article/view/18165/16270; https://rsdjournal.org/index.php/rsd/article/view/18165
-
5Academic Journal
المصدر: Revista Colombiana de Química, Vol 47, Iss 1, Pp 57-63 (2018)
مصطلحات موضوعية: Excitón, rendimiento cuántico, absorción, fluorescencia, puntos cuánticos, Chemistry, QD1-999
وصف الملف: electronic resource
-
6Dissertation/ Thesis
المؤلفون: Cepeda Quevedo, Aura Mercedes
المساهمون: Quevedo Amaya, Yeison Mauricio, Mejía de Tafur, María Sara, Cepeda Quevedo, Aura Mercedes 0000-0003-2332-4158
مصطلحات موضوعية: 630 - Agricultura y tecnologías relacionadas, Fisiología Vegetal, Plant physiology, Adaptación fisiológica, Physiological adaptation, Sucrosa, Sucrose, Caña de azúcar, Sugar cane, Sombra, Fotosíntesis C4, Fluorescencia de la clorofila, Transitorio OJIP, Transporte de electrones, Rendimiento cuántico, Sacarosa, Shade, C4 photosynthesis, OJIP transients, Chlorophyll fluorescence, Electron transport, Quantum yield
وصف الملف: xx, 129 páginas + anexos; application/pdf
Relation: Arce Cubas, L., Vath, R. L., Bernardo, E. L., Sales, C. R. G., Burnett, A. C., & Kromdijk, J. (2023). Activation of CO2 assimilation during photosynthetic induction is slower in C4 than in C3 photosynthesis in three phylogenetically controlled experiments. Frontiers in Plant Science, 13, 5323. https://doi.org/10.3389/fpls.2022.1091115; Abreu, P. P., Souza, M. M., de Almeida, A. A. F., Santos, E. A., Freitas, J. C. de O., & Figueiredo, A. L. (2014). Photosynthetic responses of ornamental passion flower hybrids to varying light intensities. Acta Physiologiae Plantarum, 36(8), 1993–2004. https://doi.org/10.1007/S11738-014-1574-0/FIGURES/4; Akhkha, A. (2010). Modelling photosynthetic light-response curve in Calotropis procera under salinity or water deficit stress using non-linear models. Journal of Taibah University for Science, 3(1), 49–57. https://doi.org/10.1016/S1658-3655(12)60020-X; Almeida, R. L., Silveira, N. M., Miranda, M. T., Pacheco, V. S., Cruz, L. P., Xavier, M. A., Machado, E. C., & Ribeiro, R. V. (2022). Evidence of photosynthetic acclimation to self-shading in sugarcane canopies. Photosynthetica, 60(4), 521–528. https://doi.org/10.32615/ps.2022.045; Almeida, R. L., Silveira, N. M., Pacheco, V. S., Xavier, M. A., Ribeiro, R. V., & Machado, E. C. (2021). Variability and heritability of photosynthetic traits in Saccharum complex. Theoretical and Experimental Plant Physiology, 33(4), 343–355. https://doi.org/10.1007/s40626-021-00217-x; Asocaña. (2022). Un dulce sabor que se trasforma. Informe anual 2021 – 2022. Sector Agroindustrial de la Caña. http://www.asocana.org/documentos/672022-B663EF18-00FF00,000A000,878787,C3C3C3,0F0F0F,B4B4B4,FF00FF,FFFFFF,2D2D2D,A3C4B5.pdf; Ávila-Zárraga, J. G. (2009). Síntesis fotoquímica mediante luz solar. Educación Química, 20(4), 426–432. https://doi.org/10.1016/S0187-893X(18)30046-6; Azcón-Bieto, J., & Talón, M. (2003). Fundamentos de fisiología vegetal. In McGrawHill.; Bąba, W., Kompała-Bąba, A., Zabochnicka-świątek, M., Luźniak, J., Hanczaruk, R., Adamski, A., & Kalaji, H. M. (2019). Discovering trends in photosynthesis using modern analytical tools: More than 100 reasons to use chlorophyll fluorescence. In Photosynthetica (Vol. 57, Issue 2, pp. 668–679). https://doi.org/10.32615/ps.2019.069; Baker, N. R. (2008). Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual Review of Plant Biology, 59(1), 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759; Baker, N. R., Harbinson, J., & Kramer, D. M. (2007). Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant, Cell and Environment, 30(9), 1107–1125. https://doi.org/10.1111/j.1365-3040.2007.01680.x; Bakker, H. (1999). The Morphology of the Sugar Cane Plant. In Sugar Cane Cultivation and Management (pp. 3–8). Springer US. https://doi.org/10.1007/978-1-4615-4725-9_2; Ballaré, C. L. (2014). Light Regulation of Plant Defense. Annual Review of Plant Biology, 65(1), 335–363. https://doi.org/10.1146/annurev-arplant-050213-040145; Banks, J. M. (2017). Continuous excitation chlorophyll fluorescence parameters: a review for practitioners. Tree Physiology, 37(8), 1128–1136. https://doi.org/10.1093/treephys/tpx059; Beed, F. D., Paveley, N. D., & Sylvester-Bradley, R. (2007). Predictability of wheat growth and yield in light-limited conditions. The Journal of Agricultural Science, 145(1), 63–79. https://doi.org/10.1017/S0021859606006678; Bhat, J. Y., Thieulin-Pardo, G., Hartl, F. U., & Hayer-Hartl, M. (2017). Rubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair. Frontiers in Molecular Biosciences, 4(APR), 20. https://doi.org/10.3389/fmolb.2017.00020; Boyd, R. A., Gandin, A., & Cousins, A. B. (2015). Temperature response of C4 photosynthesis: Biochemical analysis of Rubisco, Phosphoenolpyruvate Carboxylase and Carbonic Anhydrase in Setaria viridis. Plant Physiology, 169(3), pp.00586.2015. https://doi.org/10.1104/pp.15.00586; Calvache Ulloa, M., & Valle, L. (2021). Índice de cosecha con macro-nutrientes en grano de quinua (Chenopodium quinoa Willd). Revista Alfa, 5(13), 15–28. https://doi.org/10.33996/revistaalfa.v5i13.95; Cardozo, N. P., & Sentelhas, P. C. (2013). Climatic effects on sugarcane ripening under the influence of cultivars and crop age. Scientia Agricola, 70(6), 449–456. https://doi.org/10.1590/S0103-90162013000600011; Castillo, R. O., & Silva Cifuentes, E. (2022). Sugarcane Breeding and Supporting Genetics Research in Ecuador. Sugar Tech, 24(1), 222–231. https://doi.org/10.1007/s12355-021-01057-4; Castro, O. R. (2010). La variabilidad de la radiación solar en la superficie terrestre y sus efectos en la producción de caña de azúcar en Guatemala. https://cengicana.org/files/20150828053605989.pdf; CENICAÑA. (2021). Informe Anual 2021. Centro de Investigación de La Caña de Azúcar de Colombia, 138. https://www.cenicana.org/wp-content/uploads/2022/04/ia2021_Abril13_2022.pdf; Chen, James. C. P. (1991). Manual del Azucar de Caña.; Collison, R. F., Raven, E. C., Pignon, C. P., & Long, S. P. (2020). Light, Not Age, Underlies the Maladaptation of Maize and Miscanthus Photosynthesis to Self-Shading. Frontiers in Plant Science, 11(June), 1–10. https://doi.org/10.3389/fpls.2020.00783; Dai, Y., Shen, Z., Liu, Y., Wang, L., Hannaway, D., & Lu, H. (2009). Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 65(2–3), 177–182. https://doi.org/10.1016/j.envexpbot.2008.12.008; De Matos, M., Santos, F., & Eichler, P. (2020). Sugarcane world scenario. In Sugarcane Biorefinery, Technology and Perspectives (pp. 1–19). Elsevier. https://doi.org/10.1016/B978-0-12-814236-3.00001-9; De Souza, A. P., Wang, Y., Orr, D. J., Carmo‐Silva, E., & Long, S. P. (2020). Photosynthesis across African cassava germplasm is limited by Rubisco and mesophyll conductance at steady state, but by stomatal conductance in fluctuating light. New Phytologist, 225(6), 2498–2512. https://doi.org/10.1111/nph.16142; Demarsy, E., Goldschmidt-Clermont, M., & Ulm, R. (2018). Coping with ‘Dark Sides of the Sun’ through Photoreceptor Signaling. Trends in Plant Science, 23(3), 260–271. https://doi.org/10.1016/j.tplants.2017.11.007; Denton, A. K., Simon, R., & Weber, A. P. M. (2013). C4 photosynthesis: from evolutionary analyses to strategies for synthetic reconstruction of the trait. Current Opinion in Plant Biology, 16(3), 315–321. https://doi.org/10.1016/j.pbi.2013.02.013; Díaz-Torres, J. J., Hernández-Mena, L., Murillo-Tovar, M. A., León-Becerril, E., López-López, A., Suárez-Plascencia, C., Aviña-Rodriguez, E., Barradas-Gimate, A., & Ojeda-Castillo, V. (2017). Assessment of the modulation effect of rainfall on solar radiation availability at the Earth’s surface. Meteorological Applications, 24(2), 180–190. https://doi.org/10.1002/met.1616; Dinesh Babu, K. S., Janakiraman, V., Palaniswamy, H., Kasirajan, L., Gomathi, R., & Ramkumar, T. R. (2022). A short review on sugarcane: its domestication, molecular manipulations and future perspectives. Genetic Resources and Crop Evolution, 69(8), 2623–2643. https://doi.org/10.1007/s10722-022-01430-6; Durand, M., Murchie, E. H., Lindfors, A. V., Urban, O., Aphalo, P. J., & Robson, T. M. (2021). Diffuse solar radiation and canopy photosynthesis in a changing environment. Agricultural and Forest Meteorology, 311, 108684. https://doi.org/10.1016/j.agrformet.2021.108684; Ermakova, M., Bellasio, C., Fitzpatrick, D., Furbank, R. T., Mamedov, F., & von Caemmerer, S. (2021). Upregulation of bundle sheath electron transport capacity under limiting light in C 4 Setaria viridis. The Plant Journal, 106(5), 1443–1454. https://doi.org/10.1111/tpj.15247; Fang, S., Lang, T., Cai, M., & Han, T. (2022). Light keys open locks of plant photoresponses: A review of phosphors for plant cultivation LEDs. Journal of Alloys and Compounds, 902, 163825. https://doi.org/10.1016/j.jallcom.2022.163825; Fankhauser, C., & Chory, J. (1997). Light control of plant development. Annual Review of Cell and Developmental Biology, 13(1), 203–229. https://doi.org/10.1146/annurev.cellbio.13.1.203; FAO. (2020). Sugarcane %7C Land & Water %7C Food and Agriculture Organization of the United Nations %7C Land & Water %7C Food and Agriculture Organization of the United Nations. http://www.fao.org/land-water/databases-and-software/crop-information/sugarcane/en/; FAO. (2022). World Food and Agriculture – Statistical Yearbook 2022. FAO. https://doi.org/10.4060/cc2211en; FAOSTAT. (2021). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL/visualize; Fiorucci, A.-S., & Fankhauser, C. (2017). Plant Strategies for Enhancing Access to Sunlight. Current Biology, 27(17), R931–R940. https://doi.org/10.1016/j.cub.2017.05.085; Flack‐Prain, S., Shi, L., Zhu, P., Rocha, H. R., Cabral, O., Hu, S., & Williams, M. (2021). The impact of climate change and climate extremes on sugarcane production. GCB Bioenergy, 13(3), 408–424. https://doi.org/10.1111/gcbb.12797; Franić, M., Jambrović, A., Zdunić, Z., Šimić, D., & Galić, V. (2020). Photosynthetic properties of maize hybrids under different environmental conditions probed by the chlorophyll a fluorescence. Maydica, 64(3).; Gao, P., Wang, P., Du, B., Li, P., & Kang, B.-H. (2022). Accelerated remodeling of the mesophyll-bundle sheath interface in the maize C4 cycle mutant leaves. Scientific Reports, 12(1), 5057. https://doi.org/10.1038/s41598-022-09135-7; Givnish, T. (1988). Adaptation to Sun and Shade: a Whole-Plant Perspective. Functional Plant Biology, 15(2), 63. https://doi.org/10.1071/PP9880063; Goltsev, V. N., Kalaji, H. M., Paunov, M., Bąba, W., Horaczek, T., Mojski, J., Kociel, H., & Allakhverdiev, S. I. (2016). Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology, 63(6), 869–893. https://doi.org/10.1134/S1021443716050058; Gong, X., Liu, C., Dang, K., Wang, H., Du, W., Qi, H., Jiang, Y., & Feng, B. (2022). Mung Bean (Vigna radiata L.) Source Leaf Adaptation to Shading Stress Affects Not Only Photosynthetic Physiology Metabolism but Also Control of Key Gene Expression. Frontiers in Plant Science, 13, 36. https://doi.org/10.3389/fpls.2022.753264; Gregoriou, K., Pontikis, K., & Vemmos, S. (2007). Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.). Photosynthetica, 45(2), 172–181. https://doi.org/10.1007/s11099-007-0029-x; He, Q., & Li, D. (2021). Assessing shade stress in leaves of turf-type tall fescue (Festuca arundinacea Schreb.). Photosynthetica, 59(4), 478–485. https://doi.org/10.32615/ps.2021.037; Herrmann, H. A., Schwartz, J.-M., & Johnson, G. N. (2020). From empirical to theoretical models of light response curves - linking photosynthetic and metabolic acclimation. Photosynthesis Research, 145(1), 5–14. https://doi.org/10.1007/s11120-019-00681-2; Hitchcock, A., Hunter, C. N., Sobotka, R., Komenda, J., Dann, M., & Leister, D. (2022). Redesigning the photosynthetic light reactions to enhance photosynthesis – the PhotoRedesign consortium. The Plant Journal, 109(1), 23–34. https://doi.org/10.1111/tpj.15552; Huang, D., Wu, L., Chen, J. R., & Dong, L. (2011). Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels. Photosynthetica, 49(4), 611–618. https://doi.org/10.1007/s11099-011-0076-1; Humbert, R. P., & Bonnet, J. A. (1963). The Growing of Sugar Cane. Soil Science, 107(3), 233. https://doi.org/10.1097/00010694-196903000-00021; Hussain, S., Hussain, S., Khaliq, A., Ali, S., & Khan, I. (2019). Physiological, Biochemical, and Molecular Aspects of Seed Priming. In Priming and Pretreatment of Seeds and Seedlings (pp. 43–62). Springer Singapore. https://doi.org/10.1007/978-981-13-8625-1_3; IDEAM. (2022). BOLETÍN DE MONITOREO FENOMENO EL NIÑO Y LA NIÑA - IDEAM. http://www.ideam.gov.co/web/tiempo-y-clima/boletin-de-seguimiento-fenomeno-el-nino-y-la-nina/-/document_library_display/I6NwA8DioHgN/view/121539941?_110_INSTANCE_I6NwA8DioHgN_redirect=http%3A%2F%2Fwww.ideam.gov.co%2Fweb%2Ftiempo-y-clima%2Fboletin-de-segui; Jaiswal, R., Mall, R. K., Patel, S., Singh, N., Mendiratta, N., & Gupta, A. (2023). Indian sugarcane under warming climate: A simulation study. European Journal of Agronomy, 144, 126760. https://doi.org/10.1016/j.eja.2023.126760; James, N. I. (1980). Sugarcane. In Hybridization of Crop Plants (pp. 617–629). American Society of Agronomy, Crop Science Society of America. https://doi.org/10.2135/1980.hybridizationofcrops.c44; Kabir, M. Y., Nambeesan, S. U., & Díaz-Pérez, J. C. (2023). Carbon dioxide and light curves and leaf gas exchange responses to shade levels in bell pepper (Capsicum annuum L.). Plant Science, 326, 111532. https://doi.org/10.1016/j.plantsci.2022.111532; Kaiser, E., Morales, A., Harbinson, J., Kromdijk, J., Heuvelink, E., & Marcelis, L. F. M. (2015). Dynamic photosynthesis in different environmental conditions. Journal of Experimental Botany, 66(9), 2415–2426. https://doi.org/10.1093/jxb/eru406; Karp, G. (2017). Fotosíntesis y el cloroplasto. In Biología celular y molecular. Conceptos y experimentos, 7e (pp. 1–36). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1139752883; Kaur, G., Singh, G., Motavalli, P. P., Nelson, K. A., Orlowski, J. M., & Golden, B. R. (2020). Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal, 112(3), 1475–1501. https://doi.org/10.1002/agj2.20093; Kochetova, G. V, Avercheva, O. V, Bassarskaya, E. M., & Zhigalova, T. V. (2022). Light quality as a driver of photosynthetic apparatus development. Biophysical Reviews, 14(4), 779–803. https://doi.org/10.1007/s12551-022-00985-z; Koetle, M. J., Snyman, S. J., & Rutherford, R. S. (2022). Ex vitro Morpho-Physiological Screening of Drought Tolerant Sugarcane Epimutants Generated Via 5-Azacytidine and Imidacloprid Treatments. Tropical Plant Biology, 15(4), 288–300. https://doi.org/10.1007/s12042-022-09323-9; Komor, E. (2000). The physiology of sucrose storage in sugarcane. In Developments in Crop Science (Vol. 26, Issue C, pp. 35–53). https://doi.org/10.1016/S0378-519X(00)80003-3; Kouřil, R., Wientjes, E., Bultema, J. B., Croce, R., & Boekema, E. J. (2013). High-light vs. low-light: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1827(3), 411–419. https://doi.org/10.1016/j.bbabio.2012.12.003; Kromdijk, J., Griffiths, H., & Schepers, H. E. (2010). Can the progressive increase of C4 bundle sheath leakiness at low PFD be explained by incomplete suppression of photorespiration? Plant, Cell & Environment, 33(11), 1935–1948. https://doi.org/10.1111/j.1365-3040.2010.02196.x; Kromdijk, J., Schepers, H. E., Albanito, F., Fitton, N., Carroll, F., Jones, M. B., Finnan, J., Lanigan, G. J., & Griffiths, H. (2008). Bundle Sheath Leakiness and Light Limitation during C4 Leaf and Canopy CO2 Uptake. Plant Physiology, 148(4), 2144–2155. https://doi.org/10.1104/pp.108.129890; Kromdijk, J., Ubierna, N., Cousins, A. B., & Griffiths, H. (2014). Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation. Journal of Experimental Botany, 65(13), 3443–3457. https://doi.org/10.1093/jxb/eru157; Kubásek, J., Urban, O., & Šantrůček, J. (2013). C 4 plants use fluctuating light less efficiently than do C 3 plants: a study of growth, photosynthesis and carbon isotope discrimination. Physiologia Plantarum, 149(4), 528–539. https://doi.org/10.1111/ppl.12057; Kumar, D., Singh, H., Raj, S., & Soni, V. (2020). Chlorophyll a fluorescence kinetics of mung bean (Vigna radiata L.) grown under artificial continuous light. Biochemistry and Biophysics Reports, 24, 100813. https://doi.org/10.1016/j.bbrep.2020.100813; Kurepin, L. V., Emery, R. J. N., Pharis, R. P., & Reid, D. M. (2007). Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. Journal of Experimental Botany, 58(8), 2145–2157. https://doi.org/10.1093/jxb/erm068; Lachapelle, P.-P., & Shipley, B. (2012). Interspecific prediction of photosynthetic light response curves using specific leaf mass and leaf nitrogen content: effects of differences in soil fertility and growth irradiance. Annals of Botany, 109(6), 1149–1157. https://doi.org/10.1093/aob/mcs032; Larrahondo, J. E., & Villegas, F. (1995). Control y Características de Maduración. In El cultivo de la caña en la zona azucarera de Colombia (p. 412).; Laub, M., Pataczek, L., Feuerbacher, A., Zikeli, S., & Högy, P. (2022). Contrasting yield responses at varying levels of shade suggest different suitability of crops for dual land-use systems: a meta-analysis. Agronomy for Sustainable Development, 42(3), 51. https://doi.org/10.1007/s13593-022-00783-7; Lee, M., Boyd, R. A., & Ort, D. R. (2022). The photosynthetic response of C 3 and C 4 bioenergy grass species to fluctuating light. GCB Bioenergy, 14(1), 37–53. https://doi.org/10.1111/gcbb.12899; Ludwig, M. (2013). Evolution of the C4 photosynthetic pathway: events at the cellular and molecular levels. Photosynthesis Research, 117(1–3), 147–161. https://doi.org/10.1007/s11120-013-9853-y; Lundgren, M. R., Osborne, C. P., & Christin, P.-A. (2014). Deconstructing Kranz anatomy to understand C4 evolution. Journal of Experimental Botany, 65(13), 3357–3369. https://doi.org/10.1093/jxb/eru186; Mall, R. K., Sonkar, G., Bhatt, D., Sharma, N. K., Baxla, A. K., & Singh, K. K. (2016). Managing impact of extreme weather events in sugarcane in different agro-climatic zones of Uttar Pradesh. Mausam, 67(1), 233–250. https://doi.org/10.54302/mausam.v67i1.1187; Maloney, V. J., Park, J.-Y., Unda, F., & Mansfield, S. D. (2015). Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation. Journal of Experimental Botany, 66(14), 4383–4394. https://doi.org/10.1093/jxb/erv101; Marchiori, P. E. R., Machado, E. C., & Ribeiro, R. V. (2014). Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties. Field Crops Research, 155, 30–37. https://doi.org/10.1016/j.fcr.2013.09.025; Masoabi, M., Snyman, S., & Van der Vyver, C. (2023). Characterisation of an ethyl methanesulfonate‐derived drought‐tolerant sugarcane mutant line. Annals of Applied Biology, 182(3), 343–360. https://doi.org/10.1111/aab.12823; Mathur, S., Jain, L., & Jajoo, A. (2018). Photosynthetic efficiency in sun and shade plants. Photosynthetica, 56(SPECIAL ISSUE), 354–365. https://doi.org/10.1007/s11099-018-0767-y; McCormick, A. J., Cramer, M. D., & Watt, D. A. (2006). Sink strength regulates photosynthesis in sugarcane. New Phytologist, 171(4), 759–770. https://doi.org/10.1111/j.1469-8137.2006.01785.x; McPhaden, M. J. (2003). El Niño and La Niña: Causes and Global Consequences. Encyclopedia of Global Environmental Change, Volume 1, The Earth System: Physical and Chemical Dimensions of Global Environmental Change, 1, 353–370. https://www.pmel.noaa.gov/gtmba/featured-publication/el-niño-and-la-niña-causes-and-global-consequences; Meisel, L. A., Urbina, D. C., & Pinto, M. E. (2011). Fotorreceptores y Respuestas de Plantas a Señales Lumínicas. Fisiología Vegetal, 18, 1–9. http://www.biouls.cl/librofv/web/pdf_word/Capitulo 18.pdf; Melgarejo, L. M., Romero, M., Hernández, S., Barrera, J., Solarte, M. E., Suárez, D., Pérez, L. V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Experimentos en fisiología vegetal. Plant, Cell and Environment, 34(1), 65–75. https://doi.org/10.1111/J.1365-3040.2010.02226.X; Minhas, P. S., Rane, J., & Pasala, R. K. (2017). Abiotic Stress Management for Resilient Agriculture. In P. S. Minhas, J. Rane, & R. K. Pasala (Eds.), Abiotic Stress Management for Resilient Agriculture. Springer Singapore. https://doi.org/10.1007/978-981-10-5744-1; Misra, V., Mall, A. K., Ansari, S. A., & Ansari, M. I. (2022). Sugar Transporters, Sugar-Metabolizing Enzymes, and Their Interaction with Phytohormones in Sugarcane. Journal of Plant Growth Regulation, 1–14. https://doi.org/10.1007/s00344-022-10778-z; Montero, D., García, C. E., Soto, M., & Valencia, J. M. (2017). Estimación de productividad en caña de azúcar desde la percepción remota. Análisis Geográficos, 53(December), 35–49. https://www.researchgate.net/publication/321973459_Estimacion_de_productividad_en_cana_de_azucar_desde_la_percepcion_remota; Moore, P. H., Paterson, A. H., & Tew, T. (2013). Sugarcane: Physiology, Biochemistry, and Functional Biology. In P. H. Moore & F. C. Botha (Eds.), Sugarcane: Physiology, Biochemistry, and Functional Biology (John Wiley). Wiley. https://doi.org/10.1002/9781118771280; Moreno, G., Vela, P., & Salcedo Alvarez, Martha, O. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica, 27(4), 119–129. http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=49011464003; Moustakas, M., Guidi, L., & Calatayud, A. (2022). Editorial: Chlorophyll fluorescence analysis in biotic and abiotic stress, volume II. Frontiers in Plant Science, 13, 4569. https://doi.org/10.3389/fpls.2022.1066865; Muhammad, I., Shalmani, A., Ali, M., Yang, Q.-H., Ahmad, H., & Li, F. B. (2021). Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses. Frontiers in Plant Science, 11, 615942. https://doi.org/10.3389/fpls.2020.615942; Murata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S. I. (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1767(6), 414–421. https://doi.org/10.1016/j.bbabio.2006.11.019; Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13), 3983–3998. https://doi.org/10.1093/jxb/ert208; Nelson, N., & Yocum, C. F. (2006). Structure and function of photosystems I and II. Annual Review of Plant Biology, 57(1), 521–565. https://doi.org/10.1146/annurev.arplant.57.032905.105350; Neo, D. C. J., Ong, M. M. X., Lee, Y. Y., Teo, E. J., Ong, Q., Tanoto, H., Xu, J., Ong, K. S., & Suresh, V. (2022). Shaping and Tuning Lighting Conditions in Controlled Environment Agriculture: A Review. ACS Agricultural Science & Technology, 2(1), 3–16. https://doi.org/10.1021/acsagscitech.1c00241; Noor, M., Fan, J.-B., Zhang, J.-X., Zhang, C.-J., Sun, S.-N., Gan, L., & Yan, X.-B. (2023). Effects of Shade Stress on Growth and Responsive Mechanisms of Bermudagrass (Cynodon dactylon L.). Journal of Plant Growth Regulation, 42(7), 4037–4047. https://doi.org/10.1007/s00344-023-10920-5; Palma, C. F. F., Castro-Alves, V., Morales, L. O., Rosenqvist, E., Ottosen, C.-O., & Strid, Å. (2021). Spectral Composition of Light Affects Sensitivity to UV-B and Photoinhibition in Cucumber. Frontiers in Plant Science, 11, 2016. https://doi.org/10.3389/fpls.2020.610011; Panigrahy, M., Majeed, N., & Panigrahi, K. C. S. (2020). Low-light and its effects on crop yield: Genetic and genomic implications. Journal of Biosciences, 45(1), 102. https://doi.org/10.1007/s12038-020-00070-1; Paradiso, R., & Proietti, S. (2022). Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. Journal of Plant Growth Regulation, 41(2), 742–780. https://doi.org/10.1007/s00344-021-10337-y; Parthasarathy, N. (1948). Origin of Noble Sugar-Canes (Saccharum officinarum.). Nature, 161(4094), 608–608. https://doi.org/10.1038/161608a0; Pengelly, J. J. L., Sirault, X. R. R., Tazoe, Y., Evans, J. R., Furbank, R. T., & von Caemmerer, S. (2010). Growth of the C4 dicot Flaveria bidentis: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry. Journal of Experimental Botany, 61(14), 4109–4122. https://doi.org/10.1093/jxb/erq226; Petro Páez, E. E., Cardozo Conde, C. I., & Rebolledo, M. C. (2018). Caracterización fenotípica de un grupo de diversidad de arroz (Oryza sativa L.) de la subespecie indica en respuesta al estés por baja intensidad lumínica. https://cgspace.cgiar.org/handle/10568/98472; Pignon, C. P., Jaiswal, D., McGrath, J. M., & Long, S. P. (2017). Loss of photosynthetic efficiency in the shade. An Achilles heel for the dense modern stands of our most productive C 4 crops? Journal of Experimental Botany, 68(2), 335–345. https://doi.org/10.1093/jxb/erw456; Poorter, H., Niinemets, Ü., Ntagkas, N., Siebenkäs, A., Mäenpää, M., Matsubara, S., & Pons, T. L. (2019). A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist, 223(3), 1073–1105. https://doi.org/10.1111/NPH.15754; Romero, E., Scandaliaris, J., Digonzelli, P., Leggio, F., Giardina, J. A., Fernández de Ullivarri, J., Casen, S. D., Tonatto, J., & Alonso, L. (2009). La caña de azúcar, características y ecofisiología. Manual Del Cañero., 15-22. https://www.researchgate.net/publication/284772525_La_cana_de_azucar_caracteristicas_y_ecofisiologia; Roopendra, K., Chandra, A., & Saxena, S. (2019). Increase in Sink Demand in Response to Perturbed Source–Sink Communication by Partial Shading in Sugarcane. Sugar Tech, 21(4), 672–677. https://doi.org/10.1007/s12355-018-0665-4; Ruberti, I., Sessa, G., Ciolfi, A., Possenti, M., Carabelli, M., & Morelli, G. (2012). Plant adaptation to dynamically changing environment: The shade avoidance response. Biotechnology Advances, 30(5), 1047–1058. https://doi.org/10.1016/j.biotechadv.2011.08.014; Rühle, T., & Leister, D. (2016). Photosystem II Assembly from Scratch. Frontiers in Plant Science, 6(JAN2016), 1234. https://doi.org/10.3389/fpls.2015.01234; Sachdeva, M., Bhatia, S., & Batta, S. K. (2011). Sucrose accumulation in sugarcane: a potential target for crop improvement. Acta Physiologiae Plantarum, 33(5), 1571–1583. https://doi.org/10.1007/s11738-011-0741-9; Sadras, V. O., Villalobos, F. J., & Fereres, E. (2016). Radiation Interception, Radiation Use Efficiency and Crop Productivity. In Principles of Agronomy for Sustainable Agriculture (pp. 169–188). Springer International Publishing. https://doi.org/10.1007/978-3-319-46116-8_13; Sage, R. F. (2013). Stopping the leaks: new insights into C 4 photosynthesis at low light. Plant, Cell & Environment, 37(5), 1037–1041. https://doi.org/10.1111/pce.12246; Sage, R. F., Sage, T. L., & Kocacinar, F. (2012). Photorespiration and the evolution of C4 photosynthesis. Annual Review of Plant Biology, 63, 19–47. https://doi.org/10.1146/annurev-arplant-042811-105511; Sagun, J. Ver, Chow, W. S., & Ghannoum, O. (2022). Leaf pigments and photosystems stoichiometry underpin photosynthetic efficiency of related C3, C–C4 and C4 grasses under shade. Physiologia Plantarum, 174(6), e13819. https://doi.org/10.1111/ppl.13819; Sakaigaichi, T., Tsuchida, H., Adachi, K., Hattori, T., Tarumoto, Y., Tanaka, M., Hayano, M., Sakagami, J.-I., & Irei, S. (2019). Phenological Changes in the Chlorophyll Content and Its Fluorescence in Field-Grown Sugarcane Clones Under Over-Wintering Conditions. Sugar Tech, 21(5), 843–846. https://doi.org/10.1007/s12355-018-0693-0; Sales, C. R. G., Marchiori, P. E. R., Machado, R. S., Fontenele, A. V., Machado, E. C., Silveira, J. A. G., & Ribeiro, R. V. (2015). Photosynthetic and antioxidant responses to drought during sugarcane ripening. Photosynthetica, 53(4), 547–554. https://doi.org/10.1007/s11099-015-0146-x; Sales, C. R. G., Ribeiro, R. V., Marchiori, P. E. R., Kromdijk, J., & Machado, E. C. (2023). The negative impact of shade on photosynthetic efficiency in sugarcane may reflect a metabolic bottleneck. Environmental and Experimental Botany, 211, 105351. https://doi.org/10.1016/j.envexpbot.2023.105351; Sales, C. R. G., Wang, Y., Evers, J. B., & Kromdijk, J. (2021). Improving C4 photosynthesis to increase productivity under optimal and suboptimal conditions. Journal of Experimental Botany, 72(17), 5942–5960. https://doi.org/10.1093/jxb/erab327; Sales, Cristina R G, Wang, Y., Evers, J. B., & Kromdijk, J. (2021). Improving C4 photosynthesis to increase productivity under optimal and suboptimal conditions. Journal of Experimental Botany, 72(17), 5942–5960. https://doi.org/10.1093/jxb/erab327; Sales, Cristina R.G., Ribeiro, R. V., Hayashi, A. H., Marchiori, P. E. R., Silva, K. I., Martins, M. O., Silveira, J. A. G., Silveira, N. M., & Machado, E. C. (2018). Flexibility of C4 decarboxylation and photosynthetic plasticity in sugarcane plants under shading. Environmental and Experimental Botany, 149, 34–42. https://doi.org/10.1016/j.envexpbot.2017.10.027; Salvatori, N., Alberti, G., Muller, O., & Peressotti, A. (2022). Does Fluctuating Light Affect Crop Yield? A Focus on the Dynamic Photosynthesis of Two Soybean Varieties. Frontiers in Plant Science, 13, 1189. https://doi.org/10.3389/fpls.2022.862275; Santos, F., & Diola, V. (2015). Physiology. In Sugarcane (pp. 13–33). Elsevier. https://doi.org/10.1016/B978-0-12-802239-9.00002-5; Satriawan, H., Nazirah, L., Fitri, R., & Ernawita. (2022). Evaluation of growth and yield of upland rice varieties under various shading levels and organic fertilizer concentrations. Biodiversitas, 23(5), 2655–2662. https://doi.org/10.13057/biodiv/d230549; Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J., Gosling, S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., … Kabat, P. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences, 111(9), 3245–3250. https://doi.org/10.1073/pnas.1222460110; Schramma, N., Perugachi Israëls, C., & Jalaal, M. (2023). Chloroplasts in plant cells show active glassy behavior under low-light conditions. Proceedings of the National Academy of Sciences, 120(3), e2216497120. https://doi.org/10.1073/pnas.2216497120; Schwerz, F., Elli, E. F., Behling, A., Schmidt, D., Caron, B. O., & Sgarbossa, J. (2019). Yield and qualitative traits of sugarcane cultivated in agroforestry systems: Toward sustainable production systems. Renewable Agriculture and Food Systems, 34(4), 280–292. https://doi.org/10.1017/S1742170517000382; Scott, H. G., & Smith, N. G. (2022). A Model of C4 Photosynthetic Acclimation Based on Least‐Cost Optimality Theory Suitable for Earth System Model Incorporation. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002470. https://doi.org/10.1029/2021MS002470; Shafiq, I., Hussain, S., Hassan, B., Shoaib, M., Mumtaz, M., Wang, B., Raza, A., Manaf, A., Ansar, M., Yang, W., & Yang, F. (2020). Effect of simultaneous shade and drought stress on morphology, leaf gas exchange, and yield parameters of different soybean cultivars. Photosynthetica, 58(5), 1200–1209. https://doi.org/10.32615/ps.2020.067; Shafiq, I., Hussain, S., Raza, M. ali, Iqbal, N., Asghar, M. A., Raza, A., Fan, Y. F., Mumtaz, M., Shoaib, M., Ansar, M., Manaf, A., Yang, W. Y., & YANG, F. (2021). Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture, 20(1), 4–23. https://doi.org/10.1016/S2095-3119(20)63227-0; Shanthi, R. M., Alarmelu, S., Mahadeva Swamy, H. K., & Lakshmi Pathy, T. (2022). Impact of Climate Change on Sucrose Synthesis in Sugarcane Varieties. In Agro-industrial Perspectives on Sugarcane Production under Environmental Stress (pp. 13–38). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-3955-6_2; Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D., & Singsaas, E. L. (2007). Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell and Environment, 30(9), 1035–1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x; Sharkey, T. D., Bock, R., Planck, M., & Plant, M. (2012). Photosynthesis (J. J. Eaton-Rye, B. C. Tripathy, & T. D. Sharkey (eds.); Springer, Vol. 34). Springer Netherlands. https://doi.org/10.1007/978-94-007-1579-0; Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Singh Sidhu, G. P., Bali, A. S., Handa, N., Kapoor, D., Yadav, P., Khanna, K., Bakshi, P., Rehman, A., Kohli, S. K., Khan, E. A., Parihar, R. D., Yuan, H., Thukral, A. K., Bhardwaj, R., & Zheng, B. (2020). Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. Journal of Plant Growth Regulation, 39(2), 509–531. https://doi.org/10.1007/s00344-019-10018-x; Shi, Y., Ke, X., Yang, X., Liu, Y., & Hou, X. (2022). Plants response to light stress. Journal of Genetics and Genomics, 49(8), 735–747. https://doi.org/10.1016/j.jgg.2022.04.017; Shibamoto, T., Kato, Y., Sugiura, M., & Watanabe, T. (2009). Redox Potential of the Primary Plastoquinone Electron Acceptor Q A in Photosystem II from Thermosynechococcus elongatus Determined by Spectroelectrochemistry. Biochemistry, 48(45), 10682–10684. https://doi.org/10.1021/bi901691j; Shimoda, S., & Sugikawa, Y. (2020). Grain‐filling response of winter wheat ( Triticum aestivum L.) to post‐anthesis shading in a humid climate. Journal of Agronomy and Crop Science, 206(1), 90–100. https://doi.org/10.1111/jac.12370; Shrivastava, A. K., Pathak, A. D., Misra, V., Srivastava, S., Swapna, M., & Shukla, S. P. (2017). Sugarcane Crop: Its Tolerance Towards Abiotic Stresses. Abiotic Stress Management for Resilient Agriculture, 375–397. https://doi.org/10.1007/978-981-10-5744-1_17; Shrivastava, A. K., Solomon, S., Rai, R. K., Singh, P., Chandra, A., Jain, R., & Shukla, S. P. (2015). Physiological Interventions for Enhancing Sugarcane and Sugar Productivity. Sugar Tech, 17(3), 215–226. https://doi.org/10.1007/s12355-014-0321-6; Si, C., Yang, S., Lou, X., Zhang, G., & Zhong, Q. (2022). Effects of light spectrum on the morphophysiology and gene expression of lateral branching in Pepino (Solanum muricatum). Frontiers in Plant Science, 13, 3739. https://doi.org/10.3389/fpls.2022.1012086; Slattery, R. A., Walker, B. J., Weber, A. P. M., & Ort, D. R. (2018). The Impacts of Fluctuating Light on Crop Performance. Plant Physiology, 176(2), 990–1003. https://doi.org/10.1104/pp.17.01234; Smith, A. M., & Stitt, M. (2007). Coordination of carbon supply and plant growth. Plant, Cell & Environment, 30(9), 1126–1149. https://doi.org/10.1111/j.1365-3040.2007.01708.x; Som-ard, J., Atzberger, C., Izquierdo-Verdiguier, E., Vuolo, F., & Immitzer, M. (2021). Remote Sensing Applications in Sugarcane Cultivation: A Review. Remote Sensing, 13(20), 4040. https://doi.org/10.3390/rs13204040; Sonkar, G., Singh, N., Mall, R. K., Singh, K. K., & Gupta, A. (2020). Simulating the Impacts of Climate Change on Sugarcane in Diverse Agro-climatic Zones of Northern India Using CANEGRO-Sugarcane Model. Sugar Tech, 22(3), 460–472. https://doi.org/10.1007/s12355-019-00787-w; Stinziano, J. R., Morgan, P. B., Lynch, D. J., Saathoff, A. J., McDermitt, D. K., & Hanson, D. T. (2017). The rapid A-C i response: photosynthesis in the phenomic era. Plant, Cell & Environment, 40(8), 1256–1262. https://doi.org/10.1111/pce.12911; Stirbet, A., Riznichenko, G. Y., Rubin, A. B., & Govindjee. (2014). Modeling chlorophyll a fluorescence transient: Relation to photosynthesis. Biochemistry (Moscow), 79(4), 291–323. https://doi.org/10.1134/S0006297914040014; Stirbet, Alexandrina, & Govindjee. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104(1–2), 236–257. https://doi.org/10.1016/j.jphotobiol.2010.12.010; Strasser, R.J., Srivastava, A., & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing Photosynthesis: Mechanism, Regulation & Adaptation, May 2014, 443–480. http://ww.hansatech-instruments.com/docs/the fluorescence transient.pdf; Strasser, Reto J., Tsimilli-Michael, M., & Srivastava, A. (2004). Analysis of the Chlorophyll a Fluorescence Transient (pp. 321–362). https://doi.org/10.1007/978-1-4020-3218-9_12; Swoczyna, T., Kalaji, H. M., Bussotti, F., Mojski, J., & Pollastrini, M. (2022). Environmental stress - what can we learn from chlorophyll a fluorescence analysis in woody plants? A review. Frontiers in Plant Science, 13, 4936. https://doi.org/10.3389/fpls.2022.1048582; Taiz, L., & Zeiger, E. (2015). Plant Physiology and Development (2014 Sinauer (ed.); 6th ed., Vol. 6).; Takahashi, S., & Badger, M. R. (2011). Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science, 16(1), 53–60. https://doi.org/10.1016/j.tplants.2010.10.001; Tanaka, Y., Adachi, S., & Yamori, W. (2019). Natural genetic variation of the photosynthetic induction response to fluctuating light environment. Current Opinion in Plant Biology, 49, 52–59. https://doi.org/10.1016/j.pbi.2019.04.010; Tang, Y., & Liesche, J. (2017). The molecular mechanism of shade avoidance in crops – How data from Arabidopsis can help to identify targets for increasing yield and biomass production. Journal of Integrative Agriculture, 16(6), 1244–1255. https://doi.org/10.1016/S2095-3119(16)61434-X; Taylor, S. H., & Long, S. P. (2017). Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1730), 20160543. https://doi.org/10.1098/rstb.2016.0543; Tazoe, Y., Hanba, Y. T., Furumoto, T., Noguchi, K., & Terashima, I. (2008). Relationships Between Quantum Yield for CO2 Assimilation, Activity of Key Enzymes and CO2 Leakiness in Amaranthus cruentus, a C4 Dicot, Grown in High or Low Light. Plant and Cell Physiology, 49(1), 19–29. https://doi.org/10.1093/pcp/pcm160; Terentyev, V. V. (2022). Macromolecular conformational changes in photosystem II: interaction between structure and function. Biophysical Reviews, 14(4), 871–886. https://doi.org/10.1007/s12551-022-00979-x; Tsimilli-Michael, M. (2020). Special issue in honour of Prof. Reto J. Strasser - Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica, 58(SPECIAL ISSUE), 275–292. https://doi.org/10.32615/ps.2019.150; Valladares, F., & Niinemets, Ü. (2008). Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences. Annual Review of Ecology, Evolution, and Systematics, 39(1), 237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506; van Heerden, P. D. R., Donaldson, R. A., Watt, D. A., & Singels, A. (2010). Biomass accumulation in sugarcane: unravelling the factors underpinning reduced growth phenomena. Journal of Experimental Botany, 61(11), 2877–2887. https://doi.org/10.1093/jxb/erq144; Vasantha, S., Arun Kumar, • R, Tayade, • A S, Krishnapriya, • V, Ram, • Bakshi, & Solomon, • S. (2021). Physiology of Sucrose Productivity and Implications of Ripeners in Sugarcane. Sugar Tech 2021, 1–17. https://doi.org/10.1007/S12355-021-01062-7; Vasantha, S., Kumar, R. A., Tayade, A. S., Krishnapriya, V., Ram, B., & Solomon, S. (2022). Physiology of Sucrose Productivity and Implications of Ripeners in Sugarcane. Sugar Tech, 24(3), 715–731. https://doi.org/10.1007/s12355-021-01062-7; Viola, S., Roseby, W., Santabarbara, S., Nürnberg, D., Assunção, R., Dau, H., Sellés, J., Boussac, A., Fantuzzi, A., & Rutherford, A. W. (2022). Impact of energy limitations on function and resilience in long-wavelength Photosystem II. ELife, 11. https://doi.org/10.7554/eLife.79890; von Caemmerer, S. (2000). Biochemical Models of Leaf Photosynthesis. In Biochemical Models of Leaf Photosynthesis. CSIRO Publishing. https://doi.org/10.1071/9780643103405; von Caemmerer, S., & Furbank, R. T. (2016). Strategies for improving C4 photosynthesis. Current Opinion in Plant Biology, 31, 125–134. https://doi.org/10.1016/j.pbi.2016.04.003; von Caemmerer, Susanne, & Furbank, R. T. (2016). Strategies for improving C4 photosynthesis. Current Opinion in Plant Biology, 31, 125–134. https://doi.org/10.1016/j.pbi.2016.04.003; von Caemmerer, Susanne. (2021). Updating the steady-state model of C4 photosynthesis. Journal of Experimental Botany, 72(17), 6003–6017. https://doi.org/10.1093/jxb/erab266; Waheeda, K., Kitchel, H., Wang, Q., & Chiu, P.-L. (2023). Molecular mechanism of Rubisco activase: Dynamic assembly and Rubisco remodeling. Frontiers in Molecular Biosciences, 10, 90. https://doi.org/10.3389/fmolb.2023.1125922; Wan, Y., Zhang, Y., Zhang, M., Hong, A., Yang, H. Y., & Liu, Y. (2020). Shade effects on growth, photosynthesis and chlorophyll fluorescence parameters of three Paeonia species. PeerJ, 2020(6). https://doi.org/10.7717/PEERJ.9316/SUPP-3; Wang, J., Nayak, S., Koch, K., & Ming, R. (2013). Carbon partitioning in sugarcane (Saccharum species). Frontiers in Plant Science, 4(JUN), 201. https://doi.org/10.3389/fpls.2013.00201; Wang, Xiaoyan; Gao, Xinqiang; Liu, Yuling; Fan, Shuli; Ma, Q. (2020). Progress of Research on the Regulatory Pathway of the Plant Shade-Avoidance Syndrome. In Frontiers in Plant Science (Vol. 11, p. 495591). Frontiers Media S.A. https://doi.org/10.3389/fpls.2020.00439; Wang, Y., Chan, K. X., & Long, S. P. (2021). Towards a dynamic photosynthesis model to guide yield improvement in C4 crops. The Plant Journal, 107(2), 343–359. https://doi.org/10.1111/tpj.15365; Wang, Y., Stutz, S. S., Bernacchi, C. J., Boyd, R. A., Ort, D. R., & Long, S. P. (2022). Increased bundle‐sheath leakiness of CO 2 during photosynthetic induction shows a lack of coordination between the C4 and C3 cycles. New Phytologist, 236(5), 1661–1675. https://doi.org/10.1111/nph.18485; Ward, D. A., & Woolhouse, H. W. (1986). Comparative effects of light during growth on the photosynthetic properties of NADP-ME type C4 grasses from open and shaded habitats. I. Gas exchange, leaf anatomy and ultrastructure. Plant, Cell and Environment, 9(4), 261–270. https://doi.org/10.1111/1365-3040.ep11611679; Watson‐Lazowski, A., Papanicolaou, A., Koller, F., & Ghannoum, O. (2020). The transcriptomic responses of C 4 grasses to subambient CO 2 and low light are largely species specific and only refined by photosynthetic subtype. The Plant Journal, 101(5), 1170–1184. https://doi.org/10.1111/tpj.14583; Wimalasekera, R. (2019). Effect of Light Intensity on Photosynthesis. In Photosynthesis, Productivity and Environmental Stress (pp. 65–73). Wiley. https://doi.org/10.1002/9781119501800.ch4; Xia, H., Chen, K., Liu, L., Plenkovic-Moraj, A., Sun, G., & Lei, Y. (2022). Photosynthetic regulation in fluctuating light under combined stresses of high temperature and dehydration in three contrasting mosses. Plant Science, 323, 111379. https://doi.org/10.1016/j.plantsci.2022.111379; Xie, F., Shi, Z., Zhang, G., Zhang, C., Sun, X., Yan, Y., Zhao, W., Guo, Z., Zhang, L., Fahad, S., Saud, S., & Chen, Y. (2020). Quantitative leaf anatomy and photophysiology systems of C3 and C4 turfgrasses in response to shading. Scientia Horticulturae, 274, 109674. https://doi.org/10.1016/j.scienta.2020.109674; Yamori, W. (2016). Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. Journal of Plant Research, 129(3), 379–395. https://doi.org/10.1007/s10265-016-0816-1; Yang, F., Huang, S., Gao, R., Liu, W., Yong, T., Wang, X., Wu, X., & Yang, W. (2014). Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Research, 155, 245–253. https://doi.org/10.1016/j.fcr.2013.08.011; Yang, J., Li, C., Kong, D., Guo, F., & Wei, H. (2020). Light-Mediated Signaling and Metabolic Changes Coordinate Stomatal Opening and Closure. Frontiers in Plant Science, 11, 1915. https://doi.org/10.3389/fpls.2020.601478; Yao, X., Li, C., Li, S., Zhu, Q., Zhang, H., Wang, H., Yu, C., St. Martin, S. K., & Xie, F. (2017). Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regulation, 83(3), 409–416. https://doi.org/10.1007/s10725-017-0307-y; Yin, X., & Struik, P. C. (2018). The energy budget in C 4 photosynthesis: insights from a cell-type-specific electron transport model. New Phytologist, 218(3), 986–998. https://doi.org/10.1111/nph.15051; Yin, X., Sun, Z., Struik, P. C., Van Der Putten, P. E. L., Van Ieperen, W., & Harbinson, J. (2011). Using a biochemical C4 photosynthesis model and combined gas exchange and chlorophyll fluorescence measurements to estimate bundle-sheath conductance of maize leaves differing in age and nitrogen content. Plant, Cell and Environment, 34(12), 2183–2199. https://doi.org/10.1111/j.1365-3040.2011.02414.x; Yu, D., Zha, Y., Shi, L., Ye, H., & Zhang, Y. (2022). Improving sugarcane growth simulations by integrating multi-source observations into a crop model. European Journal of Agronomy, 132, 126410. https://doi.org/10.1016/j.eja.2021.126410; Zahra, N., Al Hinai, M. S., Hafeez, M. B., Rehman, A., Wahid, A., Siddique, K. H. M., & Farooq, M. (2022). Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry, 178, 55–69. https://doi.org/10.1016/j.plaphy.2022.03.003; Zhang, H., Zhong, H., Wang, J., Sui, X., & Xu, N. (2016). Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo.” PeerJ, 4(6), e2125. https://doi.org/10.7717/peerj.2125; Zhao, D., & Li, Y.-R. (2015). Climate Change and Sugarcane Production: Potential Impact and Mitigation Strategies. International Journal of Agronomy, 2015(4), 1–10. https://doi.org/10.1155/2015/547386; Zheng, L., & Van Labeke, M.-C. (2017). Chrysanthemum morphology, photosynthetic efficiency and antioxidant capacity are differentially modified by light quality. Journal of Plant Physiology, 213, 66–74. https://doi.org/10.1016/j.jplph.2017.03.005; Zhou, Q., Zhao, F., Zhang, H., & Zhu, Z. (2022). Responses of the growth, photosynthetic characteristics, endogenous hormones and antioxidant activity of Carpinus betulus L. seedlings to different light intensities. Frontiers in Plant Science, 13, 4946. https://doi.org/10.3389/fpls.2022.1055984; https://repositorio.unal.edu.co/handle/unal/85339; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
7Academic Journal
المصدر: Revista Colombiana de Química; Vol. 47 Núm. 1 (2018); 57-63 ; Revista Colombiana de Química; v. 47 n. 1 (2018); 57-63 ; Revista Colombiana de Química; Vol. 47 No. 1 (2018); 57-63 ; 2357-3791 ; 0120-2804
مصطلحات موضوعية: Exciton, quantum yield, absorption, fluorescence, quantum dots, Chemistry, physical chemistry, Excitón, rendimiento cuántico, absorción, fluorescencia, puntos cuánticos, Fisicoquímica, inorgánica, espectroscopía, rendimento quântico, absorção, pontos quânticos
وصف الملف: application/pdf; text/html; application/xml
Relation: https://revistas.unal.edu.co/index.php/rcolquim/article/view/61067/63389; https://revistas.unal.edu.co/index.php/rcolquim/article/view/61067/66553; https://revistas.unal.edu.co/index.php/rcolquim/article/view/61067/66554; Kuno, M.; Lee, J. K.; Dabbousi, B. O.; Mikulec, F. V.; Bawendi, M. G. The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state. J. Chem. Phys. 1997, 106, 9869-9882. DOI: https://doi.org/10.1063/1.473875.; Pandey, A.; Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science. 2008, 322, 929-932. DOI: https://doi.org/10.1126/science.1159832.; Murray, C. B.; Sun, S., Doyle, H.; Betley, T. Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. Mrs Bull. 2001, 26, 985-991. DOI: https://doi.org/10.1557/mrs2001.254.; Morgan, N. Y.; Leatherdale, C. A.; Drndić, M.; Jarosz, M. V.; Kastner, M. A.; Bawendi, M. Electronic transport in films of colloidal CdSe nanocrystals. Phys. Rev. B. 2002, 66, 075339. DOI: https://doi.org/10.1103/physrevb.66.075339.; Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P. Morphological control of catalytically active platinum nanocrystals. Angew. Chemie. 2006, 118, 7988-7992. DOI: https://doi.org/10.1002/ange.200603068.; Reed, M. A.; Randall, J. N.; Aggarwal, R. J.; Matyi, R. J.; Moore, T. M.; Wetsel A. E.; Observation of Discrete Electronic States in a Zero-dimensional Semiconductor Nanostructures. Phys. Rev. Lett. 1998. 60, 535-537. DOI: https://doi.org/10.1103/physrevlett.60.535.; Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum Dots versus Organic Dyes as Fluorescent Labels. Nat. Methods. 2008, 5, 763−775. DOI: https://doi.org/10.1038/nmeth.1248.; Kamat, P. V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters. J. Phys. Chem. C. 2008, 112, 18737−18753. DOI: https://doi.org/10.1021/jp806791s.; Ekimov, A. I.; Onushchenko, A. Quantum size effect in three-dimensional microscopic semiconductor crystals. ZhETF P. Redaktsiiu. 1981, 34, 363. DOI: https://doi.org/10.1016/s0038-1098(85)80025-9.; Norris, D. J. Measurement and assignment of the size-dependent optical spectrum in cadmium selenide (CdSe) quantum dots (Doctoral dissertation, Massachusetts Institute of Technology), 1995. DOI: https://doi.org/10.1103/physrevb.53.16338.; Nordell, K. J.; Boatman, E. M.; Lisensky, G. C. A safer, easier, faster synthesis for CdSe quantum dot nanocrystals. J. Chem. Educ. 2005, 82, 1697. DOI: https://doi.org/10.1021/ed082p1697.; Landry, M. L.; Morrell, T. E.; Karagounis, T. K.; Hsia, C. H.; Wang, C. Y. Simple syntheses of CdSe quantum dots. J. Chem Edu. 2013, 91, 274-279. DOI: https://doi.org/10.1021/ed300568e.; Alivisatos A.P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 1996; 271, 933–937. DOI: https://doi.org/10.1126/science.271.5251.933.; Gaponenko, S. V. Optical Properties of Semiconductor Nanocrystals. Cambridge University Press: 2005. DOI: https://doi.org/10.1017/cbo9780511524141.; Yin, Y.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature, 2005, 437, 664. DOI: https://doi.org/10.1038/nature04165.; Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141-153. DOI: https://doi.org/10.1038/nmat4526.; Murray, C. B.; Norris, D. J.; & Bawendi, M. G. Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J. Am. Chem. Soc. 1993, 115, 8706. DOI: https://doi.org/10.1021/ja0361749.; Peng, X. G.; Wickham, J.; Alivsatos, A. P. Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions. J. Am. Chem. Soc. 1998, 120, 5343-5344. DOI: https://doi.org/10.1021/ja9805425.; Dickerson, B. D. Organometallic Synthesis Kinetics of CdSe Quantum Dots, Virginia Polytechnic Institute and State University, 2005. DOI: https://doi.org/10.5772/34977.; Yu, W. W.; Peng, X. Formation of high‐quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem Int. Ed. 2002, 41, 2368-2371. DOI: https://doi.org/10.1002/ange.200790059.; Bullen, C. R.; Mulvaney, P. Nucleation and growth kinetics of CdSe nanocrystals in octadecene. Nanolett. 2004, 4, 2303-2307. DOI: https://doi.org/10.1021/nl0496724.; Juandria V. Williams. Hydrothermal Synthesis and Characterization of Cadmium Selenide Nanocrystals, The University of Michigan, 2008. DOI: https://doi.org/10.1021/ie061413x.; Doll, J. D.; Hu, B.; Papadimitrakopoulos, F. Precursor and Oxygen Dependence of the Unidirectional, Seeded Growth of CdSe Nanorods. Chem. Mater. 2012, 24, 4043–4050. DOI: https://doi.org/10.1021/cm3012809.; Katari, J. E.; Colvin, V. L.; Alivisatos, A. P. J. Phys. Chem. 1994, 98, 4109-4117. DOI: https://doi.org/10.1021/j100066a034.; Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys Chem. 1996, 100, 13226-13239. DOI: https://doi.org/10.1021/jp9535506.; Owen, J. S.; Park, J.; Trudeau, P. E.; Alivisatos, A. P. Reaction chemistry and ligand exchange at cadmium− selenide nanocrystal surfaces. J. Am. Chem. Soc. 2008, 130, 12279-12281. DOI: https://doi.org/10.1021/ja804414f.; Veamatahau, A.; Jiang, B.; Seifert, T.; Makuta, S.; Latham, K.; Kanehara, M.; & Tachibana, Y. Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states. Phys. Chem. Chem. Phys. 2015, 17, 2850-2858. DOI: https://doi.org/10.1039/c4cp04761c.; Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Bawendi, M. G. (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B. 1997, 101, 9463-9475. DOI: https://doi.org/10.1021/jp971091y.; Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev Mat. Sci. 2000, 30, 545-610. DOI : https://doi.org/10.1146/annurev.matsci.; 1.545. 30. Tomasulo, M.; Yildiz, I.; Kaanumalle, S. L.; Raymo, F. M. pH-sensitive ligand for luminescent quantum dots. Langmuir. 2006, 22, 10284-10290. DOI: https://doi.org/10.1021/la0618014.; Grabolle, M.; Spieles, M.; Lesnya , V.; Gaponi , N.; Eychm ller, A.; esch-Genger, U. Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem. 2009, 81, 6285-6294. DOI: https://doi.org/10.1021/ac900308v.; Yu, W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mat. 2003, 15, 2854-2860. DOI: https://doi.org/10.1021/cm034081k.; Bowen, J. E.; Colvin, V. L.; Alivisatos, A. P. X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface, J. Phys. Chem. 1994, 98, 4109-4117. DOI: https://doi.org/10.1021/j100066a034.; Doll, J. D.; Pilania, G.; Ramprasad, R.; Papadimitrakopoulos, F. Oxygen-assisted unidirectional growth of CdSe nanorods using a low-temperature redox process. Nano Lett. 2010, 10, 680-685. DOI: https://doi.org/10.1021/nl903843g.; Peng, Z. A.; Peng, X. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389-1395. DOI: ttps://doi.org/10.1021/ja0027766.; Dickerson, B. D.; Irving, D. M.; Herz, E.; Claus, R. O.; Spillman Jr, W. B.; Meissner, K. E. Synthesis kinetics of CdSe quantum dots in trioctylphosphine oxide and in stearic acid. Appl. Phys. Lett. 2005, 86,171915-3. DOI: https://doi.org/10.1063/1.1921347.; Triana, M. A.; López, A. F.; Camargo, R. J. Síntesis, caracterización y evaluación fotocatalítica de puntos cuánticos de CdSe cubiertos con 2 tipos de tioles. Información Tecnológica, 2015, 26, 121-134. DOI: https://doi.org/10.4067/s0718-07642015000500016.; Liu, H.; Owen, J. S.; Alivisatos, A. P. Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis. J. Am. Chem. Soc. 2007, 129, 305-312. DOI: https://doi.org/10.1021/ja0656696.; Jiang, F.; Muscat, A. J. Ligand-controlled growth of ZnSe quantum dots in water during Ostwald ripening. Langmuir. 2012, 28, 12931-12940. DOI: https://doi.org/10.1021/la301186n.; Bera, D.; Qian, L.; Tseng, T. K.; Holloway, P. H. Quantum dots and their multimodal applications: a review. Materials. 2010, 3, 2260-2345. DOI: https://doi.org/10.3390/ma3042260.; Chen, Y. B.; Samia, A. C.; Burda, C. Coherency strain effects on the optical response of core/shell heteronanostructures. Nano lett. 2003, 3, 799-803. DOI: https://doi.org/10.1021/nl034243b.; Hühn, J.; Carrillo-Carrion, C.; Soliman, M. G.; Pfeiffer, C.; Valdeperez, D.; Masood, A.; Chakraborty, I.; Zhu, L.; Gallego, M.; Yue, Z.; Carril, M.; Feliu, N.; Escudero, A.; Alkilany, A. M.; Pelaz, B.; Del Pino, P.; Parak, W. J. Selected Standard Protocols for the Synthesis, Phase Transfer, and Characterization of Inorganic Colloidal Nanoparticles. Chem. Mater. 2017, 29, 399–461. DOI: https://doi.org/10.1021/acs.chemmater.6b04738.; Pu, C.; Quin, H.; Gao, Y.; Zhou, J.; Wang, P.; Peng, X. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots. J. Am. Chem. Soc. 2017, 139, 3302–3311. DOI: https://doi.org/10.1021/jacs.6b11431.; Pu, C.; Peng, X.; G. To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment. J. Am. Chem. Soc. 2016, 138, 8134-8142. DOI: https://doi.org/10.1021/jacs.6b02909.; https://revistas.unal.edu.co/index.php/rcolquim/article/view/61067
-
8Academic Journal
مصطلحات موضوعية: 54 Química y ciencias afines / Chemistry, Excitón, rendimiento cuántico, absorción, fluorescencia, puntos cuánticos, Exciton, quantum yield, absorption, fluorescence, quantum dots, rendimento quântico, absorção, pontos quânticos
وصف الملف: application/pdf
Relation: https://revistas.unal.edu.co/index.php/rcolquim/article/view/61067; Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Química; Revista Colombiana de Química; Gómez Piñeros, Brayan Stiven and Granados Oliveros, Gilma (2018) Síntesis y caracterización de las propiedades ópticas de puntos cuánticos de CdSe y CdSe/ZnS. Revista Colombiana de Química, 47 (1). pp. 57-63. ISSN 2357-3791; https://repositorio.unal.edu.co/handle/unal/66249; http://bdigital.unal.edu.co/67273/
-
9
المؤلفون: Souza, José Thyago Aires, Ribeiro, João Everthon da Silva, Ramos, João Paulo Farias, Araújo, Jucilene Silva, Ferreira, Thiago Costa, Oliveira, Raucha Carolina de
المصدر: Research, Society and Development; Vol. 10 No. 9; e40010918165
Research, Society and Development; Vol. 10 Núm. 9; e40010918165
Research, Society and Development; v. 10 n. 9; e40010918165
Research, Society and Development
Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEIمصطلحات موضوعية: Xerofilia, Soil management, Cactus forrajeros, Xerophyte, forage spineless cacti, soil management, quantum yield, Xerophyte, Forage spineless cacti, Xerófila, Manejo de solo, Palma forrageira, Quantum yield, Xerófila, palma forrageira, manejo de solo, rendimento quântico, Rendimento quântico, Xerofilia, cactus forrajeros, manejo del suelo, rendimiento cuántico, Rendimiento cuántico, Manejo del suelo
وصف الملف: application/pdf
-
10Academic Journal
المصدر: Tópicos de Investigación en Ciencias de la Tierra y Materiales; Vol 3 No 3 (2016): Tópicos de Investigación en Ciencias de la Tierra y Materiales; 45-52 ; Tópicos de Investigación en Ciencias de la Tierra y Materiales; Vol. 3 Núm. 3 (2016): Tópicos de Investigación en Ciencias de la Tierra y Materiales; 45-52 ; 2395-8405
مصطلحات موضوعية: coumarins, benzoxazole, imine derivatives, fluorescence, quantum yield, OLEDs, cumarinas, benzoxazol, iminas, flourescencia, rendimiento cuántico
وصف الملف: application/pdf
Relation: https://repository.uaeh.edu.mx/revistas/index.php/aactm/article/view/9798/9413; https://repository.uaeh.edu.mx/revistas/index.php/aactm/article/view/9798
-
11
المؤلفون: Paulo Eduardo Ribeiro Marchiori, Jamer Alexis Ramirez Jimenez, Oscar de Jesús Córdoba-Gaona
المصدر: Revista Facultad Nacional de Agronomía Medellín, Volume: 74, Issue: 3, Pages: 9621-9629, Published: 26 SEP 2021
مصطلحات موضوعية: Stomatal conductance, Interacción patrón-vástago, Fruit yield, fungi, food and beverages, Forestry, Root system, Horticulture, Biology, Photosynthesis, Grafting, Scion-rootstock interaction, Rendimiento de fruta, Fotosíntesis, Rendimiento cuántico, Animal Science and Zoology, Water-use efficiency, Leaf area index, Rootstock, Agronomy and Crop Science, Quantum yield, Food Science, Transpiration
وصف الملف: text/html
-
12Academic Journal
المؤلفون: FÉLIX L. FIGUEROA, BENJAMÍN VIÑEGLA
المصدر: Revista Chilena de Historia Natural, Vol 74, Iss 2, Pp 237-249 (2001)
مصطلحات موضوعية: anhidrasa carbónica, fluorescencia de la clorofila, nitrato reductasa, radiación ultravioleta, rendimiento cuántico efectivo, carbonic anhydrase, chlorophyll fluorescence, effective quantum yield, nitrate reductase, ultraviolet radiation, Zoology, QL1-991, Botany, QK1-989
وصف الملف: electronic resource
-
13Academic Journal
المصدر: Prospectiva, ISSN 1692-8261, Vol. 19, Nº. 2, 2021
مصطلحات موضوعية: Phthalocyanine, Quantum yield, Rubrene, Sensitizer, Singlet oxygen, Ftalocianina, Oxígeno singulete, Rendimiento cuántico, Rubreno, Sensibilizador
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=7997608; (Revista) ISSN 2216-1368; (Revista) ISSN 1692-8261
-
14
المساهمون: Universidad de Antioquia
المصدر: Revista Facultad de Ingeniería Universidad de Antioquia, Issue: 98, Pages: 83-93, Published: MAR 2021
مصطلحات موضوعية: Photonic flux, fotooxidación selectiva, rendimiento cuántico, selective photooxidation, dioxomolybdenum complex, complejo dioxo-Molibdeno, quantum yield, Flujo fotónico
وصف الملف: text/html
-
15Academic Journal
المؤلفون: Korhonen,LK, Macías-Carranza,V, Abdala,R, Figueroa,FL, Cabello-Pasini,A
المصدر: Ciencias marinas v.38 n.4 2012
مصطلحات موضوعية: respiración aeróbica, rendimiento cuántico óptimo, sulfuro, fotosíntesis, Zostera marina
وصف الملف: text/html
-
16Dissertation/ Thesis
المؤلفون: Romero, Juan Manuel
المساهمون: Lagorio, María Gabriela
مصطلحات موضوعية: FLUORESCENCIA, CLOROFILA, REABSORCION, MONITOREO REMOTO, RENDIMIENTO CUANTICO, COBERTURA VEGETAL, FLUORESCENCE, CHLOROPHYLL, REABSORPTION, REMOTE SENSING, QUANTUM YIELD, CANOPY
وصف الملف: application/pdf
Relation: https://hdl.handle.net/20.500.12110/tesis_n7031_Romero; http://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=aextesis&d=tesis_n7031_Romero_oai
-
17Dissertation/ Thesis
المؤلفون: Jiménez Granda, Edison Rafael
المساهمون: Rodríguez Cabrera, Hortensia
مصطلحات موضوعية: Aggregation-induced emission, AIEgens, Cyano, Quinones, DADQs, Fluorescence, Luminescence, Antimicrobial activity, Quantum yield, Density Functional Theory Agregación-inducida por emisión, AIEenos, Ciano, Quinonas, Fluorescencia, Luminiscencia, Actividad antimicrobiana, Rendimiento cuántico, Teoría de densidad funcional
وصف الملف: application/pdf
-
18Dissertation/ Thesis
المؤلفون: Ramírez Jiménez, Jamer Alexis
المساهمون: Córdoba Gaona, Óscar de Jesús
مصطلحات موضوعية: 630 - Agricultura y tecnologías relacionadas, Fisiología vegetal, Injertos (Agricultura), Plant physiology, Grafting, Escala BBCH, Injertación patrón-copa, Injertación, Fotosíntesis, Rendimiento cuántico, Producción de frutos, Tomate de mesa (Solanum lycopersicum L.), BBCH scale, Scion-rootstock interaction, Degree days, Photosynthesis, Quantum yield, Fruit yield
وصف الملف: xviii, 94 páginas; application/pdf
Relation: Agroglobal. (2021). Portainjertos para tomate. Disponible en: https://www.agroglobal.com.co/semillas-de-hortalizas/portainjertos/portainjerto-para-tomate, Consultado el 23 de febrero de 2021.; AGRONET. (2021). Estadísticas Agrícola, Área, producción, rendimiento y participación. Disponible en: http://www.agronet.gov.co/estadistica/Paginas/default.aspx, Consultado el 23 de febrero de 2021.; Albacete, A., Martínez‐Andújar, C., Ghanem, M. E., Acosta, M., Sánchez‐Bravo, J., Asins, M. J., Cuartero, J., Lutts, S., Dodd, I. C., and Pérez‐Alfocea, F. (2009). Rootstock‐mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant, Cell & Environment, 32, 928-938. https://doi.org/10.1111/j.1365-3040.2009.01973.x; Aloni, B., R. Cohen, L. Karni, L. H. Aktas, and M. Edelstein. (2010). Hormonal signaling in rootstock–scion interactions. Scientia Horticulturae, 127, 119-126.; Arve, L. E., y Torre, S. (2015). Ethylene is involved in high air humidity promoted stomatal opening of tomato (Lycopersicon esculentum) leaves. Functional Plant Biology, 42(4), 376-386.; Barrett, D. M. (2014). Future innovations in tomato processing. In XIII International Symposium on Processing Tomato 1081 (pp. 49-55).; Bhatt, R. M., K. K. Upreti, M. H. Divya, S. Bhat, C. B. Pavithra, and A. T. Sadashiva. (2015). Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 182, 8-17. Doi:10.1016/j.scienta.2014.10.043; Calatayud, Á., San Bautista, A., Pascual, B., Maroto, J. V., and López-Galarza, S. (2013). Use of chlorophyll fluorescence imaging as diagnostic technique to predict compatibility in melon graft. Scientia Horticulturae, 149, 13-18. https://doi.org/10.1016/j.scienta.2012.04.019; Camejo, D., Rodríguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., and Alarcón, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162, 281-289. https://doi.org/10.1016/j.jplph.2004.07.014; Chaudhari, S., K. M., D. W. Jennings, D. L. Monks, C. C. Jordan, S. J. Gunter, S. L. Mcgowen, and F. J. Louws. (2016). Critical period for weed control in grafted and nongrafted fresh market tomato. Weed Science, 64, 523–530. Doi:10.1614/WS-D-15-00049.1; Chen X. (2017) Spatiotemporal Processes of Plant Phenology. SpringerBriefs in Geography. Firsth Edition. Springer, Berlin, Heidelberg. 97p.; Costa, M. J., and E. Heuvelink. (2018). The global tomato industry. pp. 1-26. In: Heuvelink, E. (Ed.). Tomatoes. 2.ed. Boston, MA: CABI.; Cuong, D. C., and M. Tanaka. (2019). Effects of integrated environmental factors and modelling the growth and development of tomato in greenhouse cultivation. In IOP Conference Series: Earth and Environmental Science, 301, 012021. IOP Publishing. Doi:10.1088/1755-1315/301/1/012021; Davis, A. R., Perkins-Veazie, P., Hassell, R., Levi, A., King, S. R., y Zhang, X. (2008). Grafting effects on vegetable quality. HortScience, 43(6), 1670-1672.; Davis, A. R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J. V., Lee, S. G., . y Cohen, R. (2008). Cucurbit grafting. Critical Reviews in Plant Sciences, 27(1), 50-74.; Djidonou, D., A. H. Simonne, K. E. Koch, J. K. Brecht, and X. Zhao. (2016). Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. HortScience, 51, 1618-1624.; Dorais, M. and Gosselin, A. (2002) Physiological response of greenhouse vegetable edepot.wur.nl/312846 (accedido el 16 de agosto de 2019).; Estañ, M. T., Villalta, I., Bolarín, M. C., Carbonell, E. A., and Asins, M. J. (2009). Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks. Theoretical and Applied Genetics, 118, 305-312. https://doi.org/10.1007/s00122-008-0900-6; Eurofresh. (2016). Around the World: Tomatoes. Disponible en: https://www.eurofresh-distribution.com/news/around-world-tomatoes, consultado el 9 de julio de 2019; Fanourakis, D., Heuvelink, E., y Carvalho, S. M. (2013). A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity. Journal of Plant Physiology, 170(10), 890-898.; FAOSTAT. (2021). Crops. Disponible en: http://www.fao.org/faostat/en/#data/QC/visualize, Consultado el 23 de febrero de 2021.; Fatemi, M., and H. Dehghan. 2019. Growing degree days zonation of plants in Iran according to thermal characteristics. Theoretical and Applied Climatology, 138, 877-886. Doi:10.1007/s00704-019-02868-y; Feller, C., H. Bleiholder, M. Hess, U. Meier, T. Van Den Boom, D. L. Peter, L. Buhr, H. Hack, R. Klose, R. Stauss, E. Weber, and M. Philipp. (1997). Compendium of growth stage identification keys for mono and dicotyledonous plants extended BBCH scale. 2.ed. Available at: . Accessed on: March 20, 2020.; Food and Agricultura Organiztion (FAO) y Ministerio de Salud y Protección Social. (2012). Perfil Nacional de Consumo de Frutas y Verduras. Primera edición. Bogotá D.C., Colombia. 264 p. disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/perfil-nacional-consumo-frutas-y-verduras-colombia-2013.pdf, consultado el 30 de julio de 2019; Food and Agriculture Organization (FAO). (2002). El Cultivo Protegido en Clima Mediterráneo. Disponible en: http://www.fao.org/3/s8630s/s8630s00.htm#Contents, consultado el 30 de julio de 2019.; Food and Agriculture Organization (FAO). (2020). FAOSTAT Online Database. Available at: . Accessed on: March 20, 2020.; Fraisse, C. W., and S. V. Paula-Moraes. (2018). Degree-Days: Growing, heating, and cooling. Department of Agricultural and Biological Engineering, UF/IFAS Extension. Available at: . Accessed on: March 20, 2020.; Fullana-Pericàs, M., Ponce, J., Conesa, M. À., Juan, A., Ribas-Carbó, M., and Galmés, J. (2018). Changes in yield, growth and photosynthesis in a drought-adapted Mediterranean tomato landrace (Solanum lycopersicum ‘Ramellet’) when grafted onto commercial rootstocks and Solanum pimpinellifolium. Scientia Horticulturae, 233, 70-77. https://doi.org/10.1016/j.scienta.2018.01.045; Gadioli, J. L., Dourado-Neto, D., García y García, A., & Valle Basanta, M. D. (2000). Temperatura do ar, rendimento de grãos de milho e caracterização fenológica associada à soma calórica. Scientia Agricola, 57, 377-383.; Gaion, L. A., Braz, L. T., and Carvalho, R. F. (2018). Grafting in vegetable crops: A great technique for agriculture. International Journal of Vegetable Science, 24, 1-18. https://doi.org/10.1080/19315260.2017.1357062; García-Rojas, F., and E. Pire. (2008). Estudio fenológico de cinco cultivares de tomate (Lycopersicon esculentum Mill.) en Tarabana, Estado Lara, Venezuela. Proc. Interamer. Soc. Trop. Hort., 52, 61-64.; Geboloğlu, N., E. Yilmaz, P. Cakm. M. Aydin, and Y. Kasap. (2011). Determining of the yield, quality and nutrient content of tomatoes grafted on different rootstocks in soilless culture. Scientific Research and Essays, 6, 2147-2153.; Goto, R., de Miguel, A., Marsal, J. I., Gorbe, E., and Calatayud, A. (2013). Effect of different rootstocks on growth, chlorophyll a fluorescence and mineral composition of two grafted scions of tomato. Journal of Plant Nutrition, 36, 825-835. https://doi.org/10.1080/01904167.2012.757321; Grange, R. I., y Hand, D. W. (1987). A review of the effects of atmospheric humidity on the growth of horticultural crops. Journal of Horticultural Science, 62(2), 125-134.; Grieneisen, M. L., Aegerter, B. J., Stoddard, C. S., and Zhang, M. (2018). Yield and fruit quality of grafted tomatoes, and their potential for soil fumigant use reduction. A meta-analysis. Agronomy for Sustainable Development, 38, 1-19. https://doi.org/10.1007/s13593-018-0507-5; Grimstad, S. O., Verheul, M. J., y Maessen, H. F. R. (2012, October). Optimizing a year-round cultivation system of tomato under artificial light. In VII International Symposium on Light in Horticultural Systems 956 (pp. 389-394).; Haberal, M., Körpe, D. A., İşeri, Ö. D., y Sahin, F. I. (2016). Grafting tomato onto tobacco rootstocks is a practical and feasible application for higher growth and leafing in different tobacco–tomato unions. Biological Agriculture y Horticulture, 32(4), 248-257.; Hartmann, H.T., Kester, D.E., Davies, F.T., y Geneve, R.L. (2002). Plant Propagation. Principles and Practices, 7th edn. Prentice-Hall, Upper Saddle River, New Jersey.; He, Y., Zhu, Z., Yang, J., Ni, X., and Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66, 270-278. https://doi.org/10.1016/j.envexpbot.2009.02.007; Helgilibrary. (2019). Tomato Consumption Per Capita. Disponible en: https://www.helgilibrary.com/indicators/tomato-consumption-per-capita/, consultado el 30 de julio de 2019.; Hemming, S., Mohammadkhani, V., y Van Ruijven, J. (2013). Material technology of diffuse greenhouse covering materials-influence on light transmission, light scattering and light spectrum. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1037 (pp. 883-895).; Heuvelink, E. (2018). Tomatoes, Crop production Science in Horticulture Serie. Second edition. Wageningen University y Research The Netherlands, Boston, MA: CABI. 378p.; Heuvelink, E., T. Li, and M. Dorais. (2018). Crop growth and yield. Pp. 89-136. In: Heuvelink, E. (Ed.). Tomatoes. 2.ed. Boston, MA: CABI.; Higashide, T. and Heuvelink, E. (2009) Physiological and morphological changes over the past 50 years in yield components in tomato. Journal of the American Society for Horticultural Science 134, 460–465. DOI: https://doi.org/10.21273/JASHS.134.4.460; HORTOINFO. (2018). Tomate. Disponible en: http://www.hortoinfo.es/index.php/6238-prod-hort-frut-mund-041017, consultado el 02 de mayo de 2018.; Hossain, M. G., M. A. Ali, R. A. Ripa, S. Ayrin, and S. Mahmood. (2019). Influence of Rootstocks on Yield and Quality of Summer Tomato cv. ‘BARI Tomato-4’. Earth Systems and Environment, 3, 289-300.; Huang, Y., Kong, Q. S., Chen, F., and Bie, Z. L. (2014). The history, current status and future prospects of vegetable grafting in China. Acta Horticulturae, 1086, 31-39. https://doi.org/10.17660/ActaHortic.2015.1086.2; Impulsemillas. (2019). Semillas de hortalizas y frutales; Colón F1.Portainjerto. disponible en: http://www.impulsemillas.com/categoria/productos/semillas-de-hortalizas/hortalizas-hibridas/tomate/otros/, consultado el 31 de julio de 2019; Instituto de Investigaciones Agropecuarias (INIA). (2017). Tomate al aire libre. Disponible en: http://www.inia.cl/wp-content/uploads/PautasdeChequeo/11.%20Pauta%20de%20chequeo%20Tomate%20Aire%20Libre.pdf, consultado el 10 de febrero de 2019.; Jaramillo-Noreña, J. E.; Sánchez-León, G.D.; Rodríguez, V.P., Aguilar-Aguilar, P.A., Gil-Vallejo; L.F., Hío, J.C., Pinzón-Perdomo, L.M., García-Muñoz, M.C., Quevedo-Garzón, D., Zapata-Cuartas, M.Á., Restrepo, J F., y Guzmán-Arroyave, M. (2012). Tecnología para el cultivo de tomate bajo condiciones protegidas. Primera Edición. CORPOICA, Bogotá, Colombia. 482 p.; Kaiser, E., Kromdijk, J., Harbinson, J., Heuvelink, E., y Marcelis, L. F. (2016). Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance. Annals of botany, 119(1): 191-205.; Khah, E. M., Kakava, E., Mavromatis, A., Chachalis, D., and Goulas, C. (2006). Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. Journal of Applied Horticulture, 8, 3-7. DOI:10.37855 / jah.2006.v08i01.01; Khan, T. A., Yusuf, M., Ahmad, A., Bashir, Z., Saeed, T., Fariduddin, Q., Hans, S.H., Mock, H.P., and Wu, T. (2019). Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chemistry, 289, 500-511. https://doi.org/10.1016/j.foodchem.2019.03.029; King, S. R., Davis, A. R., Zhang, X., y Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2): 106-111. DOI:https://doi.org/10.1016/j.scienta.2010.08.001; Kubota, C., McClure, M. A., Kokalis-Burelle, N., Bausher, M. G., and Rosskopf, E. N. (2008). Vegetable grafting: History, use, and current technology status in North America. HortScience, 43, 1664-1669. https://doi.org/10.21273/HORTSCI.43.6.1664; Kumar, B. A., and Sanket, K. (2017). Grafting of vegetable crops as a tool to improve yield and tolerance against diseases - A review. International Journal of Agriculture Sciences, 9, 4050-4056.; Kumar, P., Y. Rouphael, M. Cardarelli, and G. Colla. (2017). Vegetable grafting as a tool to improve drought resistance and water use efficiency. Frontiers in plant science, 8, 1130.; Kyriacou, M.C., Y. Rouphael, G. Colla, R. Zrenner, and D. Schwarz. (2017). Vegetable grafting: the implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Frontiers in Plant Science, 8(741).; Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., and Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127, 93-105. https://doi.org/10.1016/j.scienta.2010.08.003; Lee, J.M. y Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Hort. Rev. (Amer. Soc. Hort. Sci.) 28: 61-124; Lemoine, R., La Camera, S., Atanassova, R., Dedaldechamp, F., Allario, …, and Duran, M. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4, 272. https://doi.org/10.3389/fpls.2013.00272; Li, T., Heuvelink, E., Dueck, T. A., Janse, J., Gort, G., y Marcelis, L. F. M. (2014). Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors. Annals of botany, 114(1), 145-156.; Lucas, D.D.P., N. A. Streck, M. P. Bortoluzzi, R. Trentin, and I. C. Maldaner. (2012). Temperatura base para emissão de nós e plastocrono de plantas de melancia. Revista Ciência Agronômica, 43, 288-292. Doi:10.1590/ S1806-66902012000200011.; Marcelis, L. F. M., Broekhuijsen, A. G. M., Meinen, E., Nijs, E. M. F. M., y Raaphorst, M. G. M. (2006). Quantification of the growth response to light quantity of greenhouse grown crops. In V International Symposium on Artificial Lighting in Horticulture 711: 97-104.; Martínez-Andújar, C., J. M. Ruiz-Lozano, I. C. Dodd, A. Albacete, and F. Pérez-Alfocea. (2017). Hormonal and nutritional features in contrasting rootstock-mediated tomato growth under low-phosphorus nutrition. Frontiers in Plant Science, 8, 13. Doi:10.3389/fpls.2017.00533; Martínez-Ballesta, M. C., Alcaraz-López, C., Muries, B., Mota-Cadenas, C., y Carvajal, M. (2010). Physiological aspects of rootstock–scion interactions. Scientia Horticulturae, 127(2), 112-118. DOI: https://doi.org/10.1016/j.scienta.2010.08.002; Meena, O. P., and V. Bahadur. (2015). Breeding potential of indeterminate tomato (Solanum lycopersicum L.) accessions using D2 analysis. Journal of Breeding and Genetics, 47, 49-59.; Meier, U. (1997). Growth stages of mono and dicotyledoneous plants. Berlin: Blackwell Wissenschafts-Verlag Science. 622p.; Milenković, L., J. Mastilović, Ž. Kevrešan, A. Bajić, A. Gledić, L. Stanojević, D. Cvetković, L. J. Šunić, and Z. S. Ilić. (2020). Effect of shading and grafting on yield and quality of tomato. Journal of the Science of Food and Agriculture, 100, 623-633.; Miskovic, A., O. Ilic, J. Bacanovic, V. Vujasinovic, and B. Kukic. (2016). Effect of eggplant rootstock on yield and quality parameters of grafted tomato. Acta Sci. Polon. Hortic. Cul., 15, 149-159.; Moreno, M. M., A. Cirujeda, J. Aibar, and C. Moreno. (2016). Soil thermal and productive responses of biodegradable mulch materials in a processing tomato (Lycopersicon esculentum Mill.) crop. Soil Research, 54, 207–215. Doi:10.1071/SR15065; Mulderij R. (2018). Overview global tomato market-Freshplaza, disponile en: https://www.freshplaza.com/article/2187792/overview-global-tomato-market/, consultado el 2 de julio de 2019; Muneer, S., H. Ch. Ko, H. Wei1, Y. Chen, and B. R. Jeong. (2016). Physiological and proteomic investigations to study the response of tomato graft unions under temperature stress. PLoS ONE, 11, 23. Doi:10.1371/journal.pone.0157439; Mutke, S., J. Gordo, J. Climent, and L. Gil. (2003). Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. Annals of Forest Science, 6, 527-537.; Naika S., Jeude J.L., Goffau M., Hilmi M. y Dam B. (2005). Cultivation of tomato -production, processing and marketing. Fourth Edition. Agromisa Foundation and CTA, Wageningen, Netherlands.; Nicola, S., G. Tibaldi, and E. Fontana. (2009). Tomato production systems and their application to the tropics. Proc. IS on tomato in the tropics. Acta Horticulturae, 821, 27-33.; Nilsen, E. T., Freeman, J., Grene, R., and Tokuhisa, J. (2014). A rootstock provides water conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters. PLoS One, 9, e115380. https://doi.org/10.1371/journal.pone.0115380; Ntatsi, G., D. Savvas, H. P. Kläring, and D. Schwarz. (2014). Growth, yield, and metabolic responses of temperature-stressed tomato to grafting onto rootstocks differing in cold tolerance. Journal of the American Society for Horticultural Science, 139, 230-243.; Ogweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H., Yu, J. Q., and Nogues, S., 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27, 49-57. https://doi.org/10.1007/s00344-007-9030-7; Pina, A., Cookson, S. J., Calatayud, Á., Trinchera, A., y Errea, P. (2017). Physiological and molecular mechanisms underlying graft compatibility. Vegetable grafting: Principles and practices., 132-154.; Pogonyi, A., Z. Pék, L. Helyes, and A. Lugasi. (2005). Effect of grafting on the tomato's yield, quality and main fruit components in spring forcing. Acta Alimentaria, 34, 453-462.; Qaryouti, M. M., W. Qawasmi, H. Hamdan, and M. Edwan. (2007). Tomato fruit yield and quality as affected by grafting and growing system. Acta Horticulturae, 741, 199-206.; R Core Team. (2017). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at: . Accessed on: March 20, 2020.; Rahmatian, A., M. Delshad, and R. Salehi. (2014). Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically. Horticulture, Environment, and Biotechnology, 55, 115-119.; Reddy, P. P. (2016). Grafted Vegetables for Management of Soilborne Pathogens. In Sustainable Crop Protection under Protected Cultivation (pp. 83-97). Springer, Singapore. DOI:10.1007 / 978-981-287-952-3_7; Riaño, N. M., G. Tangarife, O. I. Osorio, J. F. Giraldo, C. M. Ospina, D. Obando, L. F. Gómez, and L. F. Jaramillo. (2005). Modelo de crecimiento y captura de carbono para especies forestales en el trópico. Manizales: Ministerio de Agricultura y Desarrollo Rural, Federación Nacional de Cafeteros, Cenicafé, CONIF. 51p. https://www.ricclisa.org/images/manualcreft.pdf; Riga, P. (2015). Effect of rootstock on growth, fruit production and quality of tomato plants grown under low temperature and light conditions. Horticulture, Environment, and Biotechnology, 56, 626-638.; Rivard, C.L. y Louws F.J. (2006) Grafting for disease resistance in heirloom tomatoes. North Carolina Coop Ext Serv Bul Ag-8 p.; Rosskopf, E.N., Pisani, C. y Di Gioia, F. (2017). Crop specific grafting methods, rootstocks and scheduling: Tomato, Disponible en: http://www.vegetablegrafting.org/resources/grafting-manual/, consultado el 28 de 08 de 2019.; Sakata, Y., Ohara, T., y Sugiyama, M. (2005). The history and present state of the grafting of cucurbitaceous vegetables in Japan. In III International Symposium on Cucurbits 731 (pp. 159-170).; Sakata. (2019). Woodstock, la mejor opción para protección de las raíces. Disponible en: https://www.sakata.com.br/es/hortalizas/solanaceas/tomate/porta-injerto/woodstock, consultado el 31 de julio de 2019; Savvas, D., G. B. Öztekin, M. Tepecik, A. M. Ropokis, Y. Tüzel, G. Ntatsi, and D. Schwarz. (2017). Impact of grafting and rootstock on nutrient-to-water uptake ratios during the first month after planting of hydroponically grown tomato. The Journal of Horticultural Science and Biotechnology, 92, 294-302. Doi:10.1080/14620316.2016.1265903; Sen, A., R. Chatterjee, P. Bhaisare, and S. Subba. (2018). Grafting as an alternate tool for biotic and abiotic tolerance with improved growth and production of solanaceous vegetables: Challenges and scopes in India. Int. J. Curr. Microbiol. App. Sci., 7, 121-135. Doi:10.20546/ijcmas.2018.701.014; Shivanna K.R., Tandon R. (2014) Reproductive Ecology of Flowering Plants: A Manual. Firth Editión. Springer, New Delhi. 169p.; Singh, H., Kumar, P., Chaudhari, S. and Edelstein, M. (2017). Tomato Grafting: A Global Perspective. HortScience, 52 (10), 1328-1336. DOI:10.21273/HORTSCI11996-17; Singh, H., P. Kumar, A. Kumar, M. C. Kyriacou, G. Colla, and Y. Rouphael. (2020). Grafting tomato as a tool to improve salt tolerance. Agronomy, 10, 21. Doi:10.3390/agronomy10020263; Soare, R., M. Dinu, and C. Babeanu. (2018). The effect of using grafted seedlings on the yield and quality of tomatoes grown in greenhouses. Hort. Science, 45, 76–82. Doi:10.17221/214/2016-HORTSCI; Soe, D. W., Z. Z, Win, A. A. THE, and K. T. MYINT. (2018). Effects of different rootstocks on plant growth, development and yield of grafted tomato (Lycopersicon esculentum Mill.). Journal of Agricultural Research, 5, 30-38.; Sora, D., D. Mădălina, E. M. Drăghici, and M. I. Bogoescu. (2019). Effect of grafting on tomato fruit quality. Not Bot Horti Agrobo, 47, 1246-1251. Doi:10.15835/nbha47411719; Sridhar, V., P. V. R. Reddy. (2013). Use of degree days and plant phenology: A reliable tool for predicting insect pest activity under climate change conditions. pp. 287-294. In: Singh, H.C.P., N.K.S. Rao, and K. S. Shivashankara. (Eds.). Climate-Resilient Horticulture: Adaptation and Mitigation Strategies. New Delhi, India: Springer. Doi:10.1007/978-81-322-0974-4; Thwea, A. A., P. Kasemsapb, G. Vercambrec, F. Gayd, J. Phattaralerphonge, and H. Gautierc. (2020). Impact of red and blue nets on physiological and morphological traits, fruit yield and quality of tomato (Solanum lycopersicum Mill.). Scientia Horticulturae, 264(109185). Doi:10.1016/j.scienta.2020.109185; TomatoNews, (2019). The global tomato processing industry. Dipsonible en: http://www.tomatonews.com/en/background_47.html, consultado el 9 de julio de 2019; Torres P. A. (2017). Tomate al aire libre. Santiago, Chile: Instituto de Investigaciones Agropecuarias. Boletín INIA / N° 376.; TRIDGE. (2021). Tomatoes, fresh or chilled. Disponible en: https://www.tridge.com/hs-codes/070200/country, consultado el consultado el 22 de Febrero de 2021.; Turhan, A., Ozmen, N., Serbeci, M. S., and Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science, 38, 142-149. DOI: https://doi.org/10.17221/51/2011-HORTSCI; Vélez-Ramírez, A. I., van Ieperen, W., Vreugdenhil, D., y Millenaar, F. F. (2015). Continuous-light tolerance in tomato is graft-transferable. Planta, 241(1), 285-290.; Vélez-Ramírez, A.I. (2014) Continuous light on tomato: from gene to yield. PhD thesis, Wageningen University, Wageningen, The Netherlands. Disponible en: http://edepot.wur.nl/312846; Xu, Q., Guo, S. R., Li, H., Du, N. S., Shu, S., y Sun, J. (2015). Physiological aspects of compatibility and incompatibility in grafted cucumber seedlings. Journal of the American Society for Horticultural Science,140(4), 299-307. DOI: https://doi.org/10.21273/JASHS.140.4.299; Zalom, F. G., L. T. Wilson. (1999). Predicting phenological events of California processing tomatoes. Acta Hot., 487, 41-47.; Zeist, A. R., J. T. V. D. Resende, M. V. Faria, A. Gabriel, I. F. L. D. Silva, and R. B. D. Lima Filho. (2018). Base temperature for node emission and plastochron determination in tomato species and their hybrids. Pesquisa Agropecuária Brasileira, 53, 307-315. Doi:10.1590/s0100-204x2018000300005; Zeist, A. R.; J. T. Resende, I. F. Silva, J. R. Oliveira, C. M. Faria, and C. L. Giacobbo. (2017). Agronomic characteristics of tomato plant cultivar Santa Cruz Kada grafted on species of the genus Solanum. Horticultura Brasileira, 35, 419-424. DOI:10.1590/s0102-053620170317.; Zhang, G., and Guo, H. (2019). Effects of tomato and potato heterografting on photosynthesis, quality and yield of grafted parents. Horticulture, Environment, and Biotechnology, 60, 9-18. https://doi.org/10.1007/s13580-018-0096-x; Zhou, G., Q. A. Wang. (2018). A new nonlinear method for calculating growing degree days. Scientific Reports, 8 (10149). Doi:10.1038/s41598-018-28392-z; Zhou, R., Wu, Z., Wang, X., Rosenqvist, E., Wang, Y., Zhao, T., and Ottosen, C. O. (2018). Evaluation of temperature stress tolerance in cultivated and wild tomatoes using photosynthesis and chlorophyll fluorescence. Horticulture, Environment, and Biotechnology, 59, 499-509. https://doi.org/10.1007/s13580-018-0050-y; Zhou, R., Yu, X., Kjær, K. H., Rosenqvist, E., Ottosen, C. O., y Wu, Z. (2015). Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environmental and Experimental Botany, 118, 1-11.; https://repositorio.unal.edu.co/handle/unal/80519; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
19
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: 54 Química y ciencias afines / Chemistry, puntos cuánticos, Excitón, quantum dots, 02 engineering and technology, General Chemistry, 010402 general chemistry, 021001 nanoscience & nanotechnology, 01 natural sciences, absorción, 0104 chemical sciences, rendimiento cuántico, absorção, fluorescencia, fluorescence, pontos quânticos, Exciton, 0210 nano-technology, quantum yield, absorption, rendimento quântico
وصف الملف: application/pdf
-
20
المصدر: Información tecnológica v.25 n.6 2014
SciELO Chile
CONICYT Chile
instacron:CONICYT
Información tecnológica, Volume: 25, Issue: 6, Pages: 67-76, Published: 2014مصطلحات موضوعية: reactor CPC solar, rendimiento cuántico, General Energy, Strategy and Management, CPC solar reactor, Langmuir-Hinshelwood, Geotechnical Engineering and Engineering Geology, quantum yield, photocatalysis, fotocatálisis solar, Industrial and Manufacturing Engineering, Computer Science Applications, Food Science
وصف الملف: text/html