يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"processos de erosão"', وقت الاستعلام: 0.61s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Ciencia e Ingenieria Neogranadina; Vol. 34 No. 1 (2024); 23-36 ; Ciencia e Ingeniería Neogranadina; Vol. 34 Núm. 1 (2024); 23-36 ; Ciencia e Ingeniería Neogranadina; v. 34 n. 1 (2024); 23-36 ; 1909-7735 ; 0124-8170

    وصف الملف: application/pdf; text/xml

    Relation: https://revistas.unimilitar.edu.co/index.php/rcin/article/view/7064/5889; https://revistas.unimilitar.edu.co/index.php/rcin/article/view/7064/6305; E. D. Andrews y G. Parker, “Formation of a course surface layer as the response to gravel mobility”, in Sediment Transport in Gravel-Bed Rivers, pp. 269-325, 1987.; G. Parker, “Transport of Gravel and Sediment Mix- tures”, in Sedimentation Engineering, American So- ciety of Civil Engineers, pp. 165-251, 2008. https://doi.org/10.1061/9780784408148.ch03; W. C. Little y G. P. Meyer, “Stability of Channel Beds by Armoring”, Journal of the Hydraulics Division, vol. 102, no. 11, pp. 1647-1661, Nov., 1976. https://doi.org/10.1061/JYCEAJ.0004651; G. Parker y P. C. Klingeman, “On why gravel bed streams are paved”, Water Resour Res, vol. 18, no. 5, pp. 1409-1423, Oct., 1982. https://doi.org/10.1029/WR018i005p01409; G. Parker, C. P. Klingeman y G. D. McLean, “Bedload and Size Distribution in Paved Gravel-Bed Streams”, Journal of the Hydraulics Division, vol. 108, no. 4, pp. 544-571, Apr., 1982. https://doi.org/10.1061/JYCEAJ.0005854; M. A. Hassan y M. Church, “Experiments on surface structure and partial sediment transport on a gravel bed”, Water Resour Res, vol. 36, no. 7, pp. 1885-1895, Jul., 2000. https://doi.org/10.1029/2000WR900055; K. G. Heays, H. Friedrich y B. W. Melville, “Laboratory study of gravel-bed cluster formation and disintegra- tion”, Water Resour Res, vol. 50, no. 3, pp. 2227-2241, Mar., 2014. https://doi.org/10.1002/2013WR014208; J. P. L. Johnson, “Clustering statistics, roughness feedbacks, and randomness in experimental step- pool morphodynamics,” Geophys Res Lett, vol. 44, no. 8, pp. 3653–3662, Apr. 2017. https://doi.org/10.1002/2016GL072246; M. Church, M. A. Hassan y J. F. Wolcott, “Stabilizing self-organized structures in gravel-bed stream channels: Field and experimental observations”, Water Resour Res, vol. 34, no. 11, pp. 3169-3179, Nov., 1998. https://doi.org/10.1029/98WR00484; L. Wittenberg, J. B. Laronne y M. D. Newson, “Bed clusters in humid perennial and Mediterranean ephemeral gravel-bed streams: The effect of clast size and bed material sorting”, J Hydrol (Amst), vol. 334, no. 3, pp. 312-318, 2007. https://doi.org/10.1016/j.jhydrol.2006.09.028; R. R. Hendrick, L. L. Ely y A. N. Papanicolaou, “The role of hydrologic processes and geomorphology on the morphology and evolution of sediment clusters in gravel-bed rivers”, Geomorphology, vol. 114, no. 3, pp. 483-496, 2010. https://doi.org/10.1016/j.geomorph.2009.07.018; M. G. Wolman, “A method of sampling coarse river-bed material”, Transactions, vol. 35, no. 6, pp. 951- 956, 1954.; A. Domínguez, “Procesamiento digital de imágenes”, Perfiles Educativos, vol. 72, p. 10, 1996.; P. E. Carbonneau, S. N. Lane y N. E. Bergeron, “Catchment-scale mapping of surface grain size in gravel bed rivers using airborne digital imagery”, Water Resour Res, vol. 40, no. 7, Jul., 2004. https://doi.org/10.1029/2003WR002759; G. L. Heritage y D. J. Milan, “Terrestrial Laser Scanning of grain roughness in a gravel-bed river”, Geomorphology, vol. 113, no. 1, pp. 4-11, 2009. https://doi.org/10.1016/j.geomorph.2009.03.021; D. Buscombe, D. M. Rubin y J. A. Warrick, “A universal approximation of grain size from images of noncohesive sediment”, J Geophys Res Earth Surf, vol. 115, no. F2, Jun., 2010. https://doi.org/10.1029/2009JF001477; D. Vázquez-Tarrío, H. Piégay y R. Menéndez-Duarte, “Textural signatures of sediment supply in gravel-bed rivers: Revisiting the armour ratio”, Earth Sci Rev, vol. 207, p. 103211, 2020, https://doi.org/10.1016/j.earscirev.2020.103211; L. Li, J. Xia, M. Zhou y S. Deng, “Riverbed armoring and sediment exchange process in a sand–gravel bed reach after the Three Gorges Project operation”, Acta Geophysica, vol. 68, no. 1, pp. 243-252, 2020. https://doi.org/10.1007/s11600-019-00391-2; H. Fu, Y. Shan y C. Liu, “A model for predicting the grain size distribution of an armor layer under clear water scouring”, J Hydrol (Amst), vol. 623, p. 129842, 2023. https://doi.org/10.1016/j.jhydrol.2023.129842; Q. Wang, L. Li, X. Li, Y. Wang y R. Nie, “Calculation Model to Predict the Static Armor Layer Size Distribution After the Reconstruction of a Gravel River Bed”, Front Earth Sci (Lausanne), vol. 9, 2021. https://doi.org/10.3389/feart.2021.660216; S. Zhang, Z. Zhu, J. Peng, L. He y D. Chen, “Laboratory study on the evolution of gravel-bed surfa- ces in bed armoring processes”, J Hydrol (Amst), vol. 597, p. 125751, 2021. https://doi.org/10.1016/j.jhydrol.2020.125751; C. Ikhsan, A. S. Permana y A. S. Negara, “Armor Layer Uniformity and Thickness in Stationary Conditions with Steady Uniform Flow”, Civil Engineering Journal, vol. 8, no. 6, pp. 1086-099, Jun., 2022. https://doi.org/10.28991/CEJ-2022-08-06-01; C. Ikhsan, “The Effect of Shear Stress on Armor Layer Thickness Under Steady Uniform Flow”, Civil Engi- neering Journal, vol. 9, no. 11, pp. 2806-2822, Nov., 2023. https://doi.org/10.28991/CEJ-2023-09-11-012; A. S. Negara, C. Ikhsan, RR. R. Hadiani y Hadima- ni. M. Purwana, “River Mobile Armor Layer Induced by Flood”, Civil Engineering Journal, vol. 9, no. 6, pp. 1356-1370, Jun., 2023. https://doi.org/10.28991/CEJ-2023-09-06-05; M. Zhou, J. Xia, S. Deng, J. Lu y F. Lin, “Channel adjustments in a gravel-sand bed reach owing to upstream damming”, Glob Planet Change, vol. 170, pp. 213-220, 2018. https://doi.org/10.1016/j.gloplacha.2018.08.014; D. Vázquez-Tarrío, M. Tal, E. Parrot y H. Piégay, “Can we incorrectly link armouring to damming? A need to promote hypothesis-driven rather than expert-based approaches in fluvial geomorphology”, Geomorphology, vol. 413, Sep., 2022. https://doi.org/10.1016/j.geomorph.2022.108364.; M. García y J. Maza, “Capítulo 8. Inicio de movimiento y acorazamiento”, in Manual de Ingeniería de Ríos, 1996.; Isagen, “Cartilla Central-Hidroeléctrica-Miel-I”, p. 4, 2018.; R. J. Batalla, C. M. Gómez y G. M. Kondolf, “Reservoir-induced hydrological changes in the Ebro River basin (NE Spain)”, J Hydrol (Amst), vol. 290, no. 1, pp. 117-136, 2004. https://doi.org/10.1016/j.jhydrol.2003.12.002.; G. Mathias Kondolf y R. J. Batalla, “Chapter 11 Hydrological effects of dams and water diversions on rivers of Mediterranean-climate regions: examples from California”, in Catchment Dynamics and River Processes, vol. 7, C. García y R. J. B. T. D. in E. S. P. Batalla, Ed., Elsevier, 2005, pp. 197-211. https://doi.org/10.1016/S0928-2025(05)80017-3.; L. Villablanca, R. J. Batalla, G. Piqué y A. Iroumé, “Hydrological effects of large dams in Chilean rivers”, J Hydrol Reg Stud, vol. 41, p. 101060, 2022. https://doi.org/10.1016/j.ejrh.2022.101060.; Gotta SAS, Aforos semestrales de monitoreo sobre los ríos La Miel y Guarinó, 2018.; M. Detert y V. Weitbrecht, “Automatic object detec- tion to analyze the geometry of gravel grains-a free stand-alone tool”, in River Flow, 2012, p. 6.; G. Parker y A. J. Sutherland, “Fluvial armor”, Journal of Hydraulic Research, vol. 28, no. 5, pp. 529-544, Sep., 1990. https://doi.org/10.1080/00221689009499044.; https://revistas.unimilitar.edu.co/index.php/rcin/article/view/7064

  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5

    المساهمون: Universidade Estadual Paulista (Unesp), Universidade Estadual de Campinas (UNICAMP)

    المصدر: Ciência Rural, Volume: 38, Issue: 9, Pages: 2485-2492, Published: DEC 2008
    Ciência Rural v.38 n.9 2008
    Ciência Rural
    Universidade Federal de Santa Maria (UFSM)
    instacron:UFSM
    SciELO
    Repositório Institucional da UNESP
    Universidade Estadual Paulista (UNESP)
    instacron:UNESP

    وصف الملف: text/html