-
1Academic Journal
المؤلفون: Emily E. MacDonald, Liam P. Pellerine, Katerina E. Miller, Ryan J. Frayne, Myles W. O’Brien
المصدر: Frontiers in Rehabilitation Sciences, Vol 5 (2024)
مصطلحات موضوعية: physical activity intensity, relative physical activity, 6-min walk test, quality of life, brain injured patients, Other systems of medicine, RZ201-999, Medical technology, R855-855.5
وصف الملف: electronic resource
-
2Academic Journal
المصدر: Sensors
مصطلحات موضوعية: Borg's RPE, classification, machine learning, motion sensors, neural networks, random forest, relative physical activity intensity, support vector machine
وصف الملف: application/pdf
Relation: https://eprints.qut.edu.au/197320/2/sensors_19_04509.pdf; Chowdhury, Alok, Tjondronegoro, Dian, Chandran, Vinod, Zhang, Jinglan, & Trost, Stewart (2019) Prediction of relative physical activity intensity using multimodal sensing of physiological data. Sensors, 19(20), Article number: 4509.; https://eprints.qut.edu.au/197320/; Faculty of Health; Institute of Health and Biomedical Innovation; Science & Engineering Faculty; School of Exercise & Nutrition Sciences
الاتاحة: https://eprints.qut.edu.au/197320/
-
3Academic Journal
المصدر: Sensors; Volume 19; Issue 20; Pages: 4509
مصطلحات موضوعية: motion sensors, machine learning, classification, random forest, support vector machine, neural networks, relative physical activity intensity, Borg’s RPE
وصف الملف: application/pdf
Relation: Intelligent Sensors; https://dx.doi.org/10.3390/s19204509
الاتاحة: https://doi.org/10.3390/s19204509
-
4Dissertation/ Thesis
المؤلفون: Chowdhury, Alok K.
مصطلحات موضوعية: Physical activity recognition, Machine learning, Wearable sensors, Relative physical activity intensity prediction, Energy expenditure prediction, Rate of perceived exertion, Deep learning, Ensemble learning, Decision fusion, Posterior-adapted class-based fusion
وصف الملف: application/pdf
Relation: https://eprints.qut.edu.au/118664/1/Alok_Chowdhury_Thesis.pdf; Chowdhury, Alok K. (2018) Sensor-based prediction of physical activity and its impacts using machine learning. PhD by Publication, Queensland University of Technology.; https://eprints.qut.edu.au/118664/; Faculty of Health; Science & Engineering Faculty; School of Electrical Engineering & Computer Science; School of Exercise & Nutrition Sciences
الاتاحة: https://eprints.qut.edu.au/118664/