يعرض 1 - 20 نتائج من 170 نتيجة بحث عن '"propiedades medicinales"', وقت الاستعلام: 0.71s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المساهمون: Universidad Nacioanal de Colombia, Grupo de Investigación de Ingenierías UCC-Neiva

    وصف الملف: pdf; application/pdf

    Relation: N/A; 1073; 1058; 52; Revista Colombiana de Ciencias Químico-Farmacéuticas; E.L. Menéndez, Orígenes y desarrollo de la medicina tradicional: una cuestión ideológica, Salud Colect., 18, e4225 (2022). 451-466 Doi: https://doi.org/10.18294/SC.2022.4225; Organización Mundial de la Salud, Estrategia de la OMS sobre medicina tradicional 2014-2023, Organización Mundial de la Salud, Hong Kong, 2023.; Organización Mundial de la Salud, Discurso de apertura del Dr. Tedros Adhanom Ghebreyesus, Director General de la OMS, en la 75a Asamblea Mundial de la Salud - 23 de mayo de 2023, 2023. URL: https://www.who.int/es/directorgeneral/speeches/detail/who-director-general-s-opening-address-at-the-75thworld- health-assembly---23-may-2022, consultado el 5 de marzo de 2023.; H. Li, J. Liu, X. Hu, S. Wei, W. Jun, Practices, knowledge, and attitudes of Chinese university students toward traditional Chinese herbal medicine for the control of COVID-19, Infect. Drug Resist., 15, 6962 (2022). Doi: https://doi. org/10.2147/IDR.S387292; G.B. León-Montoya, M. Acosta-Román, M.E. Saavedra-Chinchayán, S. Almonacid-Quispe, Medicina tradicional como tratamiento de la COVID-19 en estudiantes y familiares en una universidad de la sierra del Perú, Aten. Primaria, 55, 102526 (2023). Doi: https://doi.org/10.1016/J.APRIM.2022.102526; M. Aboufaras, K. Selmaoui, N. Ouzennou, Efficacies and side effects of medicinal plants used by patients with cancer in Morocco: A retrospective treatmentoutcome study, J. Ethnopharmacol., 301, 115-783 (2023). Doi: https://doi. org/10.1016/J.JEP.2022.115783; J.L. Peñarredonda, Cómo Colombia, el segundo país con mayor biodiversidad del mundo, quiere explorar su selva tras años de guerra, BBC, 2018. URL: https:// www.bbc.com/mundo/vert-fut-45322305, consultado el 13 de abril de 2023.; A.F. Angulo, R.A. Rosero, M.S. González-Insuasti, Estudio etnobotánico de las plantas medicinales utilizadas por los habitantes del corregimiento de Genoy, Municipio de Pasto, Colombia, Univ. Salud, 14(2), 168-185 (2012).; D.C. Valoyes-Milán, L. Palacios-Palacios, Patrones de uso de las plantas medicinales en el Chocó y Cauca (Colombia), Ciencia en Desarrollo, 11(2), 85-96 (2020). Doi: https://doi.org/10.19053/01217488.V11.N2.2020.10583; E.C. Núñez-Vásquez, N.J. Rodrigo-Gálvez, Automedicación farmacológica y tratamiento con plantas medicinales utilizado para COVID-19 en adultos que acuden a Boticas Diana - Chota 2021, Trabajo de grado, Universidad Roosevelt, Huancayo, Perú, 2021.; C. Khatib, A. Nattouf, M.I.H. Agha, Traditional medicines and their common uses in central region of Syria: Hama and Homs – an ethnomedicinal survey, Pharm. Biol., 59(1), 778-788 (2021). Doi: https://doi.org/10.1080/13880209 .2021.1936078; Y. Barajas-Ortíz, J.F. Ariza-Montoya, L.E. Pino-Arango, L.P. Reyes-Sarmiento, M.C. Julio-Giraldo, R.E. Nuñez-González, I.T. Caicedo-Revelo, J.H. CubidesZambrano, O.L. Corredor-Nossa, Y.I. Sandoval-Gil, S.C. Narvaez-De Mejia, J. Solano-Galvis, L.H. Tocaruncho-Ariza, O.R. Flórez-Granados, E.F. Prieto-Murillo, M.I. Schotborgh, Lineamientos técnicos para la articulación de las Medicinas y las Terapias Alternativas y Complementarias, en el marco del Sistema General de Seguridad Social en Salud, Ministerio de Salud y Protección Social, Bogotá D.C., 2018. URL: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/ RIDE/VS/TH/lineamientos-mtac-sgsss.pdf, consultado el 5 de marzo de 2023.; R. Pinzón, Vademécum Colombiano de plantas medicinales, Imprenta Nacional de Colombia, Bogotá D.C., 2008.; A.E. Al-Snafi, Medical importance of Anthemis nobilis (Chamaemelum nobile) -A review, Asian Journal of Pharmaceutical Science & Technology, 6(2), 89-95 (2016).; C. Diedrich, L.D. da Silva, R. Sari, G.C. de Cristo-Borges, H.S. Muniz, V.A. de Lima, T.L.C. Oldoni, S.T. Carpes, Bioactive compounds extraction of Croton lechleri barks from Amazon forest using chemometrics tools, J. King Saud Univ. - Sci., 33(4), 101-416 (2021). Doi: https://doi.org/10.1016/J. JKSUS.2021.101416 16. Z. Chen, R. Bertin, R. M; U. Pereira, C. Garcia-Le Gal, G. Le Gal, N. Boulais, N. Lebonvallet, G. Dorange, L. Lefeuvre, A. Gougerot, L. Misery, Effects of sangre de drago in an in vitro model of cutaneous neurogenic inflammation, Exp. Dermatol., 19, 796-799 (2013). Doi: https://doi.org/10.1111/J.1600-0625.2010.01090.X; V. Maida, R.B. Shi, F.G.T. Fazzari, L.M. Zomparelli, A new treatment paradigm for sickle cell disease leg ulcers: Topical cannabis-based medicines, Exp. Dermatol., 30, 291-293 (2021). Doi: https://doi.org/10.1111/EXD.14256; C. Altinkaynak, E. Haciosmanoglu, M. Ekremoglu, M. Hacioglu, N. Özdemir, Anti-microbial, anti-oxidant and wound healing capabilities of Aloe veraincorporated hybrid nanoflowers, J. Biosci. Bioeng., 135, 321-330 (2023). Doi: https://doi.org/10.1016/J.JBIOSC.2023.01.004; A. Kazlagić, A. Lagumdžija, B. Borovac, S. Hamidović, O.A. Abud, E. OmanovićMikličanin, Green synthesis and characterization of silver nanoparticles using fresh leaf extract of Aloe vera barbadensis Miller, Aloe vera and Sempervivum tectorum and its antimicrobial activity studies, en: M. Brka, E. Omanović-Mikličanin, L. Karić, V. Falan, A. Toroman (editores), 30th Scientific-Experts Conference of Agriculture and Food Industry, AgriConf 2019, IFMBE Proceedings, vol 78, Springer, Cham. Doi: https://doi.org/10.1007/978-3-030-40049-1_42; A.D. Klein, N.S. Penneys, Aloe vera, J. Am. Acad. Dermatol., 18, 714-720 (1988). Doi: https://doi.org/10.1016/S0190-9622(88)70095-X; S.E. Giraldo-Quintero, M.C. Bernal-Lizarazú, A. Morales-Robayo, A.Z. Pardo- -Lobo, L. Gamba-Molano, Uso tradicional de plantas medicinales en mercados de Bogotá, D.C., Nova, 13(23), 73-80 (2015).; M.T. López-Luengo, Formas de administración más habituales de plantas medicinales, Offarm, 21(2), 122-125 (2002).; L.K. Blevins, A.P. Bach, R.B. Crawford, J. Zhou, J.E. Henriquez, M.D. Rizzo, S. Sermet, D.M.I.O. Khan, H. Turner, A.L. Small-Howard, N.E. Kaminski, Evaluation of the anti-inflammatory effects of selected cannabinoids and terpenes from Cannabis Sativa employing human primary leukocytes, Food Chem. Toxicol., 170, 113458 (2022). Doi: https://doi.org/10.1016/J.FCT.2022.113458; M.A. Weigelt, R. Sivamani, H. Lev-Tov, The therapeutic potential of cannabinoids for integumentary wound management, Exp Dermatol., 30, 201-211 (2021). Doi: https://doi.org/10.1111/EXD.14241; L.M. Clemen-Pascual, R.A.S. Macahig, N.R.L. Rojas, Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants, Toxicol. Rep., 9, 22-35 (2022). Doi: https://doi.org/10.1016/J.TOXREP.2021.12.002; H. Saleem, U. Khurshid, M.I. Tousif, S. Anwar, N.A. Awadh Ali, M.F. Mahomoodally, N. Ahemad, A comprehensive review on the botany, traditional uses, phytochemistry, pharmacology and toxicity of Anagallis arvensis (L): A wild edible medicinal food plant, Food Biosci., 52, 102328 (2023). Doi: https://doi. org/10.1016/J.FBIO.2022.102328; J.J. Ortega-Cerda, D. Sánchez-Herrera, Ó.A. Rodríguez-Miranda, J.M. OrtegaLegaspi, Adherencia terapéutica: un problema de atención médica, Acta Médica Grupo Ángeles, 16(3), 226-232 (2018).; B.R. Durán-Varela, B. Rivera-Chavira, E. Franco-Gallegos, Apego al tratamiento farmacológico en pacientes con diagnóstico de diabetes mellitus tipo 2, Salud Pública Méx., 43(3), 233-236 (2001).; Ortiz, C. P., Trujillo Monje, M., Rebolledo-Cortes, H. S., Rubiano Daza, H., Cárdenas-Torres, R. E. y Ricardo Delgado, D. (2024). Análisis de la percepción de la población colombiana sobre uso de plantas medicinales mediante procesamiento de lenguaje natural (PLN). Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(2). https://doi.org/10.15446/rcciquifa.v52n2.110755; https://hdl.handle.net/20.500.12494/54366

  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المصدر: Instituto de Investigaciones de la Amazonía Peruana ; Repositorio Institutcional - IIAP

    وصف الملف: application/pdf

    Relation: info:eu-repo/semantics/article; https://www.sciencedirect.com/science/article/abs/pii/S0968089623002146; Crossay, E., Jullian, V., Trinel, M., Sagnat, D., Hamel, D., Groppi, E., Rolland, C., Stigliani, J.-L., Mejia, K., Cabanillas, B. J., Alric, L., Buscail, E., El Kalamouni, C., Mavingui, P., Deraison, C., Racaud-Sultan, C., & Fabre, N. (2023). Daphnanes diterpenes from the latex of Hura crepitans L. and their PKCζ-dependent anti-proliferative activity on colorectal cancer cells. Bioorganic & Medicinal Chemistry, 90, N.PAG. https://doi.org/10.1016/j.bmc.2023.117366; https://hdl.handle.net/20.500.12921/722; Bioorganic & Medicinal Chemistry; https://doi.org/10.1016/j.bmc.2023.117366

  9. 9
    Academic Journal

    المصدر: Carpeta técnica. Agricultura / EEA Esquel, no. 30 : 123-130 (Noviembre 2023)

    وصف الملف: application/pdf

    Relation: Carpeta técnica. Agricultura / EEA Esquel; http://hdl.handle.net/20.500.12123/16094

  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
  13. 13
    Academic Journal

    المصدر: Instituto de Investigaciones de la Amazonía Peruana ; Repositorio Institucional - IIAP

    وصف الملف: application/pdf

    Relation: info:eu-repo/semantics/article; https://www.mdpi.com/2624-8549/4/4/81; de Lima Barros A, de Lima EJSP, Faria JV, Acho LRD, Lima ES, Bezerra DP, Soares ER, de Lima BR, Costa EV, Pinheiro MLB, Bataglion GA, da Silva FMA, Cardozo NMD, Gonçalves JFC, Koolen HHF. 2022. Cytotoxicity and lipase inhibition of essential oils from amazon annonaceae species. Chemistry 4(4):1208-1225. https://doi.org/10.3390/chemistry4040081; https://hdl.handle.net/20.500.12921/683; https://doi.org/10.3390/chemistry4040081

  14. 14
    Academic Journal

    المؤلفون: Paunero, Ignacio Eugenio

    المصدر: Revista del Foro de la Alimentación, la Nutrición y la Salud 4 (1-2) : 21-28 (2022)

    وصف الملف: application/pdf

    Relation: info:eu-repograntAgreement/INTA/2019-PE-E6-I140-001/2019-PE-E6-I140-001/AR./Mejoramiento genético de plantas ornamentales, aromáticas y medicinales, nativas y exóticas; http://hdl.handle.net/20.500.12123/13219; http://fanus.com.ar/rfanus/2022-Vol4Num1-2.pdf

  15. 15
    Conference

    المؤلفون: Paunero, Ignacio Eugenio

    المصدر: 41° Congreso Argentino de Horticultura. V Simposio de Aromáticas, Medicinales y Condimenticias. La Plata - Virtual. 5 al 8 de octubre de 2021

    وصف الملف: application/pdf

    Relation: info:eu-repograntAgreement/INTA/2019-PE-E6-I140-001/2019-PE-E6-I140-001/AR./Mejoramiento genético de plantas ornamentales, aromáticas y medicinales, nativas y exóticas; http://hdl.handle.net/20.500.12123/10534

  16. 16
    Book

    المساهمون: Universidad de La Guajira

    وصف الملف: 335 páginas; application/pdf

    Relation: Abreu, O. 2005. Potencial medicinal del género Sapindus L. (Sapindaceae) y de la especie Sapindus saponaria L. Revista Cubana de Plantas Medicinales [online], 10 (3-4).; Aeri, V. 2007. Pharmacognosy. Principles of classification of plants. Department of Pharmacognosy and Phytochemistry. New Delhi. 21 p.; Albarracín, D., E. Costa, M. Quiroga & J. Idiart. 2008. Mortandad de bovinos asociada a la ingestión de Cassia occidentalis (Senna occidentalis). Descripción de un caso. 6ª Reunión Argentina de Patología Veterinaria. Corrientes, Argentina. 131 p.; Albuquerque, T., N. Alencar, J. Figueiredo, I. Figueiredo, C. Teixeira, F. Bitencourt, D. Secco, E.; Araújo, C. Leão & M. Ramos. 2009. Vascular permeability, neutrophil migration and edematogenic effects induced by the latex of Cryptostegia grandiflora. Toxicon, 53 (1): 15-23.; Alonso, J. 1998. Tratado de fitomedicina. Bases clínicas y farmacológicas. Buenos Aires, Argentina. p. 183-186.; Alves, R., T. Cabral, I. Cabral, L. Antunes, C. Pontes, P. Cerqueira, M. de Oliveira, C. Pessoa, J. Martins, R. Rodríguez & C. Takahashi. 2008. Genotoxic effect of Physalis angulata L. (Solanaceae) extract on human lymphocytes treated in vitro. Biocell [on line], 32 (2): 195-200.; Arditti, J. & E. Rodríguez. 1982. Dieffenbachia: uses, abuses and toxic constituents: a review. Journal of Ethnopharmacology, 5 (3): 293-302.; Arena, J. 1982. Plantas venenosas. Tribuna Médica, 1: 11-24.; Armién, A., C. Tokarnia, P. Vargas & K. Frese. 2007. Spontaneous and experimental glycoprotein storage disease of goats induced by Ipomoea carnea subsp. fistulosa (Convolvulaceae). Veterinary Phatology, 44 (2):170-184.; Avendaño, S. & J. Flores. 1999. Registro de plantas tóxicas para ganado en el estado de Veracruz, México. Veterinaria de México, 30 (1): 79-94.; Bafna, A. & S. Mishra. 2004. Efecto del extracto de Achyranthes aspera Linn. sobre la hepatotoxicidad inducida por rifampicina en ratas. Ars Pharmaceutica, 45 (4): 343-351.; Barbosa-Ferreira, M. 2008. Proposta de modelo para o estudo de toxicologia perinatal em ruminantes: avaliação dos efeitos tóxicos da Senna occidentalis em caprinos. Tese de Doutorado Patologia Experimental e Comparada, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo. Brasil; Baresse, Y., M. Hernández & O. García. 2005. Caracterización y estudio fitoquímico de Cassia alata L. Revista Cubana de Plantas Medicinales [online], 10 (2).; Barros, C., C. Pilati, M. Andujar, D. Graça, L. Irigoyen, S. López & C. Santos. 1990. Cassia occidentalis (Leg. Caes.) poisoning in cattle. Pesquisa Veterinária Brasileira, 10 (3-4): 47-58.; Barry, T. & W. McNabb. 1999. The implications of condensed tannins on the nutritive value of températe forages fed to ruminants. British Journal of Nutrition, 81: 263-272.; Bash, E., S. Gabardi & C. Ulbricht. 2003. Bitter melon (Momordica charantia): A review of efficacy and safety. American Journal of Health-system Pharmacy, 60 (4): 356-359.; Baskin, S., A. Horowitz & E. Neally. 1992. The antidotal action of sodium nitrite and sodium thiosulfate against cyanide poisoning. Journal of Clinical Pharmacology, 32 (4): 368-375.; Tropical. Revista Colombiana de Ciencias Pecuarias, 17 (2): 182-192.; Benavides, E. 2004. Causas de muerte súbita en bovinos en pastoreo en las sabanas de América; Blair, S. & B. Madrigal. 2005. Plantas antimaláricas de Tumaco: Costa Pacífica colombiana. Editorial Universidad de Antioquia. Medellín, Colombia. 347 p.; Blood, D., J. Henderson & O. Radostis. 1986. Medicina Veterinaria. 6ta ed. Editorial Interamericana. México. p. 444-449.; Bramley, A. & R. Goulding. 1981. Laburnum poisoning. British Medical Journal, 283 (6301): 1220- 1221.; Brito, M. & C. Tokarnia. 1997. Intoxicaçao experimental pelas sementes trituradas de Ricinus communis (Euphorbiaceae) em coelhos. Pesquisa Veterinária Brasileira., 17 (1): 1-7.; Bruneton, J. 1999. Pharmacognosy: Phytochemistry, medicinal plants. 2nd ed. Intercept Ltd. England. 1119 p.; Bruning, W. 1974. Intoxicaciones vegetales en la infancia. Revista Chilena de pediatría, 45 (1): 92- 99.; Burger, W., T. Naudè, I. Van Rensburg, C. Botha & A. Pienaar. 1994. Cardiomyopathy in ostriches (Struthio camelus) due to avocado (Persea americana var. gautemalensis) intoxication. Journal of the South African Veterinary Association, 65: 113-118.; Caballero, A. 2008. Temas de higiene de los alimentos. Editorial Ciencias Médicas. La Habana, Cuba. 379 p.; Cabrera, I. 2005. Las plantas y sus usos en las islas de Providencia y Santa Catalina. Universidad del Valle. 1ra ed. Cali, Colombia. 332 p.; Carbonó, E. Catálogo ilustrado de flora del Distrito de Santa Marta, Colombia. Universidad del Magdalena-Herbario UTMC. Santa Marta, Colombia. 197 p.; Carrillo, T. & A. Díaz. 2006. Actividad antimalárica de extractos acuosos de Lantana camara L., Verbena littoralis L. y Heliotropium indicum L. en ratones infectados con Plasmodium bergheei. Revista de la Facultad de Farmacia, 48 (1): 14-20.; Carvajal, P. 2006. Plantas que curan plantas que matan. 2da ed. Editorial Pax. México. 254 p. Chacón, H. & A. La Cruz. 2007. Flora y fauna de La Guajira venezolana. Distrito Páez. Maracaibo, Venezuela. 102 p.; Champy, P., A. Melot, V. Guérineau, C. Gleye, D. Fall, G. Höglinger, M. Ruberg, A. Lannuzel, O. Laprévote, A. Laurens & R. Hocquemiller. 2005. Quantification of acetogenins in Annona muricata linked to atypical parkinsonism in guadeloupe. Movement Disorders, 20 (12): 1629-1633.; Cheeke, P. 1995. Endogenous toxins and mycotoxins in forage grasses and their effects on livestock. Journal of Animal Science, 73 (3): 909-918. Clipsham, R. 1999. Avocado Toxicity. BirdTalk, 17: 60-61. Colombia.; Contraloría General de La República. 1997. El estado de los recursos naturales y del ambiente: informe 1997. Colombia. 286 p.; Córdoba, A., B. Soto, C. Polo, G. Isaza & J. Gallego. 2003. Plantas tóxicas caseras en la ciudad de Manizales. Biosalud, 2: 15-29.; Craigmill, A., A. Seawright, T. Mattila & A. Frostaj. 1989. Pathological changes in the mammary gland and biochemical changes in milk of the goat following oral dosing with leaf of avocado (Persea americana). Australian veterinary Journal, 66 (7): 206-211.; Crespo, J. 2005. Intoxicación por plantas en vacuno de Lidia. Memorias VII Symposium del Toro de Lidia. Zafra.; Deshmukh, S. & M. Borle. 1975. Studies on the insecticidal properties of indigenous plant products. Indian Journal Ent., 37 (1): 11-18.; Deshpande, S. & M. Cheryan. 1984. Effects of phytic acid, divalent cations, and their interaction on α-amilase activity. Journal of Food Science, 49: 516-519.; Díaz, G. 2010. Plantas tóxicas de importancia en salud y producción animal en Colombia. 1ra ed. Editorial Universidad Nacional de Colombia. Facultad de Medicina Veterinaria y de Zootecnia. Bogotá. 244 p.; Duke, J. & K. Wain. 1981. Medicinal plants of the world: Computer index with more than 85,000 entries. 3 vols. Longman group UK Limited.; 1992. Handbook of biologically active phytochemicals and their activities. CRS. Press, Inc. Boca Raton, Florida. 208 p.; Duncan, A., P. Frutos & S. Young. 2000. The effect of rumen adaptation to oxalic acid on selection of oxalic-acid-rich plants by goats. British Journal of Nutrition, 83 (1): 59-65.; Dwivedi, S., D. Raghvendra & M. Kushagra. 2008. Achyranthes aspera Linn. (Chirchira): a magic herb in folk medicine. Ethnobotanical Leaflets, 12: 670-676.; Ehrlich, P. & P. Raven. 1964. Butterflies and plants: a study of coevolution. Evolution, 18 (4): 586- 608.; El Sayed, N., E. Abdelbari, O. Mahmoud & S. Adam. 1983. The toxicity of Cassia senna to Nubian goats. Veterinary Quarterly, 5 (2): 80-85.; Ellemehoun, M. & D. Barceloux. 1988. Medical toxicology: diagnosis and treatment of human poisoning. Editorial Elsevier. New York. 1512 p.; Enneking, D. 1995. The toxicity of Vicia species and their utilisation as grain legumes. Centre for Legumes in Mediterranean Agriculture (CLIMA) Occasional Publication N° 6. University of Western Australia, Nedlands. 122 p.; L. Giles, M. Tates & R. Davies. 1993. L-Canavanine: a natural feed intake inhibitor for pigs (isolation, identification and significance). Journal of the Science of Food and Agriculture, 61 (3): 315-325.; Escobar, M., M. Höllerhage, M. Muriel, P. Champy, A. Bach, C. Depienne, G. Respondek, E. Yamada, A. Lannuzel, T. Yagi, E. Hirsch, W. Oertel, R. Jacob, P. Michel, M. Ruberg & G. Höglinger. 2007. Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons. Journal Neuroscience, 27 (29): 7827-7837.; Falade, O., A. Dare, M. Bello, B. Osuntogun & S. Adewusi. 2004. Varietal changes in proximate composition and the effect of processing on the ascorbic acid content of some Nigerian vegetables. Journal of Food Technology, 2 (2): 103-108.; Fernández, A., V. Júarez & L. Cortés. 2008. Uso de las especies del género Asclepias L. (Apocynaceae, Asclepiadoideae), información del Herbario Nacional de México, MEXU. Polibotánica, 25: 155-171.; Flores, J., G. Canto-Avilés & A. Flores-Serrano. 2001. Plantas de la flora yucatanense que provocan alguna toxicidad en el humano. Revista Biomédica, 12 (2): 86-96.; Flory, W., C. Spainhour, B. Colvin & C. Herbert. 1992. The toxicologic investigation of a feed grain contaminated with seeds of the plant species Cassia. Journal of Veterinay Diagnostic Investigation, 4 (1): 65-69.; Fonnegra, R. & S. Jiménez. 2007. Plantas medicinales aprobadas en Colombia. 2da ed. Universidad de Antioquia. Colombia. 368 p.; Ganiyu, O. 2005. Nutritional and safety evaluation of some tropical green leafy vegetables. Journal of Food Technology, 3 (3): 389-392.; Garay, J. Vegetales tóxicos. Primera cátedra de toxicología. Facultad de Medicina. UBA. Argentina. 17 p.; García, C., N. Kim, N. Bich, J. Tillan, J. Romero, O. López & V. Moreno. 2009. Metabolitos secundarios en los extractos secos de Passiflora incarnata L., Matricaria recutita L. y Morinda citrifolia L. Revista Cubana de Plantas Medicinales [online], 14 (2).; García, H. 1992a. Flora Medicinal de Colombia, Botánica Médica Tomo I. Bogotá, Colombia. 559 p.; 1992b. Flora Medicinal de Colombia, Botánica Médica Tomo II. Bogotá, Colombia. 537 p.; García, M., T. Coto, S. González & L. Pazos. 2002. Toxicidad subcrónica del extracto acuoso de las hojas y los brotes florales de Stachytarpheta jamaicensis (L.) Vahl. (Verbenaceae). Revista Cubana de Plantas Medicinales [online], 7 (2).; Gastón, S. & D. Bendersky. 2008. Plantas tóxicas de la Provincia de Corrientes. Estación Experimental Agropecuaria Mercedes, Corrientes. Proyecto Ganadero de Corrientes. Serie Técnica Nº 43. Argentina. 32 p.; Germosén-Robineau, L. 1995. Hacia una Farmacopea Caribeña. Seminarios TRAMIL 6 y 7. BasseTerre, Guadalupe, Noviembre 1992; San Andrés Isala, Colombia. Febrero 1995. Editorial TRAMIL 7. Santo Domingo, República Dominicana. p. 472-476.; Gómez, B. 1970. Mascagnia concinna, Morton, planta tóxica al ganado vacuno. Programa Universidad Nacional de Colombia – Instituto Colombiano Agropecuario (ICA). Bogotá, Colombia. 46 p.; Gómez, R. 1998. La toxicidad de las plantas ornamentales. CENDEGARD. Barcelona. España. 184 p.; Gómez, A. & H. Rivera. 1995. Descripción de arvenses en plantaciones de café. 2da ed. Federación Nacional de Cafeteros de Colombia, Gerencia técnica. Centro Nacional de Investigaciones de Café Pedro Uribe Mejía – Cenicafé. Chinchiná, Colombia. 481 p.; González, F., J. Díaz & P. Lowy. 1995. Flora ilustrada de San Andrés y Providencia con énfasis en las plantas útiles. Convenio SENA – Instituto de Ciencias Naturales, Universidad Nacional de Colombia. 280 p.; Gorriti, A., R. Zárate & B. Jurado. 1998. Bioensayos en especies de Bodens con actividad terapéutica. Ciencia e Investigación, 1 (2): 107-112.; Government of India. The ayurvedic pharmacopoeia of India. Part I, Vol. II. 1st ed. Ministry of health and family welfare. Department of ayurveda, yoga & naturopathy, Unani, siddha and homoeopathy, New Delhi. 280 p.; Gracia, C., M. Beltrán & E. Martínez. 2004. Estudio fitotoxicológico preliminar de diez especies vegetales utilizadas en medicina tradicional. Universidad Nacional de Colombia. Revista Colombiana de Ciencias Químico Farmacéuticas, 33 (2): 114-121.; Grant, R., P. Basson, H. Booker, J. Hohfherr & M. Anthonissen. 1991. Cardiomyopathy caused by avocado (Persea americana Mill.) leaves. Journal of the South African Veterinary Association, 61 (1): 21-22.; Graydon, R., H. Hamid, P. Zahar & C. Gardiner. 1991. Photosensitisation and crystal-associated cholangiohepatopathy in sheep grazing Brachiaria decumbens. Australian Veterinary Journal, 68 (7): 234-236.; Griffiths, G., M. Leek & D. Gee. 1987. The toxic plant protein ricin and abrin induce apoptotic changes in mammalian lymphoid tissues and intestine. The Journal of Pathology, 151 (3): 221-229.; Gupta, M., U. Mazumder, R. Sambathkumar, T. Sivakumar & P. Gomathi. 2004. Antioxidant and protective effects of Ervatamia coronaria Stapf, leaves against carbon tetrachloride induced liver injury. European Bulletin of Drug Research, 12 (1): 13:22.; Guzmán, V., G. Morales & R. Ochoa. 1978. Intoxicación en bovinos por nitratos acumulados en pasto elefante (Pennisetum purpureum) Revista del Instituto Colombiano Agropecuario (ICA), 13 (1): 113-118.; Hammond, A. 1995. Leucaena toxicosis and its control in rumiants. Journal of Animal Science, 73 (5): 1487-1492.; Haraguchi, M., S. Gorniak, K. Ikeda, Y. Minami, A. Kato, A. Watson, R. Nash, R. Molyneux & N. Asano. 2003. Alkaloidal components in the poisonous plants, Ipomoea carnea (Convolvulacea). Journal of Agricultural Food Chemistry, 51 (17): 4995-5000.; Hare, W., H. Schutzman & B. Lee. 1997. Chinaberry poisoning in two dogs. Journal of American Veterinary Medical Association, 210: 1638-1640.; Hasan, A., M. Farman & I. Ahmed. 1994. Flavonoid glycosides from Indigofera hebepetala. Phytochemistry, 35 (1): 275-276.; Haschek, W., V. Beasly, W. Buck & J. Finnell. 1989. Cottonseed meal (gossypol) toxicosis in a swine herd. Journal of American Veterinary Medical Association, 195 (5): 613-615.; Henriques, A., A. Melo, P. Moreno, L. Ene, J. Henriques & E. Schapoval. 1996. Ervatamia coronaria: chemical constituents and some pharmacological activities. Journal of Ethnopharmacology, 50 (1): 19-25.; Hernández, A. & R. Bernal. 2000. Lista de especies de Passifloraceae de Colombia. Biota Colombiana, 1 (3): 320-335.; Hernández, W. & A. Canchila. 2001. Intoxicación en cabras por consumo de Crotalaria pallida en Santander. Universidad de la Paz. Barrancabermeja, Colombia. Revista Colombiana de Ciencias Pecuarias [online], 14 (suplemento): 67.; Hostetler, M. & S. Schneider. 2004. Poisonous plants. En: Tintinalli, J., G. Kelen, J. Stapczynski, O.; Ma & D. Cline. 2004. Emergency medicine: a comprehensive study guide. 6th ed. Editorial McGraw-Hill. New York. chap. 205.; House, P., S. Lagos-Witte, L. Ochoa, C. Torres, T. Mejía & M. Rivas. 1995. Plantas medicinales comunes en Honduras. UNAH, CIMN-H, CID/CHR, GTZ. Tegucigalpa, Honduras. 555 p.; Hulin, A., M. Wavelet & J. Desbordes. 1988. Intoxication with Momordica charantia (sorossi). A report of two cases. Sem Hop, 64: 2847-2848.; Ikuma, M., M. Passoni, F. Biso, M. Longo, C. Cardoso, L. dos Santos & E. Varanda. 2006. Investigation of genotoxic and antigenotoxic activities of Melampodium divaricatum in Salmonella typhimurium. Toxicology in vitro, 20 (3): 361-366.; Instituto Geográfico Agustín Codazzi (IGAC). 1978. Estudio general de suelos alta y media Guajira. Vol. XIV, N° 1. Bogotá. 577 p.; Instituto Nacional de Biodiversidad (INBio). Especies de Costa Rica. Disponible en: www.inbio.ac.cr Jones, R. & C. Ford. 1972. The soluble oxalate content of some tropical pasture grasses grown in south-east Queensland. Tropical Grasslands, 6 (3): 201-204.; Jones, T. 1988. Nitrate/nitrite poisoning in cattle. Practice, 10: 199-203.; Kamel, M., M. Assaf, Y. Abe, K. Ohtani, R. Kasai & K. Yamasaki. 2001. Cardiac glycosides from Cryptostegia grandiflora. Phytochemistry, 58: 537-542.; Kuballa, B., A. Lugnier & R. Anton. 1981. Study of Dieffenbachia induced edema in mouse and rat hindpaw: respective role of oxalate needles and trypsin-like protease. Toxicology and Applied Pharmacology, 58 (3): 444-451.; Kumar, A., S. Lingadurai, A. Jain & N. Barman. 2010. Erythrina variegata Linn: a review on morphology, phytochemistry, and pharmacological aspects. Pharmacognosy reviews, 4 (8): 147-152.; Kumar, H., A. Bose, A. Raut, S. Sahu & M. Raju. 2010. Evaluation of anthelmintic activity of Pistia stratiotes Linn. Journal of Basic and Clinical Pharmacy, 1 (2): 103-105.; Langford, S. & P. Boor. 1996. Oleander toxicity: an examination of human and animal toxic responses. Toxicology, 109 (1): 1-13.; Lannuzel, A., P. Michel, G. Höglinger, P. Champy, A. Jousset, F. Medja, A. Lombès, F. Darios, C. Gleye, A. Laurens, R. Hocquemiller, E. Hirsch & M. Ruberg. 2003. The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience, 121 (2): 287-296.; Liener, I. 1969. Toxic constituents of plant foodstuffs. Academic Press, New York. Citado por: Valle, P. & B. Lucas. 2000. Toxicología de alimentos. Instituto Nacional de Salud Publica, Centro Nacional de Salud Ambiental. México. 261 p.; López-Luengo, T. 2006. Plantas medicinales con actividad hipoglucemiante. Características, administración y efectos adversos. OFFARM, 25 (5): 82-86.; Loretti, A., M. da Silva & R. Ribeiro. 2003. Accidental fatal poisoning of a dog by Dieffenbachia picta (dumb cane). Veterinary and human toxicology, 45 (5): 233-239.; Luciani, C. 2003. Plantas tóxicas. INTA. E.E.A Colonia Benítez, Chaco, Argentina. Disponible en: www.inta.gov.ar/benitez/info/documentos/san/art/sanid1.htm; Mannetje, L. & S. Kersten. 1992. Cenchrus ciliaris L. record from Proseabase. En: Mannetje, L. & R. Jones (ed.). PROSEA (Plant Resources of South-East Asia) N° 4: Forages. Wageningen, The Netherlands. p. 77-79.; Marcano, E. 1978. Plantas venenosas en la República Dominicana. Ciencia, 5 (2): 57-66.; 1991. Las plantas venenosas en la Medicina Popular. Boletín de la Sociedad Dominicana de Orquideología, 4 (4): 37-47.; Marín, R. 2010. Miopatía tóxica en bovinos asociada al consumo de Cassia occidentalis en el norte de Salta. Veterinaria Argentina [online], 27 (267).; R. Erquiaga, C. Sernia, E. Morrell, S. Scicchitano & E. Odriozola. 2005. Intoxicación natural y experimental de bovinos por consumo de Lantana camara. Veterinaria Argentina [online], 22 (215): 332-343.; Martín, B., M. Terry, C. Bridges & E. Bailey. 1981. Toxicity of Cassia occidentalis in the horse. Veterinary and human toxicology, 23 (6): 416-417.; Martínez, M. 1984. Medicinal plants used in a Totonac community of the Sierra Norte de Puebla: Tuzamapan de Galeana, Puebla, México. Journal of Ethnopharmacology, 11 (2): 203-221.; Martínez, N. 2003a. Las plantas medicinales: no son tan inofensivas como parecen. Primera parte. Boletín de Nutrición Infantil CANIA 4(8). Venezuela. Disponible en. www.slan.org.ve/publicaciones/completas/plantas_medicinales_1.asp.; 2003b. Las plantas medicinales: no son tan inofensivas como parecen. Segunda parte. Boletín de Nutrición Infantil CANIA 4(8). Venezuela. Disponible en. www.slan.org.ve/publicaciones/completas/plantas_medicinales_2.asp.; Mckenzie, R. & O. Brown. 1991. Avocado (Persea americana) poisoning of horses. Australian Veterinary Journal, 68: 77-78.; McSweeny, C., M. Allison & R. Mackie. 1993. Amino acid utilization by the ruminal bacterium Synergistes sonesii strain 78-1. Archives of Microbiology, 159 (2): 131-135.; Megha, J., N. Ganesh & V. Sharma. 2010. In vitro evaluation of free radical scavenging activity of Pistia stratiotes. International Journal of ChemTech Research, 2 (1): 180-184.; Mejía, B. 1985. Intoxicación de ganado bovino con nitratos y nitritos en la sabana de Bogotá: evolución del problema. Revista del Instituto Colombiano Agropecuario (ICA), 19 (4): 13-15.; Mesquita, S., M. Martínez, P. Romoff, O. Fávero, S. Lieber & J. Lago. 2008. Constituintes químicos das folhas de Murraya paniculata (Rutaceae). Revista Brasileira de Farmacognosia, 18 (4): 563-568.; Miles, C., A. Wilkins, S. Munday, P. Holland, B. Smith, M. Lancaster & P. Emblimg. 1992. Identification of the calcium salt of epismilagenin β-D-glucuronide in the bile crystals of sheep affected by Panicum dichotomiflorum and Panicum schinzii toxicosis. Journal of agricultural and food chemistry, 40 (9): 1606-1609.; Ministerio de Agricultura y Desarrollo rural, Federación Colombiana de Ganaderos (FEDEGAN), Corporación Colombiana de Investigación Agropecuaria (CORPOICA) & Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria (CIPAV). 2009. Alternativas para enfrentar una sequía prolongada en la ganadería Colombiana. 3ra ed. Bogotá, Colombia. 35 p.; Moreno, A., J. Robles & F. Bello. 2008. Actividad in vitro de la mezcla de alcaloides de Ervatamia coronaria (Jacq.) Stapf. Apocynaceae sobre amastigotes de Leishmania braziliensis. Revista Brasileira de Farmacognosia, 18 (3): 350-355.; Moreno, O., H. Villafañe, H. García, R. Álvarez, N. Peña & H. Pabón. 1980. Manual de plantas tóxicas para la ganadería del Magdalena Medio. Boletín Técnico N° 69. Instituto Colombiano Agropecuario (ICA) – Universidad Industrial de Santander (UIS). Bogotá, Colombia. 63 p.; Morón, F., M. Amador, Z. Morejón, M. Martínez, M. López & V. Fuentes. 2006. Validación preclínica de extractos fluidos de Croton argenteus L. Revista Cubana de Plantas Medicinales [online], 11 (2).; Morton, J. 1981. Atlas of medicinal plants of Middle America: Bahamas to Yucatan. Springfield, Illinois. 1420 p.; Mukherjee, P., R. Gunasekhran, T. Subburaju, S. Dhanbal, B. Duraiswamy, P. Vijayan & B. Suresh. 1999. Studies on the antibacterial potential of Cryptostegia grandiflora R.Br. (Asclepiadaceae) extract. Phytotherapy Research, 13 (1): 70-72.; Muñoz, A. & F. Ramos. 2007. Componentes fenólicos de la dieta y sus propiedades biomedicinales. Revista Horizonte Médico, 7 (1): 23-31.; Muñoz, O., M. Montes & T. Wilkomirsky. 2004. Plantas medicinales de uso en Chile: química y farmacología. 2da ed. Editorial Universitaria. Universidad de Chile. 330 p.; Navarro, D., R. Yunes, E. Schaab, A. Malheiros, V. Filho, G. Franchi, A. Nowill, A. Cardoso & J. Yunes. 2006. Evaluation of the anti-proliferative effect the extracts of Allamanda blanchetti and A. schottii on the growth of leukemic and endothelial cells. Journal of pharmacy and pharmaceutical science, 9 (2): 200-208.; Nellis, D. 1997. Poisonous plants and animal of Florida and the Caribbean. 1st ed. 416 p.; Nuha, M., A. Isam & E. Elfadil. 2010. Chemical composition, antinutrients and extractable minerals of sicklepod (Cassia obtusifolia) leaves as influenced by fermentation and cooking. International Food Research Journal, 17: 775-785; Nuñez, E. 1990. Plantas venenosas de Puerto Rico y las que producen dermatitis. 1ra ed. Editorial Universidad de Puerto Rico. 310 p.; Nwanjo, H. 2007. Studies on the effect of aqueous extract of Phyllanthus niruri leaf on plasma glucose level and some hepatospecific markers in diabetic wistar rats. The Internet Journal of Laboratory Medicine [on line], 2 (2): 1-18.; Odriozola, E. 2005. Intoxicación por plantas tóxicas en bovinos. 10° Jornadas Veterinarias de Corrientes – JOVECOR 10. Corrientes. Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste. Argentina.; Oelrichs, P., J. Ng, A. Seawright, A. Ward, L. Schäffeler & J. Macleod. 1995. Isolation and identification of a compound from avocado (Persea Americana) leaves which causes necrosis of the acinar epithelium of the lactating mammary gland and the myocardium. Natural Toxins, 3 (5): 344-349.; Olivero-Verbel, J., A. Guerrero-Castilla & E. Stashenko. 2010. Toxicidad del aceite esencial de Lippia alba (Mill.) N. E. Brown quimiotipo citral. Acta toxicológica Argentina [online], 18 (1): 21-27.; Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). 2010. Grassland Index. A searchable catalogue of grass and forage legumes. FAO. Rome. Italy.; Ospina, L. & R. Pinzón. 1995. Plantas usadas como antidiabéticas en la Medicina popular Colombiana. Revista Colombiana de Ciencias Químico-Farmacéuticas, 23: 81-94.; Ousman, A., M. Ngassoum & C. Kamga. 2005. Chemical composition of Cassia obtusifolia L. leaves. Journal of Food Technology, 3 (3): 453-455.; Páez, F. 2000. Plantas tóxicas que nos rodean. Colección Ciencia y Tecnología. Editorial Universidad Ezequiel Zamora. Barinas, Venezuela. 136 p.; Pamplona, J. 2007. Salud por los alimentos (Nuevo estilo de vida). 1ra ed. Madrid, España. 383 p.; Panaccione, D. 2005. Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiology Letters, 251 (1): 9-17.; Pasricha, J. & U. Agarwal. 1990. Irritant and allergenic potential of some latex producing Indian plants. Indian Journal of dermatology, venereology and leprology [online], 56 (4): 293-295.; Peña, N., L. Villamil, A. Parra & C. Lobo. 1980. Las enfermedades de los animales en Colombia. Situación por regiones naturales. Documento de trabajo N° 20. División de Ciencias Veterinarias, Instituto Colombiano Agropecuario (ICA). Bogotá, Colombia. 306 p.; 1982. Contribución a la epidemiologia de la cromatosis bovina en algunos municipios del Huila y Tolima (Colombia). Revista Colombiana de Ciencias Pecuaria, 4 (1-2): 51-63.; Pereira, S., J. Cardoso, P. de Medeiros, R. Pereira, V. de Menezes, H. Xavier & E. de Oliveira. 2006. Antimicrobial activity of Indigofera suffruticosa. Evidence-based Complementary and Alternative Medicine, 3 (2): 261-265.; Pérez, E. 1975. Plantas medicinales y venenosas de Colombia. Estudio botánico, étnico, farmacéutico, veterinario y forense. Hernando Salazar (ed.). Medellín, Colombia. 259 p.; Perez, R., A. Ocegueda, J. Muñoz, J. Ávila & W. Morrow. 1984. A study of the hypoglycemic effect of some mexican plants. Journal of Ethnopharmacology, 12 (3): 253-262.; Perkins, K. & W. Payne. 1978. Guide to the poisonous and irritant plants of Florida. Circular N° 441. Institute of Food and Agricultural Sciences, University of Florida. 91 p.; Pescador, A. 1994. Manual de identificación para las mariposas de la familia Sphingidae (Lepidoptera) de la Estación de Biología Chamela, Jalisco, México. Cuadernos 22. Instituto de Biología, Universidad Nacional Autónoma de México (UNAM). México. 103 p.; Piloto, J., A. Vizoso, A. Ramos, A. García, A. Remigio, Y. Vega, M. González, C. Rodríguez & C. Carballo. 2009. Plantas medicinales. Diez años de evaluaciones toxicogenéticas en el CIDEM. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 8 (5): 428-434.; Pinedo, M., E. Rengifo & T. Cerruti. 1997. Plantas medicinales de la Amazonia Peruana. Estudio de su uso y cultivo. AECI, IIAP, GRL. Iquitos, Perú. 304 p.; Pita, R., A. Anadón & M. Martínez-Larrañaga. 2004. Ricina: una fitotoxina de uso potencial como arma. Revista de Toxicología, 21 (2-3): 51-63.; Porter, J., C. Bacon & J. Robbin. 1974. Major alkaloids of a Claviceps isolated from toxic Bermuda grass. Journal Agricultural Food and Chemistry, 22 (5): 834-841.; Pott, A. & E. Afonso. 2000. Plantas tóxicas para bovinos em Mato Grosso Do Sul. Campo Grande, MS: 44.; Rahman, A., M. Shabbir, S. Sultani, A. Jabbar & M. Choudhary. 1997. Cinnamates and coumarins from the leaves of Murraya paniculata. Phytochemistry, 44 (4): 683-685.; Raman, A. & C. Lau. 1996. Anti-diabetic properties and phytochemistry Momordica charantia L. (Cucurbitaceae). Phytomedicine, 2 (4): 349-362.; Remigio, A., J. Piloto, A. García, M. Guerra, E. Sánchez & Y. Vega. 2007. Genotoxicidad de Indigofera suffruticosa Mill. (añil cimarrón). Revista Cubana de Plantas Medicinales [online], 12 (3).; Ríos, E., F. Bogado, W. Merlo, N. Mussart, C. Acosta, & O. Acosta. 2007. Hepatotoxicidad inducida por Ipomoea carnea var. fistulosa (aguapei, mandiyurá) de Argentina en cabras. Veterinaria México [online], 38 (4): 419-428.; L. Cholich, G. Teibler, F. Bogado & N. Mussart. 2009. Lesiones renales y pancreáticas inducidas por Ipomoea carnea en cabras. Revista Veterinaria, 20 (1): 45-49.; Risco, C., C. Holmberg & A. Kutches. 1992. Effect of graded concentrations of gossypol on calf performance: toxicological and pathological considerations. Journal of Dairy Science, 75 (10): 2787-2798.; Rix, U., C. Fischer, L. Remsing & J. Rohr. 2008. Modification of post-PKS tailoning step through combinatonial biosynthesis. Natural product report, 19 (5): 542-580.; Rodríguez, N. 2006. La utilidad de las plantas medicinales en Costa Rica. Editorial Universidad Nacional. Heredia, Costa Rica. 213 p.; Roldán, L. 2004. Descripción de la intoxicación en pollos de engorde por Crotalaria pallida y uso de la silimarina como potencial hepatoprotector. Monografía de grado. Medicina Veterinaria, Universidad Nacional de Colombia. Bogotá, Colombia.; Romero, R. 1971. Plantas del Magdalena II: Flora de la Isla de Salamanca. Primera parte. Instituto de Ciencias Naturales, Universidad Nacional de Colombia. Bogotá. 299 p.; Rosado, J. 2002. Farmacopea Guajira. Plantas medicinales desérticas y sus usos por los guajiros. Fondo mixto de Promoción para la Cultura y las Artes de La Guajira. Serie Estímulos a la Investigación. Editorial GE&R Creatividad Ltda. Barranquilla, Colombia. 162 p.; 2009. Farmacopea Guajira. Cosmovisión y usos de las plantas medicinales por los Wayuu. 2da ed. Universidad de La Guajira. Editorial Gente Nueva. Bogotá, Colombia. 460 p.; Rosales, R. Algunas plantas medicinales y sus usos. Centro Médico Odontológico Universitario. Universidad de Los Andes. Disponible en: http://biosalud.saber.ula.ve/db/ssalud/edocs/articulos/plantas_medicinales.pdf; Saied, S., S. Nizami & I. Anis. 2008. Two new coumarins from Murraya paniculata. Journal of Asian Natural Products Research, 10 (5-6): 515-519.; Salamanca, G. 2005. La familia Euforbiaceae como condición promisoria para la obtención de metabolitos secundarios. Departamento de Química, Universidad del Tolima. Colombia. Disponible en: http://webdelprofesor.ula.ve/ciencias/chataing/Cursos/productos_naturales/euforbiaceae.pdf; Salatino, A., M. Faria & G. Negri. 2007. Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae). Journal of the Brazilian Chemical Society, 18 (1): 11-33.; Samoylenko, V., J. Zhao, D. Dunbar, I. Khan, J. Rushing & I. Muhammad. 2006. New constituents from noni (Morinda citrifolia) fruit juice. Journal Agriculture Food Chemistry, 54 (17): 6398-6402.; Sharker, S., I. Shahid & M. Hasanuzzaman. 2009. Antinociceptive and bioactivity of leaves of Murraya paniculata (L.) Jack, Rutaceae. Revista Brasileira de Farmacognosia, 19 (3): 746-748.; Silcock, R. & F. Smith. 1983. Soluble oxalates in summer pastures on a mulga soil. Tropical Grasslands, 17 (4): 179-181.; Soto-Blanco, B., J. Fontenele-Neto, D. Silva, P. Reis & J. Nobrega. 2006. Acute cattle intoxication from Nerium oleander pods. Tropical animal health and production, 38 (4): 451-454.; Tokarnia, C., J. Döbereiner & P. Vargas. 2000. Plantas Tóxicas do Brasil. Editorial Helianthus. Rio de Janeiro, Brazil. 310 p.; Trheebilcock, P., A. Villafane & P. Gil. 1978. Nitrate poisoning in cattle. Revista del Instituto Colombiano Agropecuario (ICA), 13 (1): 119-125.; Tropical Plant Database. 2006. Fedegoso (Cassia occidentalis). Disponible en: www.rain-tree.com/fedegosa.htm; Unión Internacional para la conservación de la naturaleza y de los recursos naturales (UICN). 2001. Categorías y criterios de la Lista roja de la UICN, Versión 3.1. Comisión de Supervivencia de Especies de la UICN. UICN, Gland-Suiza y Cambridge, Reino Unido. 33 p.; Valle, C. Metabolitos secundarios de las plantas. Psicostasia (Revista virtual de ESTEA) [online], Sumario del N° 6.1. Barcelona, España.; Vanaclocha, B. & S. Cañigueral. 2003. Fitoterapia. Vademécum de prescripción. 4ta ed. Editorial Masson. Barcelona, España. p. 175-177.; Vermunt, J. & R. Visser. 1987. Nitrate toxicity in cattle. New Zealand Veterinary Journal, 35 (8): 136- 137.; Vetter, J. 2000. Plant cyanogenic glycosides. Toxicon, 38 (1):11-36.; Vibrans, H. (ed.) 2009. Malezas de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Disponible en: http://oramosmex.wordpress.com/2010/03/12/el-alpiste-y-el-cundeamor-sin-la-unam-pero-aun-con-buen-humor/; Vidart, D. 1996. Contenido mineral de recursos forrajeros de zonas templadas. Estudio Ledesma Arocena y Asociados. San Isidro (B.A.).; Villar, D. & J. Ortiz. 2006. Plantas tóxicas de interés veterinario. Casos clínicos. 1ra ed. Editorial Elsevier. Barcelona, España. 208 p.; Voss, K. & L. Brennecke. 1991. Toxicological and hematological effects of sicklepod (Cassia obtusifolia) seeds in Sprague-Dawley rats: a subchronic feeding study. Toxicon, 29 (11): 1329-1336.; Waizel-Bucay, J. & M. Martínez. 2007. Plantas empleadas en odontalgias I. Revista ADM, 64 (5): 173-186.; Walthall, J. & R. McKenzie. 1976. Osteodystrophia fibrosa in horses at pasture in Queensland: field and laboratory observations. Australian Veterinary Journal, 52 (1): 11-16.; Wang, H. 2000. Effects of lecitins with different carbohidratebinding specifities on hepatoma, choricarcinoma, melanoma and osteosarcona cell lines. International Journal of Biochemistry & Cell Biology, 32: 365-372.; Williams, M. & L. James. 1983. Effects of herbicides on the concentrations of poisonous compounds in plants: a review. American Journal Veterinary Research, 44 (12): 2420-2422.; Winek, R. & R. Bhalla. 1979. [3H] dihydroalprenolol binding sites in rat myocardium: relationship between a single binding site population and the concentration of radioligand. Biochemical and Biophysical Research Communications, 91 (1): 200-206.; Zeinsteger, P. & A. Gurni. 2004. Plantas tóxicas que afectan el aparato digestivo de caninos y felinos. Revista Veterinaria, 15 (1): 35-44.; https://repositoryinst.uniguajira.edu.co/handle/uniguajira/481

  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Dissertation/ Thesis

    المساهمون: Durango Restrepo, Diego Luis, Orozco Sánchez, Fernando, Chiquiza Montaño, Laura Natalia 0000-0002-9563-9610, Laura Natalia Chiquiza Montaño

    جغرافية الموضوع: Colombia

    وصف الملف: 267 páginas; application/pdf

    Relation: LaReferencia; Minambiente, “Política nacional para la gestión integral de la biodiversidad y sus servicios ecosistémicos,” https://archivo.minambiente.gov.co/index.php/bosques-biodiversidad-y-servicios-ecosistematicos/politica-nacional-de-biodiversidad, 2023; D. Martins y C. Nunez, “Secondary Metabolites from Rubiaceae Species,” Molecules, vol. 20, no. 7, pp. 13422–13495, Jul. 2015, doi:10.3390/molecules200713422; C. Cháves López, G. Mazzarrino, A. Rodríguez, J. Fernández-López, J. A. Pérez-Álvarez y M. Viuda-Martos, “Assessment of antioxidant and antibacterial potential of borojo fruit (Borojoa patinoi Cuatrecasas) from the rainforests of South America,” Ind Crops Prod, vol. 63, pp. 79–86, Jan. 2015, doi:10.1016/j.indcrop.2014.10.047.; J. B. Calixto, “The role of natural products in modern drug discovery.,” An Academia Brasilera Ciencias, vol. 91, no. suppl 3, 2019, doi:10.1590/0001-3765201920190105.; N. González-Jaramillo, N. Bailon-Moscoso, R. Duarte-Casar, y J. C. Romero-Benavides, “Alibertia patinoi (Cuatrec.) Delprete & C.H.Perss. (Borojó): food safety, phytochemicals, and aphrodisiac potential,” SN Appl Sci, vol. 5, no. 1, p. 27, Jan. 2023, doi:10.1007/s42452-022-05251-1.; L. Svetaz, “Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries,” J Ethnopharmacol, vol. 127, no. 1, pp. 137–158, Jan. 2010, doi:10.1016/j.jep.2009.09.034.; V. Muñoz, “A search for natural bioactive compounds in Bolivia through a multidisciplinary approach,” J Ethnopharmacol, vol. 69, no. 2, pp. 127–137, Feb. 2000, doi:10.1016/S0378-8741(99)00148-8.; D. Figueiredo de Santana Aquino, “Investigation of the antioxidant and hypoglycemiant properties of Alibertia edulis (L.C. Rich.) A.C. Rich. leaves,” J Ethnopharmacology, vol. 253, p. 112648, May 2020, doi:10.1016/j.jep.2020.112648; V. Cândida da Silva, “New Antifungal Terpenoid Glycosides from Alibertia edulis (Rubiaceae),” Helv Chim Acta, vol. 91, no. 7, pp. 1355–1362, Jul. 2008, doi:10.1002/hlca.200890147; R. S. Gallegos Olea, N. F. Roque, y V. da S. Bolzani, “Acylated flavonol glycosides and terpenoids from the leaves of Alibertia sessilis,” J. Braz. Chem. Soc, vol. 8, pp. 257–259, 1997.; F. Xu, “Optimization, characterization, sulfation and antitumor activity of neutral polysaccharides from the fruit of Borojoa sorbilis cuter,” Carbohydrates Polymers, vol. 151, pp. 364–372, Oct. 2016, doi:10.1016/j.carbpol.2016.05.091; F. Rabelo Rodrigues, A. de Souza Ramos, A. C. Fernandes Amaral, J. L. Pinto Ferreira, C. da Silva Carneiro y J. Rocha de Andrade Silva, “Evaluation of Amazon fruits: chemical and nutritional studies on Borojoa sorbilis,” J Sci Food Agric, vol. 98, no. 10, pp. 3943–3952, Aug. 2018, doi:10.1002/jsfa.8917; L. Peres et al., “Chemical compounds and bioactivity of aqueous extracts of Alibertia spp. in the control of Plutella xylostella L. (Lepidoptera: Plutellidae),” Insects, vol. 8, no. 4, p. 125, Nov. 2017, doi:10.3390/insects8040125; V. D. S. Bolzani, L. M. V. Trevisa y M. C. C. Young, “Caffeic acids esters and triterpenes of Alibertia macrophylla,” Phytochemistry, vol. 30, no. 6, pp. 2089–2091, 1991; C. M. Taylor, “Rubiacearum Americanarum Magna Hama Pars XXVIII: New Taxa, New Combinations, New Names, and Lectotypification for Several Species Found in Mexico and Central America,” Novon (St Louis), vol. 21, no. 1, pp. 133–148, Apr. 2011, doi:10.3417/2009129.; J. Cuatrecasas, “Borojoa, un nuevo género de rubiáceas.,” Revista de la Academia Colombiana de Ciencias Exactas, Ffsicas y Naturales, vol. 7, pp. 474–477, 1950; M. Ricker, J. H. Jessen, and D. C. Daly, “The case for Borojoa patinoi (rubiaceae) in the Chocó region, Colombia,” Econ Bot, vol. 51, no. 1, pp. 39–48, 1997; L. H. Mosquera, G. Moraga, y N. Martínez-Navarrete, “Effect of maltodextrin on the stability of freeze-dried borojó (Borojoa patinoi Cuatrec.) powder,” J Food Eng, vol. 97, no. 1, pp. 72–78, Mar. 2010, doi:10.1016/j.jfoodeng.2009.09.017; J. Asprilla-Perea, J. M. Díaz-Puente, and S. Martín-Fernández, “Estimating the potential of wild foods for nutrition and food security planning in tropical areas: Experimentation with a method in Northwestern Colombia,” Ambio, vol. 51, no. 4, pp. 955–971, Apr. 2022, doi:10.1007/s13280-021-01624-9; G. Salamanca Grosso, P. M, L. O, y Montoya Devia L, “Formulation of a functional beverage of high biological value based on Borojo (Borojoa patinoi Cuatr.),” Revista chilena de nutrición, vol. 37, 2010; Instituto colombiano de bienestar familiar, “Tabla de composición de alimentos colombianos,” Universidad Nacional de Colombia, Bogotá, vol. 1, 2018; M. Burbano Pulles, “Caracterización físico, química y bromatológica del Borojó (Borojoa patinoi) proveniente de la Parroquia de Chical de la Provincia del Carchi,” SATHIRI, no. 6, p. 79, Jul. 2018, doi:10.32645/13906925.280; R. Díaz Ocampo, C. Vallejo Torres, J. M. Franco Gómez, and L. García Zapateiro, “Caracterización bromatológica, fisicoquímica, microbiológica y reológica de la pulpa de Borojó (Borojoa patinoi Cuatrec),” Ciencia y Tecnología, vol. 5, no. 1, pp. 17–24, Jul. 2012, doi:10.18779/cyt.v5i1.118; L. H. Mosquera, H. A. Ríos, y P. S. Zapata, “Obtención de una materia prima con valor agregado mediante secado por aspersión a partir del fruto fresco de borojó (Borojoa patinoi Cuatrec.),” Rev Inst Univ Tecnológica Chocó, vol. 11, no. 23, pp. 5–10, 2005; L. Ospina Medina, M. Pastrana, y W. Maya, “Extractos de frutas afrodisíacas como inhibidores de la movilidad espermática humana in vitro,” Revista cubana Plant Med, vol. 23, 2018.; I. Sotelo, N. Casas, y G. Camelo, “Borojó (Borojoa patinoi): fuente de polifenoles con actividad antimicrobiana,” Vitae, vol. 17, pp. 329–336, 2010; C. Chaves-López et al., “Potential of Borojoa patinoi Cuatrecasas water extract to inhibit nosocomial antibiotic resistant bacteria and cancer cell proliferation in vitro,” Food Funct, vol. 9, no. 5, pp. 2725–2734, 2018, doi:10.1039/C7FO01542A; G. A. Hincapié Llanos, J. C. Palacio Piedrahita, S. Paez Sierra, C. E. Restrepo Flórez, y L. M. Vélez Acosta, “Elaboración de una bebida energizante a partir de borojó (Borojoa patinoi Cuatrec.),” Rev Lasallista Investig, vol. 9, no. 2, pp. 33–43, 2012; L. M. Vélez Acosta, “Borojó, todo lo que debe saber sobre esta ‘superfruta,’” Revista I Alimentos; J. Asprilla-Perea, J. M. Díaz-Puente, y S. Martín-Fernández, “Estimating the potential of wild foods for nutrition and food security planning in tropical areas: Experimentation with a method in Northwestern Colombia,” Ambio, vol. 51, no. 4, pp. 955–971, Apr. 2022, doi:10.1007/s13280-021-01624-9; G. Camelo-Mendez y I. Sotelo-Díaz, “Effect of storage conditions on color, polyphenol content and antioxidant capacity of Borojoa patinoi Cuatrecasas beverage,” Bol Latinoamerica Caribe Plantas Med Aromat, vol. 11, no. 2, pp. 196–205, Jan. 2012; M. S. Mulani, E. E. Kamble, S. N. Kumkar, M. S. Tawre, y K. R. Pardesi, “Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review,” Front Microbiol, vol. 10, Apr. 2019, doi:10.3389/fmicb.2019.00539; F. Buccioni, “Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study,” Microorganisms, vol. 10, no. 5, p. 920, Apr. 2022, doi:10.3390/microorganisms10050920; J. D. Pitout, “Multiresistant Enterobacteriaceae: new threat of an old problem,” Expert Rev Anti Infect Ther, vol. 6, no. 5, pp. 657–669, Oct. 2008, doi:10.1586/14787210.6.5.657; T.-K. Yeh, H.-J. Lin, P.-Y. Liu, J.-H. Wang, y P.-R. Hsueh, “Antibiotic resistance in Enterobacter hormaechei,” Int J Antimicrob Agents, vol. 60, no. 4, p. 106650, Oct. 2022, doi:10.1016/j.ijantimicag.2022.106650; H. Wang, “Change in antimicrobial susceptibility of Listeria spp. in response to stress conditions,” Front Sustain Food Syst, vol. 7, Apr. 2023, doi:10.3389/fsufs.2023.1179835; M. P. Falomir, H. Rico, y D. Gozalbo, “Enterobacter and Klebsiella Species Isolated from Fresh Vegetables Marketed in Valencia (Spain) and Their Clinically Relevant Resistances to Chemotherapeutic Agents,” Foodborne Pathog Dis, vol. 10, no. 12, pp. 1002–1007, Dec. 2013, doi:10.1089/fpd.2013.1552; J. Gil-Serna, M. García-Díaz, C. Vázquez, M. T. González-Jaén, y B. Patiño, “Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce mycotoxins,” Food Microbiology, vol. 82, pp. 240–248, Sep. 2019, doi:10.1016/j.fm.2019.02.013.; G. S. Patten, M. Y. Abeywardena, y L. E. Bennett, “Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families,” Crit Rev Food Sci Nutr, vol. 56, no. 2, pp. 181–214, Jan. 2016, doi:10.1080/10408398.2011.651176; F. H. Messerli, S. Bangalore, C. Bavishi, y S. F. Rimoldi, “Angiotensin-Converting Enzyme Inhibitors in Hypertension,” J Am Coll Cardiol, vol. 71, no. 13, pp. 1474–1482, Apr. 2018, doi:10.1016/j.jacc.2018.01.058; Y.-W. Liu, M.-T. Liong, y Y.-C. Tsai, “New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis,” Journal of Microbiology, vol. 56, no. 9, pp. 601–613, Sep. 2018, doi:10.1007/s12275-018-8079-2; J. B. Molina-Hernandez, “The membrane depolarization and increase intracellular calcium level produced by silver nanoclusters are responsible for bacterial death,” Sci Rep, vol. 11, no. 1, p. 21557, Nov. 2021, doi:10.1038/s41598-021-00545-7; J. de S. Aquino, K. S. Batista, F. N. D. D. Menezes, P. P. Lins, J. A. de S. Gomes, y L. A. da Silva, “Models to Evaluate the Prebiotic Potential of Foods,” in Functional Food - Improve Health through Adequate Food, InTech, 2017. doi:10.5772/intechopen.69174; M. Wang et al., “Prebiotic effects of resistant starch nanoparticles on growth and proliferation of the probiotic Lactiplantibacillus plantarum subsp. plantarum,” LWT, vol. 154, p. 112572, Jan. 2022, doi:10.1016/j.lwt.2021.112572; L. L. Antunes, A. L. Back, M. L. B. C. Kossar, A. G. Spessato, E. Colla, y D. A. Drunkler, “Prebiotic potential of carbohydrates from defatted rice bran – Effect of physical extraction methods,” Food Chem, vol. 404, p. 134539, Mar. 2023, doi:10.1016/j.foodchem.2022.134539; D. Abouelenein, A. M. Mustafa, G. Caprioli, M. Ricciutelli, G. Sagratini, y S. Vittori, “Phenolic and nutritional profiles, and antioxidant activity of grape pomaces and seeds from Lacrima di Morro d’Alba and Verdicchio varieties,” Food Biosci, vol. 53, p. 102808, Jun. 2023, doi:10.1016/j.fbio.2023.102808; T. Pluskal, S. Castillo, A. Villar-Briones, y M. Orešič, “MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data,” BMC Bioinformatics, vol. 11, no. 1, p. 395, Dec. 2010, doi:10.1186/1471-2105-11-395.; Y. Cui et al., “AFM study of the differential inhibitory effects of the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria,” Food Microbiol, vol. 29, no. 1, pp. 80–87, Feb. 2012, doi:10.1016/j.fm.2011.08.019; L. A. Clifton, “Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models,” Langmuir, vol. 31, no. 1, pp. 404–412, Jan. 2015, doi:10.1021/la504407v; W. Mędrzycka-Dąbrowska, S. Lange, K. Zorena, S. Dąbrowski, D. Ozga, y L. Tomaszek, “Carbapenem-Resistant Klebsiella pneumoniae Infections in ICU COVID-19 Patients—A Scoping Review,” J Clin Med, vol. 10, no. 10, p. 2067, May 2021, doi:10.3390/jcm10102067; F. Maggio, “Effectiveness of essential oils against dual-species biofilm of Listeria monocytogenes and Pseudomonas fluorescens in a Ricotta-based model system,” Ital J Food Saf, vol. 12, no. 1, Mar. 2023, doi:10.4081/ijfs.2023.11048; L. L. Herman, S. A. Padala, I. Ahmed, y K. Bashir, Angiotensin-Converting Enzyme Inhibitors (ACEI). 2023; H.-J. Park, J.-Y. Kim, H. S. Kim, S.-H. Lee, J. S. Jang, y M. H. Lee, “Synergistic effect of fruit–seed mixed juice on inhibition of angiotensin I-converting enzyme and activation of NO production in EA.hy926 cells,” Food Sci Biotechnol, vol. 28, no. 3, pp. 881–893, Jun. 2019, doi:10.1007/s10068-018-0512-0; L. Actis-Goretta, J. I. Ottaviani, y C. G. Fraga, “Inhibition of Angiotensin Converting Enzyme Activity by Flavanol-Rich Foods,” J Agric Food Chem, vol. 54, no. 1, pp. 229–234, Jan. 2006, doi:10.1021/jf052263o; D. M. A. Saulnier, D. Molenaar, W. M. de Vos, G. R. Gibson, y S. Kolida, “Identification of Prebiotic Fructooligosaccharide Metabolism in Lactobacillus plantarum WCFS1 through Microarrays,” Appl Environ Microbiol, vol. 73, no. 6, pp. 1753–1765, Mar. 2007, doi:10.1128/AEM.01151-06; Q.-Y. Ji et al., “The Effect of Different Organic Acids and Their Combination on the Cell Barrier and Biofilm of Escherichia coli,” Foods, vol. 12, no. 16, p. 3011, Aug. 2023, doi:10.3390/foods12163011; R. Álvarez, H. Araya, R. Navarro-Lisboa y C. Lopez de Dicastillo, “Evaluation of Polyphenols and Antioxidant Capacity of Fruits and Vegetables Using a Modified Enzymatic Extraction Method,” Food Technol Biotechnol, vol. 54, no. 4, 2016, doi:10.17113/ftb.54.04.16.4497; H. A. R. Suleria, C. J. Barrow, y F. R. Dunshea, “Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels,” Foods, vol. 9, no. 9, p. 1206, Sep. 2020, doi:10.3390/foods9091206; I. Gutiérrez-del-Río, J. Fernández, y F. Lombó, “Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols,” Int J Antimicrob Agents, vol. 52, no. 3, pp. 309–315, Sep. 2018, doi:10.1016/j.ijantimicag.2018.04.024; E. Sousa y M. Chaves, “Iridoides e atividades biológicas de espécies da tribo Gardenieae: uma contribuicao quimio-taxonòmica para a família Rubiaceae ,” Rev Vir Quím, vol. 11, 2019.; B. Dinda, S. Debnath, y R. Banik, “Naturally Occurring Iridoids and Secoiridoids. An Updated Review, Part 4,” Chem Pharm Bull (Tokyo), vol. 59, no. 7, pp. 803–833, 2011, doi:10.1248/cpb.59.803; C. Wang et al., “Iridoids: Research Advances in Their Phytochemistry, Biological Activities, and Pharmacokinetics,” Molecules, vol. 25, no. 2, p. 287, Jan. 2020, doi:10.3390/molecules25020287; D. D. Orhan, B. Özçelik, S. Özgen, y F. Ergun, “Antibacterial, antifungal, and antiviral activities of some flavonoids,” Microbiol Res, vol. 165, no. 6, pp. 496–504, Aug. 2010, doi:10.1016/j.micres.2009.09.002; T. H. Grenby y J. Colley, “Dental effects of xylitol compared with other carbohydrates and polyols in the diet of laboratory rats,” Arch Oral Biol, vol. 28, no. 8, pp. 745–758, 1983, doi:10.1016/0003-9969(83)90111-5; D. Tuncer, A. Onen, y A. R. Yazici, “Effect of chewing gums with xylitol, sorbitol and xylitol-sorbitol on the remineralization and hardness of initial enamel lesions in situ.,” Dent Res J (Isfahan), vol. 11, no. 5, pp. 537–43, Sep. 2014; J.-L. Zhang, J. Yao, J.-N. Zhuge, y Y.-J. Zhang, “[Antibacterial activity of erythritol on periodontal pathogen].,” Shanghai Kou Qiang Yi Xue, vol. 28, no. 4, pp. 362–367, Aug. 2019; V. Loimaranta, D. Mazurel, D. Deng, y E. Söderling, “Xylitol and erythritol inhibit real-time biofilm formation of Streptococcus mutans,” BMC Microbiol, vol. 20, no. 1, p. 184, Dec. 2020, doi:10.1186/s12866-020-01867-8; T. O. Ajiboye, “Involvement of oxidative stress in protocatechuic acid‐mediated bacterial lethality,” Microbiologyopen, vol. 6, no. 4, Aug. 2017, doi:10.1002/mbo3.472; N. Silva, S. Alves, A. Gonçalves, J. S. Amaral, y P. Poeta, “Antimicrobial activity of essential oils from mediterranean aromatic plants against several foodborne and spoilage bacteria,” Food Science and Technology International, vol. 19, no. 6, pp. 503–510, Dec. 2013, doi:10.1177/1082013212442198; S. Kakkar y S. Bais, “A Review on Protocatechuic Acid and Its Pharmacological Potential,” ISRN Pharmacol, vol. 2014, pp. 1–9, Mar. 2014, doi:10.1155/2014/952943; M. Kępa, “Antimicrobial Potential of Caffeic Acid against Staphylococcus aureus Clinical Strains,” Biomed Res Int, vol. 2018, pp. 1–9, Jul. 2018, doi:10.1155/2018/7413504.; V. D. S. Bolzani, L. M. V. Trevisa, y M. C. C. Young, “Caffeic acids esters and triterpenes of Alibertia macrophylla,” Phytochemistry, vol. 30, no. 6, pp. 2089–2091, 1991; N. C. C. Carvalho, O. S. Monteiro, C. Q. da Rocha, J. K. R. da Silva, y J. G. S. Maia, “Phenolic Compounds and Antioxidant Properties of Puruí (Alibertia edulis, Rubiaceae), an Edible Dark Purple Fruit from the Brazilian Amazon,” Nutraceuticals, vol. 3, no. 4, pp. 529–539, Nov. 2023, doi:10.3390/nutraceuticals3040038; P.-G. Li et al., “Caffeic Acid Inhibits Vascular Smooth Muscle Cell Proliferation Induced by Angiotensin II in Stroke-Prone Spontaneously Hypertensive Rats,” Hypertension Research, vol. 28, no. 4, pp. 369–377, 2005, doi:10.1291/hypres.28.369; W. Londoño Jaramillo, “Manejo post-cosecha y comercialización de Borojó. Programa post-cosecha.” Convenio SENA - Reino Unido, 1999. Acceso: Jan. 22, 2024. [Online]. Disponible: https://hdl.handle.net/11404/7009; C. Li, “Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing,” Food Chem, vol. 355, p. 129685, Sep. 2021, doi:10.1016/j.foodchem.2021.129685.; Y. Wang, “Volatile characteristics of 50 peaches and nectarines evaluated by HP–SPME with GC–MS,” Food Chem, vol. 116, no. 1, pp. 356–364, Sep. 2009, doi:10.1016/j.foodchem.2009.02.004; H. Deng, “Optimization of a static headspace GC-MS method and its application in metabolic fingerprinting of the leaf volatiles of 42 citrus cultivars,” Front Plant Sci, vol. 13, Dec. 2022, doi:10.3389/fpls.2022.1050289; H. Van Den Dool y D. J. Kratz, “A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography,” J Chromatogr A, vol. 11, pp. 463–471, 1963, doi:10.1016/S0021-9673(01)80947-X.; J. Kreissl, V. Mall, P. Steinhaus, y M. Steinhaus, “Leibniz-LSB@TUM Odorant Database.; N. Reyes-Garcés, “Advances in Solid Phase Microextraction and Perspective on Future Directions,” Anal Chem, vol. 90, no. 1, pp. 302–360, Jan. 2018, doi:10.1021/acs.analchem.7b04502; J.-F. Cavalli, X. Fernandez, L. Lizzani-Cuvelier, y A.-M. Loiseau, “Comparison of Static Headspace, Headspace Solid Phase Microextraction, Headspace Sorptive Extraction, and Direct Thermal Desorption Techniques on Chemical Composition of French Olive Oils,” J Agric Food Chem, vol. 51, no. 26, pp. 7709–7716, Dec. 2003, doi:10.1021/jf034834n; I. Eduardo, G. Chietera, D. Bassi, L. Rossini, y A. Vecchietti, “Identification of key odor volatile compounds in the essential oil of nine peach accessions,” J Sci Food Agric, vol. 90, no. 7, pp. 1146–1154, May 2010, doi:10.1002/jsfa.3932; R. R. Jetti, E. Yang, A. Kurnianta, C. Finn, y M. C. Qian, “Quantification of Selected Aroma‐Active Compounds in Strawberries by Headspace Solid‐Phase Microextraction Gas Chromatography and Correlation with Sensory Descriptive Analysis,” J Food Sci, vol. 72, no. 7, Sep. 2007, doi:10.1111/j.1750-3841.2007.00445.x.; K. Matsui, “Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism,” Curr Opin Plant Biol, vol. 9, no. 3, pp. 274–280, Jun. 2006, doi:10.1016/j.pbi.2006.03.002; G. Defilippi, D. Manríquez, K. Luengwilai, y M. González-Agüero, “Chapter 1 Aroma Volatiles,” 2009, pp. 1–37. doi:10.1016/S0065-2296(08)00801-X; D. Holland, “Developmental and Varietal Differences in Volatile Ester Formation and Acetyl-CoA: Alcohol Acetyl Transferase Activities in Apple (Malus domestica Borkh.) Fruit,” J Agric Food Chem, vol. 53, no. 18, pp. 7198–7203, Sep. 2005, doi:10.1021/jf050519k; H. Yao, “Evolution of volatile profile and aroma potential of table grape Hutai-8 during berry ripening,” Food Research International, vol. 143, p. 110330, May 2021, doi:10.1016/j.foodres.2021.110330; M. El Hadi, F.-J. Zhang, F.-F. Wu, C.-H. Zhou, y J. Tao, “Advances in Fruit Aroma Volatile Research,” Molecules, vol. 18, no. 7, pp. 8200–8229, Jul. 2013, doi:10.3390/molecules18078200; R. G. Berger, Flavours y Fragrances. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. doi:10.1007/978-3-540-49339-6.; S. A. Goff y H. J. Klee, “Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value?,” Science (1979), vol. 311, no. 5762, pp. 815–819, Feb. 2006, doi:10.1126/science.1112614; S. K. Wendakoon, Y. Ueda, Y. Imahori, y M. Ishimaru, “Effect of short‐term anaerobic conditions on the production of volatiles, activity of alcohol acetyltransferase and other quality traits of ripened bananas,” J Sci Food Agric, vol. 86, no. 10, pp. 1475–1480, Aug. 2006, doi:10.1002/jsfa.2518.; J. A. Pino y J. Mesa, “Contribution of volatile compounds to mango (Mangifera indica L.) aroma,” Flavour Fragr J, vol. 21, no. 2, pp. 207–213, Mar. 2006, doi:10.1002/ffj.1703; Y. Tokitomo, M. Steinhaus, A. Buttner, y P. Schieberle, “Odor-Active Constituents in Fresh Pineapple (Ananas comosus [L.] Merr.) by Quantitative and Sensory Evaluation,” Biosci Biotechnol Biochem, vol. 69, no. 7, pp. 1323–1330, Jan. 2005, doi:10.1271/bbb.69.1323.; X. Song, “Characterization of the volatile profile of feijoa (Acca sellowiana) fruit at different ripening stages by HS-SPME-GC/MS,” LWT, vol. 184, p. 115011, Jul. 2023, doi:10.1016/j.lwt.2023.115011; Q. Wu et al., “Effect of solvent extraction on the key aroma components of Tamarindus indica L. pulp,” Journal of Food Composition and Analysis, vol. 123, p. 105613, Oct. 2023, doi:10.1016/j.jfca.2023.105613; Oliveira, P. Guedes de Pinho, R. Malheiro, P. Baptista, y J. A. Pereira, “Volatile profile of Arbutus unedo L. fruits through ripening stage,” Food Chem, vol. 128, no. 3, pp. 667–673, Oct. 2011, doi:10.1016/j.foodchem.2011.03.084; M. Abd El-Mageed, “Development of volatile compounds of avocado and casimiroa during fruit maduration,” Arab Universities Journal of Agricultural Sciences, vol. 15, no. 1, pp. 89–100, Mar. 2007, doi:10.21608/ajs.2007.14626; P. Fuggate, C. Wongs-Aree, S. Noichinda, y S. Kanlayanarat, “Quality and volatile attributes of attached and detached ‘Pluk Mai Lie’ papaya during fruit ripening,” Sci Hortic, vol. 126, no. 2, pp. 120–129, Sep. 2010, doi:10.1016/j.scienta.2010.06.019; E. J. F. Souleyre, “Alcohol acyl transferase genes at a high-flavor intensity locus contribute to ester biosynthesis in kiwifruit,” Plant Physiol, vol. 190, no. 2, pp. 1100–1116, Sep. 2022, doi:10.1093/plphys/kiac316; Z. Guler y Y. E. Sekerli, “Distribution of volatile compounds in organic tomato (Lycopersicon esculentum) at different ripening stages,” Academic Food Journal, vol. 11, no. 2, pp. 6–13, 2013.; O. Nevo y K. Valenta, “The Ecology and Evolution of Fruit Odor: Implications for Primate Seed Dispersal,” Int J Primatol, vol. 39, no. 3, pp. 338–355, Jun. 2018, doi:10.1007/s10764-018-0021-2.; O. Nevo, “Fruit defense syndromes: the independent evolution of mechanical and chemical defenses,” Evol Ecol, vol. 31, no. 6, pp. 913–923, Dec. 2017, doi:10.1007/s10682-017-9919-y.; O. Nevo y M. Ayasse, “Fruit Scent: Biochemistry, Ecological Function, and Evolution,” 2020, pp. 403–425. doi:10.1007/978-3-319-96397-6_33.; J.-L. Wolfender, G. Marti, A. Thomas, y S. Bertrand, “Current approaches and challenges for the metabolite profiling of complex natural extracts,” J Chromatogr A, vol. 1382, pp. 136–164, Feb. 2015, doi:10.1016/j.chroma.2014.10.091.; C. Persson y P. G. Delprete, The Alibertia Group (Gardenieae–Rubiaceae), Part 1 (Agouticarpa, Alibertia, Cordiera, Melanopsidium, Riodocea, and Stenosepala). 2017. [Online]. Available: https://www.nhbs.com/flora-neotropica-volume-119-the-alibertia-group-gardenieae-rubiaceae-part-1-agouticarpa-alibertia-cordiera-melanopsidium-riodocea-and-stenosepala-book; A. C. Estupiñán-González y N. D. Jiménez-Escobar, “Uso de las plantas por grupos campesinos en la franja tropical del parque nacional natural Jaramillo (Córdoba, Colombia),” Caldasia, vol. 32, no. 1, pp. 21–38, 2010; M. C. M. Young, M. R. Braga, S. M. C. Dietrich, H. E. Gottlieb, L. M. V. Trevisan, y V. D. S. Bolzani, “Fungitoxic non-glycosidic iridoids from Alibertia macrophylla,” Phytochemistry, vol. 31, no. 10, pp. 3433–3435, Oct. 1992, doi:10.1016/0031-9422(92)83701-Y; A. Nahrstedt, J. Rockenbach, y V. Wray, “Phenylpropanoid glycosides, a furanone glucoside and geniposidic acid from members of the Rubiaceae,” Phytochemistry, vol. 29, pp. 375–378, Aug. 1995; I. A. Neri-Numa et al., “Genipap (Genipa americana L.) fruit extract as a source of antioxidant and antiproliferative iridoids,” Food Research International, vol. 134, p. 109252, Aug. 2020, doi:10.1016/j.foodres.2020.109252.; S.-J. Kim, K.-M. Kim, J. Park, J.-H. Kwak, Y. S. Kim, y S.-M. Lee, “Geniposidic acid protects against d-galactosamine and lipopolysaccharide-induced hepatic failure in mice,” J Ethnopharmacol, vol. 146, no. 1, pp. 271–277, Mar. 2013, doi:10.1016/j.jep.2012.12.042; C. Wang et al., “Iridoids and sfingolipids from Hedyotis diffusa,” Fitoterapia, vol. 124, pp. 152–159, Jan. 2018, doi:10.1016/j.fitote.2017.11.004; Y. Wang et al., “Systematic Separation and Purification of Iridoid Glycosides and Crocetin Derivatives from Gardenia jasminoides Ellis by High-speed Counter-current Chromatography,” Phytochemical Analysis, vol. 26, no. 3, pp. 202–208, May 2015, doi:10.1002/pca.2553; R. Buathong et al., “Uncommon fatty acids, Iridoids and other secondary metabolites from the medicinal plant species Ixora cibdela Craib (Rubiaceae),” Phytochem Lett, vol. 33, pp. 77–80, Oct. 2019, doi:10.1016/j.phytol.2019.07.011; Takeda, H. Nishimura, y H. Inouye, “Two new iridoid glucosides from Ixora chinensis,” Phytochemistry, vol. 14, pp. 2647–2650, Feb. 1975; L. J. El-Naggar y J. L. Beal, “Iridoids. A Review,” J Nat Prod, vol. 43, no. 6, pp. 649–707, Nov. 1980, doi:10.1021/np50012a001; Y. Takeda, H. Nishimura, y H. Inouye, “Studies on monoterpene glucosides and related natural products. XXXII. Iridoid glucosides of Tarenna kotoensis var. gyokushinka.,” Chem Pharm Bull (Tokyo), vol. 24, no. 6, pp. 1216–1218, 1976, doi:10.1248/cpb.24.1216; D. F. de Santana Aquino et al., “Alibertia edulis (L.C. Rich.) A.C. Rich – A potent diuretic arising from Brazilian indigenous species,” J Ethnopharmacol, vol. 196, pp. 193–200, Jan. 2017, doi:10.1016/j.jep.2016.12.024.; W. M. Abdel-Mageed, E. Y. Backheet, A. A. Khalifa, Z. Z. Ibraheim, y S. A. Ross, “Antiparasitic antioxidant phenylpropanoids and iridoid glycosides from Tecoma mollis,” Fitoterapia, vol. 83, no. 3, pp. 500–507, Apr. 2012, doi:10.1016/j.fitote.2011.12.025; M. Singh et al., “Isolation of phytochemicals from Dolichandrone atrovirens followed by semisynthetic modification of ixoside via azomethine ylide cycloaddition; computational approach towards chemo-selection,” Nat Prod Res, vol. 37, no. 13, pp. 2215–2224, Jul. 2023, doi:10.1080/14786419.2022.2037084.; Bano, T. A. Qadri, Mahnoor, y N. Khan, “Bioactive metabolites of plants and microbes and their role in agricultural sustainability and mitigation of plant stress,” South African Journal of Botany, vol. 159, pp. 98–109, Aug. 2023, doi:10.1016/j.sajb.2023.05.049.; T. Wu, S. M. Kerbler, A. R. Fernie, y Y. Zhang, “Plant cell cultures as heterologous bio-factories for secondary metabolite production,” Plant Commun, vol. 2, no. 5, p. 100235, Sep. 2021, doi:10.1016/j.xplc.2021.100235.; S. S. Arya, J. E. Rookes, D. M. Cahill, y S. K. Lenka, “Next-generation metabolic engineering approaches towards development of plant cell suspension cultures as specialized metabolite producing biofactories,” Biotechnol Adv, vol. 45, p. 107635, Dec. 2020, doi:10.1016/j.biotechadv.2020.107635.; R. Eibl, P. Meier, I. Stutz, D. Schildberger, T. Hühn, y D. Eibl, “Plant cell culture technology in the cosmetics and food industries: current state and future trends,” Appl Microbiol Biotechnol, vol. 102, no. 20, pp. 8661–8675, Oct. 2018, doi:10.1007/s00253-018-9279-8; G. Guerriero et al., “Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists,” Genes (Basel), vol. 9, no. 6, p. 309, Jun. 2018, doi:10.3390/genes9060309; M. Davey, “Secondary Metabolism in Plant Cell Cultures,” in Encyclopedia of Applied Plant Sciences, Elsevier, 2017, pp. 462–467. doi:10.1016/B978-0-12-394807-6.00146-5.; Y. Kobayashi et al., “Life cycle assessment of plant cell cultures,” Science of The Total Environment, vol. 808, p. 151990, Feb. 2022, doi:10.1016/j.scitotenv.2021.151990; S. Karuppusamy, “A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures,” Journal of medicinal plants research, vol. 3, no. 13, pp. 1222–1239, 2009; H. N. Murthy, E.-J. Lee, y K.-Y. Paek, “Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 118, no. 1, pp. 1–16, Jul. 2014, doi:10.1007/s11240-014-0467-7; E. A. Motolinía-Alcántara, C. O. Castillo-Araiza, M. Rodríguez-Monroy, A. Román-Guerrero, y F. Cruz-Sosa, “Engineering Considerations to Produce Bioactive Compounds from Plant Cell Suspension Culture in Bioreactors,” Plants, vol. 10, no. 12, p. 2762, Dec. 2021, doi:10.3390/plants10122762; M. Takahashi y H. Aoyagi, “Effect of intermittent opening of breathable culture plugs and aeration of headspace on the structure of microbial communities in shake-flask culture,” J Biosci Bioeng, vol. 126, no. 1, pp. 96–101, Jul. 2018, doi:10.1016/j.jbiosc.2018.01.009; S. T. Häkkinen et al., “Plant cell cultures as food—aspects of sustainability and safety,” Plant Cell Rep, vol. 39, no. 12, pp. 1655–1668, Dec. 2020, doi:10.1007/s00299-020-02592-2.; A. C. Alvarez-Yela, L. N. Chiquiza-Montaño, R. Hoyos, y F. Orozco-Sánchez, “Rheology and mixing analysis of plant cell cultures (Azadirachta indica, Borojoa patinoi and Thevetia peruviana) in shake flasks,” Biochem Eng J, vol. 114, 2016, doi:10.1016/j.bej.2016.06.019; A. Scroccarello et al., “Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger,” Colloids Surf B Biointerfaces, vol. 199, p. 111533, Mar. 2021, doi:10.1016/j.colsurfb.2020.111533; D. Pan, Y. Luo, y M. Tanokura, “Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004,” Food Chem, vol. 91, no. 1, pp. 123–129, Jun. 2005, doi:10.1016/j.foodchem.2004.05.055; L.-F. Nothias et al., “Feature-based molecular networking in the GNPS analysis environment,” Nat Methods, vol. 17, no. 9, pp. 905–908, Sep. 2020, doi:10.1038/s41592-020-0933-6.; M. Wang et al., “Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking.,” Nat Biotechnol, vol. 34, no. 8, pp. 828–837, Aug. 2016, doi:10.1038/nbt.3597; D. Petras et al., “GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser,” Nat Methods, vol. 19, no. 2, pp. 134–136, Feb. 2022, doi:10.1038/s41592-021-01339-5; T. Pluskal, S. Castillo, A. Villar-Briones, y M. Orešič, “MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data,” BMC Bioinformatics, vol. 11, no. 1, p. 395, Dec. 2010, doi:10.1186/1471-2105-11-395; H. Horai et al., “MassBank: a public repository for sharing mass spectral data for life sciences,” Journal of Mass Spectrometry, vol. 45, no. 7, pp. 703–714, Jul. 2010, doi:10.1002/jms.1777.; P. Shannon et al., “Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks,” Genome Res, vol. 13, no. 11, pp. 2498–2504, Nov. 2003, doi:10.1101/gr.1239303.; C. W. T. Lee y M. L. Shuler, “The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells,” Biotechnol Bioeng, vol. 67, no. 1, pp. 61–71, Jan. 2000, doi:10.1002/(SICI)1097; K. A. McDonald and A. P. Jackman, “Bioreactor studies of growth and nutrient utilization in alfalfa suspension cultures,” Plant Cell Rep, vol. 8, no. 8, pp. 455–458, Dec. 1989, doi:10.1007/BF00269047.; H. N. Murthy, E.-J. Lee, and K.-Y. Paek, “Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 118, no. 1, pp. 1–16, Jul. 2014, doi:10.1007/s11240-014-0467-7.; S. Werner, R. W. Maschke, D. Eibl, and R. Eibl, “Bioreactor Technology for Sustainable Production of Plant Cell-Derived Products,” 2018, pp. 413–432. doi:10.1007/978-3-319-54600-1_6.; M. I. Georgiev, J. Weber, and A. Maciuk, “Bioprocessing of plant cell cultures for mass production of targeted compounds,” Appl Microbiol Biotechnol, vol. 83, no. 5, pp. 809–823, Jul. 2009, doi:10.1007/s00253-009-2049-x.; P. Nartop, “Engineering of Biomass Accumulation and Secondary Metabolite Production in Plant Cell and Tissue Cultures,” in Plant Metabolites and Regulation Under Environmental Stress, Elsevier, 2018, pp. 169–194. doi:10.1016/B978-0-12-812689-9.00009-1.; F. Bourgaud, A. Gravot, S. Milesi, and E. Gontier, “Production of plant secondary metabolites: a historical perspective,” Plant Science, vol. 161, no. 5, pp. 839–851, Oct. 2001, doi:10.1016/S0168-9452(01)00490-3; Isah, “Stress and defense responses in plant secondary metabolites production,” Biol Res, vol. 52, no. 1, p. 39, Dec. 2019, doi:10.1186/s40659-019-0246-3.; S. Chung, V. Nguyen, Y. L. Lin, L. Kamen, and A. Song, “Thaw-and-use target cells pre-labeled with calcein AM for antibody-dependent cell-mediated cytotoxicity assays,” J Immunol Methods, vol. 447, pp. 37–46, Aug. 2017, doi:10.1016/j.jim.2017.04.005.; M. Ghasemi, T. Turnbull, S. Sebastian, and I. Kempson, “The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis,” Int J Mol Sci, vol. 22, no. 23, p. 12827, Nov. 2021, doi:10.3390/ijms222312827; J. C. Stockert, R. W. Horobin, L. L. Colombo, and A. Blázquez-Castro, “Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives,” Acta Histochem, vol. 120, no. 3, pp. 159–167, Apr. 2018, doi:10.1016/j.acthis.2018.02.005.; T. J. Mead and V. Lefebvre, “Proliferation Assays (BrdU and EdU) on Skeletal Tissue Sections,” 2014, pp. 233–243. doi:10.1007/978-1-62703-989-5_17.; C. Chaves-López, R. Tofalo, A. Serio, A. Paparella, G. Sacchetti, and G. Suzzi, “Yeasts from Colombian Kumis as source of peptides with Angiotensin I converting enzyme (ACE) inhibitory activity in milk,” Int J Food Microbiol, vol. 159, no. 1, pp. 39–46, Sep. 2012, doi:10.1016/j.ijfoodmicro.2012.07.028; J. Wu, W. Liao, and C. C. Udenigwe, “Revisiting the mechanisms of ACE inhibitory peptides from food proteins,” Trends Food Sci Technol, vol. 69, pp. 214–219, Nov. 2017, doi:10.1016/j.tifs.2017.07.011.; L. Kovanda et al., “In Vitro Antimicrobial Activities of Organic Acids and Their Derivatives on Several Species of Gram-Negative and Gram-Positive Bacteria,” Molecules, vol. 24, no. 20, p. 3770, Oct. 2019, doi:10.3390/molecules24203770; H.-L. Alakomi, E. Skyttä, M. Saarela, T. Mattila-Sandholm, K. Latva-Kala, and I. M. Helander, “Lactic Acid Permeabilizes Gram-Negative Bacteria by Disrupting the Outer Membrane,” Appl Environ Microbiol, vol. 66, no. 5, pp. 2001–2005, May 2000, doi:10.1128/AEM.66.5.2001-2005.2000; M. E. Terzioğlu and İ. Bakirci, “Comparison of Amino Acid Profile, ACE Inhibitory Activity, and Organic Acid Profile of Cow and Goat Yogurts Produced with Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12, and Classical Yogurt Culture,” Probiotics Antimicrob Proteins, Jul. 2023, doi:10.1007/s12602-023-10123-0.; H. Fan, H. Liu, Y. Zhang, S. Zhang, T. Liu, and D. Wang, “Review on plant-derived bioactive peptides: biological activities, mechanism of action and utilizations in food development,” Journal of Future Foods, vol. 2, no. 2, pp. 143–159, Jun. 2022, doi:10.1016/j.jfutfo.2022.03.003; A. Durak, B. Baraniak, A. Jakubczyk, and M. Świeca, “Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds,” Food Chem, vol. 141, no. 3, pp. 2177–2183, Dec. 2013, doi:10.1016/j.foodchem.2013.05.012; A. Kaur, B. A. Kehinde, P. Sharma, D. Sharma, and S. Kaur, “Recently isolated food-derived antihypertensive hydrolysates and peptides: A review,” Food Chem, vol. 346, p. 128719, Jun. 2021, doi:10.1016/j.foodchem.2020.128719.; N. Ciau-Solís, W. Rodríguez-Canto, L. Fernández-Martínez, M. Sandoval-Peraza, L. Chel-Guerrero, and D. Betancur-Ancona, “Inhibitory activity of Angiotensin-I converting enzyme (ACE-I) from partially purified Phaseolus lunatus peptide fractions,” Process Biochemistry, Feb. 2024, doi:10.1016/j.procbio.2024.01.022.; E. Kochan, G. Szymańska, I. Grzegorczy-Karolak, P. Szymczyk, and M. Sienkiewicz, “Ginsenoside and phenolic compounds in hydromethanolic extracts of American ginseng cell cultures and their antioxidant properties,” Acta Societatis Botanicorum Poloniae, vol. 88, no. 4, Dec. 2019, doi:10.5586/asbp.3638.; L. J. McGaw, A. K. Jäger, and J. van Staden, “Antibacterial effects of fatty acids and related compounds from plants,” South African Journal of Botany, vol. 68, no. 4, pp. 417–423, Dec. 2002, doi:10.1016/S0254-6299(15)30367-7.; G. Casillas-Vargas et al., “Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents,” Prog Lipid Res, vol. 82, p. 101093, Apr. 2021, doi:10.1016/j.plipres.2021.101093; B. H. Kallipolitis, “How can naturally occurring fatty acids neutralize Listeria ?,” Future Microbiol, vol. 12, no. 14, pp. 1239–1241, Nov. 2017, doi:10.2217/fmb-2017-0176; V. S. Thibane, J. L. F. Kock, R. Ells, P. W. J. van Wyk, and C. H. Pohl, “Effect of Marine Polyunsaturated Fatty Acids on Biofilm Formation of Candida albicans and Candida dubliniensis,” Mar Drugs, vol. 8, no. 10, pp. 2597–2604, Oct. 2010, doi:10.3390/md8102597.; C. Borreby, E. M. S. Lillebæk, and B. H. Kallipolitis, “Anti-infective activities of long-chain fatty acids against foodborne pathogens,” FEMS Microbiol Rev, vol. 47, no. 4, Jul. 2023, doi:10.1093/femsre/fuad037.; C. Altieri, D. Cardillo, A. Bevilacqua, and M. Sinigaglia, “Inhibition of Aspergillus spp. and Penicillium spp. by Fatty Acids and Their Monoglycerides,” J Food Prot, vol. 70, no. 5, pp. 1206–1212, May 2007, doi:10.4315/0362-028X-70.5.1206; U. N. Das, “Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules,” Lipids Health Dis, vol. 7, no. 1, p. 37, 2008, doi:10.1186/1476-511X-7-37.; X. Li, W. Zhang, D. Niu, and X. Liu, “Effects of abiotic stress on chlorophyll metabolism,” Plant Science, vol. 342, p. 112030, May 2024, doi:10.1016/j.plantsci.2024.112030.; J. Kim, Y.-Y. Kim, J.-Y. Chang, and H.-S. Kho, “Candidacidal Activity of Xylitol and Sorbitol,” J Oral Med Pain, vol. 41, no. 4, pp. 155–160, Dec. 2016, doi:10.14476/jomp.2016.41.4.155; V. Lattanzio, A. Cardinali, and V. Linsalata, “Plant Phenolics: A Biochemical and Physiological Perspective,” in Recent Advances in Polyphenol Research, Wiley, 2012, pp. 1–39. doi:10.1002/9781118299753.ch1; N. Hounsome, B. Hounsome, D. Tomos, and G. Edwards‐Jones, “Plant Metabolites and Nutritional Quality of Vegetables,” J Food Sci, vol. 73, no. 4, May 2008, doi:10.1111/j.1750-3841.2008.00716.x.; Elfahmi et al., “Lignans from Cell Suspension Cultures of Phyllanthus n iruri , an Indonesian Medicinal Plant,” J Nat Prod, vol. 69, no. 1, pp. 55–58, Jan. 2006, doi:10.1021/np050288b.; J. N. Kabera, E. Semana, A. R. Mussa, and X. He, “Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties,” Journal of Pharmacy and Pharmacology, vol. 2, pp. 377–392, 2014.; H. Haraguchi, S. Kataoka, S. Okamoto, M. Hanafi, and K. Shibata, “Antimicrobial triterpenes fromIlex integra and the mechanism of antifungal action,” Phytotherapy Research, vol. 13, no. 2, pp. 151–156, Mar. 1999, doi:10.1002/(SICI)1099-1573(199903)13:23.0.CO;2-C.; M. Modaressi et al., “Antibacterial iridoid glucosides from Eremostachys laciniata,” Phytotherapy Research, vol. 23, no. 1, pp. 99–103, Jan. 2009, doi:10.1002/ptr.2568; H. You, H.-E. Yoon, J.-H. Yoon, H. Ko, and Y.-C. Kim, “Synthesis of pheophorbide-a conjugates with anticancer drugs as potential cancer diagnostic and therapeutic agents,” Bioorg Med Chem, vol. 19, no. 18, pp. 5383–5391, Sep. 2011, doi:10.1016/j.bmc.2011.07.058.; P. Behera and S. Balaji, “The forgotten sugar: A review on multifarious applications of melezitose,” Carbohydr Res, vol. 500, p. 108248, Feb. 2021, doi:10.1016/j.carres.2021.108248.; J. A. Mora Vargas, J. Orduña Ortega, G. Metzker, J. E. Larrahondo, and M. Boscolo, “Natural sucrose esters: Perspectives on the chemical and physiological use of an under investigated chemical class of compounds,” Phytochemistry, vol. 177, p. 112433, Sep. 2020, doi:10.1016/j.phytochem.2020.112433.; W. Kobayashi, T. Miyase, S. Suzuki, H. Noguchi, and X.-M. Chen, “Oligosaccharide Esters from the Roots of Polygala a rillata,” J Nat Prod, vol. 63, no. 8, pp. 1066–1069, Aug. 2000, doi:10.1021/np0000567; P. R. K. Reddy et al., “Plant secondary metabolites as feed additives in calves for antimicrobial stewardship,” Anim Feed Sci Technol, vol. 264, p. 114469, Jun. 2020, doi:10.1016/j.anifeedsci.2020.114469.; N. Selwal et al., “Enhancing secondary metabolite production in plants: Exploring traditional and modern strategies,” J Agric Food Res, vol. 14, p. 100702, Dec. 2023, doi:10.1016/j.jafr.2023.100702.; Y. Li, D. Kong, Y. Fu, M. R. Sussman, and H. Wu, “The effect of developmental and environmental factors on secondary metabolites in medicinal plants,” Plant Physiology and Biochemistry, vol. 148, pp. 80–89, Mar. 2020, doi:10.1016/j.plaphy.2020.01.006.; B. A. Rasool Hassan, “Medicinal Plants (Importance and Uses),” Pharm Anal Acta, vol. 03, no. 10, 2012, doi:10.4172/2153-2435.1000e139.; A. G. Atanasov et al., “Discovery and resupply of pharmacologically active plant-derived natural products: A review,” Biotechnol Adv, vol. 33, no. 8, pp. 1582–1614, Dec. 2015, doi:10.1016/j.biotechadv.2015.08.001; T. Isah, “Stress and defense responses in plant secondary metabolites production,” Biol Res, vol. 52, no. 1, p. 39, Dec. 2019, doi:10.1186/s40659-019-0246-3.; H. Patel and R. Krishnamurthy, “Elicitors in plant tissue culture,” J Pharmacogn Phytochem, vol. 2, no. 2, pp. 60–65, 2013; J. M. Al Khayri and P. M. Naik, “Impact of Abiotic Elicitors on In vitro Production of Plant Secondary Metabolites: A Review,” Journal of Advanced Research in Biotechnology, vol. 1, no. 2, pp. 1–7, Jan. 2016, doi:10.15226/2475-4714/1/2/00102; M. Onrubia, E. Moyano, M. Bonfill, O. Expósito, J. Palazón, and R. M. Cusidó, “An approach to the molecular mechanism of methyl jasmonate and vanadyl sulphate elicitation in Taxus baccata cell cultures: The role of txs and bapt gene expression,” Biochem Eng J, vol. 53, no. 1, pp. 104–111, Dec. 2010, doi:10.1016/j.bej.2010.10.001.; O. Exposito et al., “Metabolic responses of Taxus media transformed cell cultures to the addition of methyl jasmonate,” Biotechnol Prog, vol. 26, no. 4, pp. 1145–1153, Jul. 2010, doi:10.1002/btpr.424.; M. Arias Zabala, M. Angarita, J. M. Restrepo, L. A. Caicedo, and M. Perea, “Elicitation with methyl-jasmonate stimulates peruvoside production in cell suspension cultures of Thevetia peruviana,” In Vitro Cellular & Developmental Biology - Plant, vol. 46, no. 3, pp. 233–238, Jun. 2010, doi:10.1007/s11627-009-9249-z.; M. Yousefzadi, M. Sharifi, M. Behmanesh, A. Ghasempour, E. Moyano, and J. Palazon, “Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis,” Biotechnol Lett, vol. 32, no. 11, pp. 1739–1743, Nov. 2010, doi:10.1007/s10529-010-0343-4.; E. Sousa and M. Chaves, “Iridoides e atividades biológicas de espécies da tribo Gardenieae: uma contribuicao quimio-taxonòmica para a família Rubiaceae ,” Rev Vir Quím, vol. 11, 2019.; T. Krumm, K. Bandemer, and W. Boland, “Induction of volatile biosynthesis in the Lima bean (Phaseolus lunatus) by leucine‐ and isoleucine conjugates of 1‐oxo‐ and 1‐hydroxyindan‐4‐carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid signalling pathway,” FEBS Lett, vol. 377, no. 3, pp. 523–529, Dec. 1995, doi:10.1016/0014-5793(95)01398-9.; L. Botero, S. Vizcaíno, W. Quiñones, F. Echeverri, J. Gil, and D. Durango, “Increased accumulation of isoflavonoids in common bean (Phaseolus vulgaris L.) tissues treated with 1-oxo-indane-4-carboxylic acid derivatives,” Biotechnology Reports, vol. 29, p. e00601, Mar. 2021, doi:10.1016/j.btre.2021.e00601; Y. Nakamura et al., “Synthesis of 6-Substituted 1-oxoindanoyl Isoleucine Conjugates and Modeling Studies with the COI1-JAZ Co-Receptor Complex of Lima Bean,” J Chem Ecol, vol. 40, no. 7, pp. 687–699, Jul. 2014, doi:10.1007/s10886-014-0469-2.; T. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures,” Physiol Plant, vol. 15, no. 3, pp. 473–497, Jul. 1962, doi:10.1111/j.1399-3054.1962.tb08052.x.; J. Garg, G. Ghoshal, S. K. Bhadada, and O. Katare, “Derivatisation Mechanistic-guided Identification of Phytoconstituents of Different Extracts of Cissus quadrangularis by TLC and Standardization by HPTLC,” Phytomedicine Plus, p. 100601, Jun. 2024, doi:10.1016/j.phyplu.2024.100601.; K. A. McDonald and A. P. Jackman, “Bioreactor studies of growth and nutrient utilization in alfalfa suspension cultures,” Plant Cell Rep, vol. 8, no. 8, pp. 455–458, Dec. 1989, doi:10.1007/BF00269047; D. Gabotti et al., “Cell Suspensions of Cannabis sativa (var. Futura): Effect of Elicitation on Metabolite Content and Antioxidant Activity,” Molecules, vol. 24, no. 22, p. 4056, Nov. 2019, doi:10.3390/molecules24224056; T.-T. Ho, H. N. Murthy, and S.-Y. Park, “Methyl Jasmonate Induced Oxidative Stress and Accumulation of Secondary Metabolites in Plant Cell and Organ Cultures,” Int J Mol Sci, vol. 21, no. 3, p. 716, Jan. 2020, doi:10.3390/ijms21030716; J. Dong, G. Wan, and Z. Liang, “Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture,” J Biotechnol, vol. 148, no. 2–3, pp. 99–104, Jul. 2010, doi:10.1016/j.jbiotec.2010.05.009; S. Chattopadhyay, S. Farkya, A. K. Srivastava, and V. S. Bisaria, “Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures,” Biotechnology and Bioprocess Engineering, vol. 7, no. 3, pp. 138–149, Jun. 2002, doi:10.1007/BF02932911; R. Jeyasri, P. Muthuramalingam, K. Karthick, H. Shin, S. H. Choi, and M. Ramesh, “Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 153, no. 3, pp. 447–458, Jun. 2023, doi:10.1007/s11240-023-02485-8.; A. Humbal and B. Pathak, “Influence of exogenous elicitors on the production of secondary metabolite in plants: A review (‘VSI: secondary metabolites’),” Plant Stress, vol. 8, p. 100166, Jun. 2023, doi:10.1016/j.stress.2023.100166.; J.-H. Kim et al., “Production of Secondary Metabolites from Cell Cultures of Sageretia thea (Osbeck) M.C. Johnst. Using Balloon-Type Bubble Bioreactors,” Plants, vol. 12, no. 6, p. 1390, Mar. 2023, doi:10.3390/plants12061390.; M. A. Farag, H. Mekky, and S. El-Masry, “Metabolomics driven analysis of Erythrina lysistemon cell suspension culture in response to methyl jasmonate elicitation,” J Adv Res, vol. 7, no. 5, pp. 681–689, Sep. 2016, doi:10.1016/j.jare.2016.07.002; J. Zhao, L. C. Davis, and R. Verpoorte, “Elicitor signal transduction leading to production of plant secondary metabolites,” Biotechnol Adv, vol. 23, no. 4, pp. 283–333, Jun. 2005, doi:10.1016/j.biotechadv.2005.01.003; E. Kochan, G. Szymańska, I. Grzegorczy-Karolak, P. Szymczyk, and M. Sienkiewicz, “Ginsenoside and phenolic compounds in hydromethanolic extracts of American ginseng cell cultures and their antioxidant properties,” Acta Societatis Botanicorum Poloniae, vol. 88, no. 4, Dec. 2019, doi:10.5586/asbp.3638; P. Ahmad et al., “Jasmonates: Multifunctional Roles in Stress Tolerance,” Front Plant Sci, vol. 7, Jun. 2016, doi:10.3389/fpls.2016.00813; N. De Geyter, A. Gholami, S. Goormachtig, and A. Goossens, “Transcriptional machineries in jasmonate-elicited plant secondary metabolism,” Trends Plant Sci, vol. 17, no. 6, pp. 349–359, Jun. 2012, doi:10.1016/j.tplants.2012.03.001; N. Verma and S. Shukla, “Impact of various factors responsible for fluctuation in plant secondary metabolites,” J Appl Res Med Aromat Plants, vol. 2, no. 4, pp. 105–113, Dec. 2015, doi:10.1016/j.jarmap.2015.09.002.; G. TopÇu, G. Herrmann, U. Kolak, C. Gören, A. Porzel, and T. M. Kutchan, “Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia,” Nat Prod Res, vol. 21, no. 2, pp. 100–105, Feb. 2007, doi:10.1080/14786410500462884.; K. Zalewski, S. Czaplicki, R. Rafałowski, R. Stryiński, A. Okorski, and B. Nitkiewicz, “The effect of exogenous methyl jasmonate on the fatty acid composition of germinating triticale kernels (x Triticosecale Wittmack, cv. Ugo),” Curr Plant Biol, vol. 28, p. 100225, Dec. 2021, doi:10.1016/j.cpb.2021.100225; O. Parra, A. M. Gallego, A. Urrea, L. F. Rojas, C. Correa, and L. Atehortúa, “Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.,” Plant Physiology and Biochemistry, vol. 111, pp. 59–66, Feb. 2017, doi:10.1016/j.plaphy.2016.11.013; B. Parthier, “Jasmonates, New Regulators of Plant Growth and Development: Many Facts and Few Hypotheses on their Actions,” Botanica Acta, vol. 104, no. 6, pp. 446–454, Dec. 1991, doi:10.1111/j.1438-8677.1991.tb00257.x.; S. Fonseca, J. M. Chico, and R. Solano, “The jasmonate pathway: the ligand, the receptor and the core signalling module,” Curr Opin Plant Biol, vol. 12, no. 5, pp. 539–547, Oct. 2009, doi:10.1016/j.pbi.2009.07.013; J. Szczegielniak, “[Wound signal transduction pathways in plants].,” Postepy Biochem, vol. 53, no. 2, pp. 121–32, 2007; Y. Wang, S. Mostafa, W. Zeng, and B. Jin, “Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses,” Int J Mol Sci, vol. 22, no. 16, p. 8568, Aug. 2021, doi:10.3390/ijms22168568.; S. Gandi, K. Rao, B. Chodisetti, and A. Giri, “Elicitation of Andrographolide in the Suspension Cultures of Andrographis paniculata,” Appl Biochem Biotechnol, vol. 168, no. 7, pp. 1729–1738, Dec. 2012, doi:10.1007/s12010-012-9892-4.; S. S. Mian, M. I. Alam, N. A. Khan, and M. Shuaib, “Standardisation of different extracts of detoxified Nux-vomica seeds with its comparative study by TLC and HPTLC,” J Herb Med, vol. 42, p. 100792, Dec. 2023, doi:10.1016/j.hermed.2023.100792; E. Kaale, P. Risha, and T. Layloff, “TLC for pharmaceutical analysis in resource limited countries,” J Chromatogr A, vol. 1218, no. 19, pp. 2732–2736, May 2011, doi:10.1016/j.chroma.2010.12.022; W. Wen et al., “Screening and identification of antibacterial components in Artemisia argyi essential oil by TLC–direct bioautography combined with comprehensive 2D GC × GC-TOFMS,” Journal of Chromatography B, vol. 1234, p. 124026, Feb. 2024, doi:10.1016/j.jchromb.2024.124026; L. Qi, C. Chen, and P. Li, “Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode‐array detection and time‐of‐flight mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 23, no. 19, pp. 3227–3242, Oct. 2009, doi:10.1002/rcm.4245; S. Sang et al., “Citrifolinin A, a new unusual iridoid with inhibition of activator protein-1 (AP-1) from the leaves of noni (Morinda citrifolia L.) ,” Tetrahedron Lett, pp. 1823–1825, 2001.; F. Xu, X. Huang, H. Wu, and X. Wang, “Beneficial health effects of lupenone triterpene: A review,” Biomedicine & Pharmacotherapy, vol. 103, pp. 198–203, Jul. 2018, doi:10.1016/j.biopha.2018.04.019; S.-S. Lee et al., “Tricin derivatives as anti-inflammatory and anti-allergic constituents from the aerial part of Zizania latifolia,” Biosci Biotechnol Biochem, vol. 79, no. 5, pp. 700–706, May 2015, doi:10.1080/09168451.2014.997184.; M. O. Agbo, D. Lai, F. B. C. Okoye, P. O. Osadebe, and P. Proksch, “Antioxidative polyphenols from Nigerian mistletoe Loranthus micranthus (Linn.) parasitizing on Hevea brasiliensis,” Fitoterapia, vol. 86, pp. 78–83, Apr. 2013, doi:10.1016/j.fitote.2013.02.006; S. Z. M. R. Jamil, E. R. Rohani, S. N. Baharum, and N. M. Noor, “Metabolite profiles of callus and cell suspension cultures of mangosteen,” 3 Biotech, vol. 8, no. 8, p. 322, Aug. 2018, doi:10.1007/s13205-018-1336-6; L. K. Rodríguez-Sánchez et al., “Effect of methyl jasmonate and salicylic acid on the production of metabolites in cell suspensions cultures of Piper cumanense (Piperaceae),” Biotechnology Reports, vol. 28, p. e00559, Dec. 2020, doi:10.1016/j.btre.2020.e00559; D. Durango, N. Pulgarin, F. Echeverri, G. Escobar, and W. Quiñones, “Effect of Salicylic Acid and Structurally Related Compounds in the Accumulation of Phytoalexins in Cotyledons of Common Bean (Phaseolus vulgaris L.) Cultivars,” Molecules, vol. 18, no. 9, pp. 10609–10628, Sep. 2013, doi:10.3390/molecules180910609; A. Nahrstedt, “Phenylpropanoid glycosides, a furanone glucoside and geniposidic acid from members of the rubiaceae,” Phytochemistry, vol. 39, no. 2, pp. 375–378, May 1995, doi:10.1016/0031-9422(94)00906-A.; L.-X. Wang et al., “Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications,” Phytochemistry, vol. 202, p. 113326, Oct. 2022, doi:10.1016/j.phytochem.2022.113326; D. Mendoza, O. Cuaspud, J. P. Arias, O. Ruiz, and M. Arias, “Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana,” Biotechnology Reports, vol. 19, p. e00273, Sep. 2018, doi:10.1016/j.btre.2018.e00273; D. Mendoza, J. P. Arias, O. Cuaspud, O. Ruiz, and M. Arias, “FT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate,” Biotechnology Reports, vol. 27, p. e00519, Sep. 2020, doi:10.1016/j.btre.2020.e00519.; B. Chodisetti, K. Rao, S. Gandi, and A. Giri, “Gymnemic acid enhancement in the suspension cultures of Gymnema sylvestre by using the signaling molecules—methyl jasmonate and salicylic acid,” In Vitro Cellular & Developmental Biology - Plant, vol. 51, no. 1, pp. 88–92, Feb. 2015, doi:10.1007/s11627-014-9655-8.; M. Taurino et al., “Jasmonates elicit different sets of stilbenes in Vitis vinifera cv. Negramaro cell cultures,” Springerplus, vol. 4, no. 1, p. 49, Dec. 2015, doi:10.1186/s40064-015-0831-z; C. D’Onofrio, A. Cox, C. Davies, and P. K. Boss, “Induction of secondary metabolism in grape cell cultures by jasmonates,” Functional Plant Biology, vol. 36, no. 4, p. 323, 2009, doi:10.1071/FP08280; J. Shah, “Plants under attack: systemic signals in defence,” Curr Opin Plant Biol, vol. 12, no. 4, pp. 459–464, Aug. 2009, doi:10.1016/j.pbi.2009.05.011; M. He and N.-Z. Ding, “Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response,” Front Plant Sci, vol. 11, Sep. 2020, doi:10.3389/fpls.2020.562785; K.-X. Zhang, Y.-J. Hao, M.-Y. Jin, M.-L. Lian, J. Jiang, and X.-C. Piao, “Cell culture of Euphorbia fischeriana and enhancement of terpenoid accumulation through MeJA elicitation,” Ind Crops Prod, vol. 207, p. 117781, Jan. 2024, doi:10.1016/j.indcrop.2023.117781.; https://repositorio.unal.edu.co/handle/unal/87178; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/