يعرض 1 - 20 نتائج من 3,205 نتيجة بحث عن '"programación lineal."', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Dissertation/ Thesis
  2. 2
    Dissertation/ Thesis

    المؤلفون: Nadal Roig, Esteve

    المساهمون: University/Department: Universitat de Lleida. Departament de Matemàtica

    Thesis Advisors: Pla Aragonés, Lluís Miquel

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  3. 3
    Academic Journal
  4. 4
    Dissertation/ Thesis

    المؤلفون: Choque Ollachica, Johnny

    Thesis Advisors: Agüero Calvo, Ramón, Universidad de Cantabria. Departamento de Ingeniería de Comunicaciones

    المصدر: TDR (Tesis Doctorales en Red)

    Time: 621.3

    وصف الملف: application/pdf

  5. 5
    Dissertation/ Thesis

    المؤلفون: Blanco de Frutos, Héctor

    المساهمون: University/Department: Universitat de Lleida. Departament d'Informàtica i Enginyeria Industrial

    Thesis Advisors: Guirado Fernández, Fernando, Lérida Monsó, Josep Lluís

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  6. 6
    Academic Journal
  7. 7
    Book

    وصف الملف: 270 páginas; application/pdf

    Relation: Abadie, J. and Carpentier, J.: 1969, Generalization of the wolf reduced gradient method to the case of nonlinear constraints., Recent Advances in Mathematical Programming. in Optimization, R. Fletcher (ed), New York: Academic Press. pp. 37–47.; Bakirtzis, A. and Biskas, P.: 2003, A decentralized solution to the dc-opf of interconnected power systems, IEEE Transactions on Power Systems 18(3), 1007–1013.; Baldick, R., Kim, B., Chase, C. and Luo, Y.: 1999, A fast distributed implementation of optimal power flow, IEEE Transactions on Power Systems 14(3), 858–864.; Bazaraa, M., Sherali, H. and Shetty, C.: 1993, Nonlinear Programming: Theory and Algorithms, John Wiley & Sons.; Biskas, P. and Bakirtzis, A.: 2006, Decentralized opf of large multiarea power system, IEE Proc.-Gener. Transm. Distrib. 153(1), 99–105.; Biswas, P. P., Suganthan, P., Mallipeddi, R. and Amaratunga, G. A.: 2018, Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques, Engineering Applications of Artificial Intelligence 68, 81–100.; Burchett, R. C., Happ, H. H. and Wirgau, K. A.: 1982, Large scale optimal power flow, IEEE Transactions on Power Apparatus and Systems 101(10), 3722–3732.; Carpentier, J.: 1986, Cric, a new active reactive decoupling prcess in load flows, optimal power flows and system control., Proc. IFAC conference on power systems and power plan control pp. 65–70.; Carroll, C.: 1959, An operations research approach to the economic optimization of a kraft pulping process, Ph.D. Dissertation, Institute of Paper Chemistry, Appleton, WI, .; Carvalho, M., Soares, S. and Ohishi, T.: 1988, Optimal active power dispatch by network flow approach., IEEE Transactions on Power Systems 3(3), 1640–1647.; Castillo, E., Conejo, A. J., Pedregal, P., Garcia, R. and Alguacil, N.: 2002, Building and Solving Mathematical Programming Models in Engineering and Science, John Wiley & Sons.; Cohen, G.: 1980, Auxiliary problem principle and decomposition of optimization problems, Journal of Optimization Theory and Applications 32(3), 277–305.; Conejo, A. and Aguado, J.: 1998, Multi-area coordinated decentralized dc optimal power flow, IEEE Transactions on Power Systems 13.; Conejo, A. J. and Baringo, L.: 2018, Optimal power flow, Power System Operations, Springer, pp. 165–196.; Conejo, P., Nogales, F. and Prieto, F.: 2002, A decomposition procedure based on approximate newton directions, in Mathematical programming. Springer-Verlag. .; Cooper, L. and Drebes, C.: 1967, An approximate solution method for the fixed charge problem, Naval research logistics quarterly pp. 101–111.; Dommel, H. and Tinney, W.: 1968, Optimal power flow solutions, IEEE Trans. Power Apparat. Syst. 87, 1866–1876.; Fiacco, A. and McCormick, G.: 1968, Nonlinear programming: Sequential unconstrained minimization techniques, Wiley, New York, reissued by SIAM in 1995 .; Frisch, K.: 1954, Principles of linear programming - with particular reference to the double gradient form of the logarithmic potential method., Memorandum on October 18. University Institute of Economics, Oslo .; Garcia, A. and Mantovani, J.: 1988, Alocac¸ao de reativos em ˜ sistemas de energia eletrica utilizando um modelo implicitamente ´ acoplado, VII Congresso brasileiro de automatica, anais da ´ sociedade brasilera de automatica, S ´ ao Jos ˜ e dos Campos ´ 7, 861–866.; Geoffrion, A. M. and Marsten, R.: 1972, Integer programming algorithms: A frame-woork and state of art survey., Management science 18, 565–481.; Granada Echeverri, M., Lopez Lezama, J. M. and ´ Sanchez Mantovani, J. R.: 2010, Decentralized ac power flow for ´ multi-area power systems using a decomposition approach based on lagrangian relaxation; Granada, M., Rider, M. J., Mantovani, J. R. and Shahidehpour, M.: 2008, Multi-areas optimal reactive power flow, Transmission and Distribution Conference and Exposition: Latin America, 2008 IEEE/PES, IEEE, pp. 1–6.; Granada, M., Rider, M. J., Mantovani, J. and Shahidehpour, M.: 2012, A decentralized approach for optimal reactive power dispatch using a lagrangian decomposition method, Electric Power Systems Research 89, 148–156.; Granville, S.: 1994, Optimal reactive dispatch through interior point methods, IEEE Transactions on Power Systems 9(1), 136–146.; Granville, S., Pereira, M. and Monticelli, A.: 1988, An integrated methodology for var source planning, IEEE transactions on PAS 3, 549–557.; Hertog, D. D.: 1994, Interior point approach to linear, quadratic and convex programming, algorithms, and complexity, Kluwer Publishers, Dordrecht, The Netherlands .; Huard, P.: 1964, Resolution des p.m. ´ a contraintes non-lin ` eaires par ´ la methode des centres, ´ Note A.D.F. HR 5.690 .; Hur, D., Park, J. and Kim, B.: 2002, Evaluation of convergence rate in the auxiliary problem principle for distributed optimal power flow, IEE Proceedings - Generation, Transmission and Distribution, Piscataway 149(5), 525–532.; Iwamoto, S. and Tamura, Y.: 1981, A load flow calculation method for ill-conditioned power systems, IEEE Trans. Power App. Syst. 100(4), 1736–1743.; Karmarkar, N.: 1984, A new polynomial-time algorithm for linear programming, Combinatorica 4 pp. 373–395.; Khachiyan, L.: 1979, A polynomial-time algorithm in linear programming; english translation in: Soviet mathematics doklady 20 (1979) 191-194., Doklady Akademii Nauk SSSR 244, 1093–1096.; Kim, B. and Baldick, R.: 1997, Coarse-grained distributed optimal power flow, IEEE Transactions on Power Systems 12(2), 932–939.; Kindermann, G.: 2003, Curto-Circuito, Florianopolis: Edic¸ ´ ao do ˜ Autor. UFSCEEL-LABPLAN; Kojima, M., Mizuno, S. and Yoshise, A.: 1989, Progress in mathematical programming: Interior point and related methods, Springer Verlag, New York pp. 29–47.; Lebow, W. M., Mehra, R. K., Nadira, R., Rouhani, R. and Usoro, P.: 1984, Optimization of reactive volt-amperes (var) sources in system planning, EPRI Report El-3729, Project 2109-1 1.; Lopez, J. C., Granada, M. and Mantovani, J.: 2010, Multi-area ´ decentralized optimal var planning using the dantzig-wolfe decomposition principle, Transmission and Distribution Conference and Exposition: Latin America (T&D-LA), 2010 IEEE/PES, IEEE, pp. 92–98.; Losi, A. and Russo, M.: 2003, A note on the application of the auxiliary problem principle, Journal of Optimization Theory and Applications, New York 117(2), 377–396.; Lu, W., Liu, M., Lin, S. and Li, L.: 2018, Fully decentralized optimal power flow of multi-area interconnected power systems based on distributed interior point method, IEEE Transactions on Power Systems 33(1), 901–910.; Mantovani, J.: 1987, Planejamento de reativos em sistemas de energia eletrica: soluc¸ ´ ao via programac¸ ˜ ao linear sucessiva ˜ utilizando um modelo implicitamente acoplado, Tese de mestrado, UNICAMP .; Mantovani, J. R. S. and Garcia, A. V.: 1996, A heuristic method for reactive power planning, IEEE Transactions on Power Systems 11(1), 68–74.; Mantovani, J. R. S., Garcia, A. V. and Modesto, S. A. G.: 2001, Var planning using genetic algorithm and linear programming, Proc. Inst. Elect.Eng., Gen., Transm. Dist. 148(3), 257–262.; Meggido, N.: 1989, Progress in mathematical programming: Interior point and related methods, Springer Verlag, New York pp. 131–158; Mehrotra, S.: 1992, On the implementation of a primal-dual interior point., SIAM Journal on Optimization 2, 575–601.; Monteiro, R. D. C., Adler, I. and Resende, M. G. C.: 1990, A polynomial-time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extension, Math. Oper. Res. 15(2), 191-214.; Monticelli, A.: 1999, State Estimation in Electric Power Systems a Generalized Approach, Kluwer Academic Publishers. Massachusetts, USA.; Monticelli, A. J.: 1983, Fluxo de Carga em Redes de Energia Eletrica ´ , Editora Edgard Blucher LTDA; Nemirovsky, A. and Yudin, D.: 1983, informational complexity and efficient methods for solution of convex extremal problems, Wiley, New York .; Ness, J. E. V.: 1959, Iteration methods for digital load flow studies, IEEE Transactions on Power Apparatus and Systems 78, 583–588.; Nogales, F., Prieto, F. and Conejo, A.: 2003, A decomposition methodology applied to the multi-area optimal power flow problem, Annals of operations research (120), 99–116.; Oliveira, A. and Filho, S.: 2003, Metodo de pontos interiores para ´ o problema de fluxo de potencia ˆ otimo dc., ´ REvista controle & automac¸ao 14(3), 278–285.; Palacios-Gomez, F., Lasdon, L. and Engquist, M.: 1982, Nonlinear ´ optimization by successive linear programming, Management science 28, 1106–1120.; Parisot, G.: 1961, Resolution num ´ erique approch ´ ee du probl ´ eme ` de programmation lineaire par application de la programmation ´ logarithmique, Ph.D. Dissertation. University of Lille, France .; Renegar, J.: 1988, A polynomial-time algorithm, based on newton method, for linear programming, Math. Program 40, 59–93.; Rosenbrock, H.: 1960, Automatic method for finding the greatest or least value of a function, Computer J pp. 175–184.; Sasson, A.: 1969, Nonlinear programming solutions for the load-flow, minimum-loss, and economic dispatching problems, IEEE Trans. Power App. Syst. 88, 399–409; Sasson, A., Trevino, C. and Aboytes, F.: 1971, Improved newton’s load flow through a minimization technique, IEEE Trans. Power App. Syst. 90, 1974–1981.; Stott, B. and Alsac, O.: 1983, Experience with successive linear programming for optimal rescheduling of active and reactive power., CIGRE/IFAC symposium on control applications to power system security .; Sun, D., Ashley, B., Beuler, B., Hughes, A. and Tinney, W.: 1984, Optimal power flow by newton approach, IEEE Transactions on Power Apparatus and Systems 103(10), 2864–2880.; Sun, D. I., Demaree, K. D. and Brewer, B.: 1990, Application and adaptation of newton for optimal power flow., In Application of Optimization Methods for Economy/Security Functions in Power System Operations. An IEEE Tutorial pp. 14–90.; Tang, Y., Dvijotham, K. and Low, S.: 2017, Real-time optimal power flow, IEEE Transactions on Smart Grid 8(6), 2963–2973.; Tinney, W. and Hart, C.: 1967, Power flow solution by newton’s method, IEEE Transactions on Power Apparatus and Systems 86, 1449–1456.; Torres, G. and Quintana, V.: 1998, An interior-point methods for nonlinear optimal power flow using voltage rectangular coordinates, IEEE Trans. Power Syst. 13(4), 1211-1218.; Wallach, Y.: 1968, Gradient methods for load flow-problems, IEEE Transactions on Power Apparatus and Systems 87, 1314–1318.; Ward, J. and Hale, W.: 1956, Digital computer solution of power flow problems, AIEE Transactions Power App. Syst. 75, 398–404.; Wolfe, P.: 1963, Methods of nonlinear programming, Recent Advances in Mathematical Programming. in R.L. Graves and P. Wolfe (eds), McGraw-Hill .; Zollenkopf, K.: 1971, Bi-factorization-basic computation algorithm and programming techniques, Large sparse sets of linear equations, edited by Reid, J.K., N. York, Academic Press pp. 75–97.; https://hdl.handle.net/11059/15332; Universidad Tecnológica de Pereira; Repositorio Universidad Tecnológica de Pereira; https://repositorio.utp.edu.co/home

  8. 8
    Book

    المؤلفون: Toro Bonilla, Miguel

    المساهمون: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos

  9. 9
    Academic Journal
  10. 10
    Dissertation/ Thesis

    المؤلفون: Soto Zuluaga, Juan Pablo

    المساهمون: University/Department: Universitat Pompeu Fabra. Departament d'Economia i Empresa

    Thesis Advisors: Ramalhinho-Lourenço, Helena

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  11. 11
    Academic Journal

    المؤلفون: Ploper, Aldo, Mele, Fernando D.

    المصدر: JAIIO, Jornadas Argentinas de Informática; Vol. 10 Núm. 14 (2024): SIIIO -Simposio de Informática Industrial e Investigación Operativa; 307-320 ; JAIIO, Jornadas Argentinas de Informática; Vol. 10 No. 14 (2024): SIIIO -Symposium on Industrial Informatics and Operations Research; 307-320 ; 2451-7496

    مصطلحات موضوعية: Etanol, supply chain, programación lineal mixta entera

    وصف الملف: application/pdf

  12. 12
    Academic Journal
  13. 13
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal

    Relation: Henriques, C.O., Luque, M., Marcenaro-Gutierrez, O. (2022). Coupling distinct MOLP interactive approaches with a novel DEA hybrid model, International Transactions in Operational Research, Vol. 29, Issue 5, pp 3207 - 3228.; https://hdl.handle.net/10630/29800