-
1Academic Journal
المصدر: Revista Mexicana de Economía y Finanzas Nueva Época REMEF; Vol. 20, Núm. 1: Enero - Marzo 2025; e978 ; 2448-6795
مصطلحات موضوعية: Economisc, Econometrics, Finance, optimal portfolio, risk parity, diversification, C61, D81, G11, Finanzas, Economía Financiera, portafolio óptimo, paridad de riesgo, diversificación
وصف الملف: application/pdf
Relation: https://www.remef.org.mx/index.php/remef/article/view/978/973; https://www.remef.org.mx/index.php/remef/article/view/978
-
2Academic Journal
المصدر: Revista Mexicana de Economía y Finanzas (REMEF): nueva época, ISSN 1665-5346, Vol. 20, Nº. 1, 2025
مصطلحات موضوعية: portafolio óptimo, paridad de riesgo, diversificación, optimal portfolio, risk parity, diversification
وصف الملف: application/pdf
-
3Academic Journal
المصدر: Lecturas de Economía, Iss 97, Pp 369-393 (2022)
مصطلحات موضوعية: portafolio óptimo, modelo black-litterman, lógica difusa, Economic history and conditions, HC10-1085, Economics as a science, HB71-74
وصف الملف: electronic resource
-
4Academic Journal
مصطلحات موضوعية: Optimal portfolio, Bayesian methods, robust optimization, portafolio óptimo, métodos bayesianos, optimización robusta
وصف الملف: application/pdf; text/html
Relation: https://revistas.uexternado.edu.co/index.php/odeon/article/download/8490/13487; https://revistas.uexternado.edu.co/index.php/odeon/article/download/8490/13488; Núm. 21 , Año 2021 : Julio-Diciembre; 104; 21; 81; ODEON; Avramov, D. y Zhou, G. (2010). Bayesian portfolio analysis. Annual Review of Financial Economics, 2(1), 25-47. https://faculty.runi.ac.il/davramov/paper10.pdf; Bade, A., Frahm, G. y Jaekel, U. (2009). A general approach to Bayesian portfolio optimization. Mathematical Methods of Operations Research, 70(2), 337-356. https://doi.org/10.1007/s00186-008-0271-4; Best, M. y Grauer, R. (1991). Sensitivity analysis for mean-variance portfolio problems. Management Science, 37(8), 980-989. https://doi.org/10.1287/mnsc.37.8.980; Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43. https://doi.org/10.2469/faj.v48.n5.28; Fabozzi, F., Focardi, S., Kolm, P. y Pachamanova, D. (2007). Robust portfolio optimi¬zation and management. John Wiley & Sons.; Fama, E. y French, K. (1993). Common risk factors in the returns on stocks and bonds. Journal of financial economics, 33(1), 3-56. https://doi.org/10.1016/0304- 405X(93)90023-5; Garlappi, L., Uppal, R. y Wang, T. (2007). Portfolio selection with parameter and mo¬del uncertainty: A multi-prior approach. The Review of Financial Studies, 20(1), 41-81. https://doi.org/10.1093/rfs/hhl003; Georgantas, A. (2020). Robust Optimization Approaches for Portfolio Selection: A Computational and Comparative Analysis. Working paper. https://arxiv.org/ abs/2010.13397; Goldfarb, D. e Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1-38. https://doi.org/10.1287/moor.28.1.1.14260; Halldórsson, B. y Tütüncü, R. H. (2003). An interior-point method for a class of saddle-point problems. Journal of Optimization Theory and Applications, 116(3), 559-590. https://doi.org/10.1023/A:1023065319772; Kim, W. C., Kim, J. H., Ahn, S. H. y Fabozzi, F. J. (2013). What do robust equity port¬folio models really do? Annals of Operations Research, 205(1), 141-168. https:// doi.org/10.1007/s10479-012-1247-6; Kim, W. C., Kim, J. H. y Fabozzi, F. J. (2015). Robust Equity Portfolio Management: Formulations, Implementations, and Properties Using MATLAB. John Wiley & Sons.; Kim, J. H., Kim, W. C., Kwon, D. G. y Fabozzi, F. J. (2018). Robust equity portfo¬lio performance. Annals of Operations Research, 266(1), 293-312. https://doi. org/10.1007/s10479-017-2739-1; Lobo, M. S., Vandenberghe, L., Boyd, S. y Lebret, H. (1998). Applications of second-order cone programming. Linear Algebra and its Applications, 284(1-3), 193-228. https://doi.org/10.1016/S0024-3795(98)10032-0; Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.; Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New Heaven: Yale university Press.; Meucci, A. (2005). Risk and asset allocation (vol. 1). Springer.; Meucci, A. (2011). Robust Bayesian Allocation. ssrn Working paper 681553. https:// papers.ssrn.com/sol3/papers.cfm?abstract_id=681553; Michaud, R. (1998). Efficient asset management: A practical guide to stock portfolio optimization and asset allocation. Oxford University Press.; Michaud, R. y Michaud, R. (2008). Estimation error and portfolio optimization: A resampling solution. Journal of Investment Management, 6(1), 8-28.; Nesterov, Y. y Nemirovsky, A. (1993). Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms. SIAM.; Pachamanova, D. y Fabozzi, F. (2012). Equity portfolio selection models in practice. En-cyclopedia of Financial Models, 1(1), 61-87. https://doi.org/10.1002/9781118182635. efm0046; Tütüncü, R. y Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132(1), 157-187. https://doi.org/10.1023/b:anor.0000045281.41041.ed; Williams, J. (1938). The Theory of Investment Value. Harvard University Press.; Zapata, C. (2021). Optimización robusta de portafolios: conjuntos de incertidumbre y contrapartes robustas. odeon, 20, 93-121. https://doi.org/10.18601/17941113.n20.04; https://bdigital.uexternado.edu.co/handle/001/15345; https://doi.org/10.18601/17941113.n21.05
-
5Academic Journal
المؤلفون: Aragón Urrego, Daniel
مصطلحات موضوعية: Optimal portfolio, risk parity, clustering, portafolio óptimo, paridad de riesgo
وصف الملف: application/pdf; text/html
Relation: https://revistas.uexternado.edu.co/index.php/odeon/article/download/8491/13489; https://revistas.uexternado.edu.co/index.php/odeon/article/download/8491/13490; Núm. 21 , Año 2021 : Julio-Diciembre; 124; 21; 105; ODEON; Bechis, L. (2020). Machine learning portfolio optimization: Hierarchical risk parity and modern portfolio theory (Tesis de maestría). Libera Università Internazionale degli Studi Sociali Guido Carli. http://tesi.luiss.it/28022/1/709261_bechis _ luca.pdf; Bailey, D. y López de Prado, M. (2012). The Sharpe coefficient efficient frontier. Journal of Risk, 15(2): 3-44. https://doi.org/10.21314/jor.2012.255; Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43. https://doi.org/10.2469/faj.v48.n5.28; Clarke, R., De Silva, H. y Thorley, S. (2002). Portfolio constraints and the fundamental law of active management. Financial Analysts Journal, 58: 48-66. https://doi. org/10.2469/faj.v58.n5.2468; Ledoit, O. y Wolf, M. (2004). A well-conditioned estimator for large-dimensional co-variance matrices. Journal of Multivariate Analysis, 88(2), 365-411. https://doi. org/10.1016/S0047-259X(03)00096-4; León, D., Aragón, A., Sandoval, J., Hernández, G., Arévalo, A. y Niño, J. (2017). Clus-tering algorithms for risk-adjusted portfolio construction. Procedia Computer Science, 108, 1334-1343. https://doi.org/10.1016/j.procs.2017.05.185; López de Prado, M. (2016). Building diversified portfolios that outperform out of sam¬ple. The Journal of Portfolio Management, 42(4), 59-69. https://doi.org/10.3905/ jpm.2016.42.4.059; López de Prado, M. (2018). Advances in financial machine learning. John Wiley & Sons.; López de Prado, M. (2020). Machine learning for asset managers. Cambridge Uni¬versity Press.; Markowitz, H. (1952). Portfolio Selection. Journal of Finance, 7(1), 77-91.; Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investments. Wiley.; Mercader, M. (2021). Hierarchical Risk Parity: portfolio optimization. Mathema¬tics and Physics Engineering Final Project. Universitat Politécnica de Ca¬talunya. https://upcommons.upc.edu/bitstream/handle/2117/350200/tfg.pdf?sequence=1&isAllowed=y; Michaud, R. O. y Michaud, R. (2007). Estimation error and portfolio optimization: A Resampling Solution. Working paper. https://papers.ssrn.com/sol3/papers.cfm? abstract_id=2658657; Raffinot, T. (2018). The hierarchical equal risk contribution portfolio. Working paper. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3237540.; Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3), 425-442. https://doi.org/10.1111/j.1540-6261.1964. tb02865.x; Tatsat, H., Puri, S. y Lookabaugh, B. (2020). Machine Learning and Data Science Blueprints for Finance. O’Reilly Media.; Vyas, A. (2019). The hierarchical risk parity algorithm: An introduction. Hudson and Thames Quantitative Research. Working paper. https://hudsonthames.org/?avia_ forced_reroute=1; https://bdigital.uexternado.edu.co/handle/001/15346; https://doi.org/10.18601/17941113.n21.06
-
6Academic Journal
المؤلفون: Zapata Q., Carlos Andrés
مصطلحات موضوعية: optimal portfolio, ESG criteria, socially responsible investment, portafolio óptimo, criterios ASG, inversión socialmente responsable
وصف الملف: application/pdf; text/html
Relation: https://revistas.uexternado.edu.co/index.php/odeon/article/download/8489/13485; https://revistas.uexternado.edu.co/index.php/odeon/article/download/8489/13486; Núm. 21 , Año 2021 : Julio-Diciembre; 79; 21; 55; ODEON; Acuerdo de París (2015). United Nations framework convention on climate change. https://unfccc.int/sites/default/files/english_paris_agreement.pdf; Alessandrini, F. y Jondeau, E. (2021). Optimal strategies for ESG portfolios. The Journal of Portfolio Management, 47(6), 114-138. https://doi.org/10.3905/jpm.2021.1.241; Ballestero, E., Bravo, M., Pérez-Gladish, B., Arenas-Parra, M. y Pla-Santamaría, D. (2012). Socially responsible investment: A multicriteria approach to portfolio selection combining ethical and financial objectives. European Journal of Ope¬rational Research, 216(2), 487-494. https://doi.org/10.1016/j.ejor.2011.07.011; Bender, J., He, C., Ooi, C., y Sun, X. (2020). Reducing the Carbon Intensity of Low Volatility Portfolios. Journal of Portfolio Management, 46(3), 108-22. https://doi. org/10.3905/jpm.2020.46.3.108; Branch, M., Goldberg, L. y Hand, P. (2019). A guide to ESG portfolio construction. The Journal of Portfolio Management, 45(4), 61-66. https://doi.org/10.3905/ jpm.2019.45.4.061; Caballero, A., Garcia, A., Salcedo, J. y Vercher, M. (2020). Tri-criterion model for cons-tructing low-carbon mutual fund portfolios: A preference-based multi-objective genetic algorithm approach. International Journal of Environmental Research and Public Health, 17(17), 6324. https://doi.org/10.3390/ijerph17176324; Calvo, C., Ivorra, C. y Liern, V. (2015). Finding socially responsible portfolios close to conventional ones. International Review of Financial Analysis, 40, 52-63. https:// doi.org/10.1016/j.irfa.2015.03.014; Cesarone, F., Martino, M. y Carleo, A. (2022). Does ESG impact really enhance port¬folio profitability? Sustainability, 14(4), 2050. https://doi.org/10.3390/su14042050; Chen, L., Zhang, L., Huang, J., Xiao, H. y Zhou, Z. (2021). Social responsibility port¬folio optimization incorporating ESG criteria. Journal of Management Science and Engineering, 6(1), 75-85. https://doi.org/10.1016/j.jmse.2021.02.005; Coqueret, G. (2022). Perspectives in sustainable equity investing. CRC Press.; De Spiegeleer, J., Höcht, S., Jakubowski, D., Reyners, S. y Schoutens, W. (2021). esg: A new dimension in portfolio allocation. Journal of Sustainable Finance & In¬vestment, 1-41. https://doi.org/10.1080/20430795.2021.1923336; Fabozzi, F., Kolm, P., Pachamanova, D. y Focardi, S. (2007). Robust Portfolio Opti¬mization and Management. John Wiley & Sons.; Francis, C. J. y Kim, D. (2013). Modern Portfolio Theory: Foundation, Analysis, and New Developments. Wiley Finance.; Gasser, S. M., Rammerstorfer, M. y Weinmayer, K. (2017). Markowitz revisited: Social portfolio engineering. European Journal of Operational Research, 258(3), 1181- 1190. https://doi.org/10.1016/j.ejor.2016.10.043; Gil-Bazo, J., Ruiz-Verdú, P. y Santos, A. A. (2010). The performance of socially res-ponsible mutual funds: The role of fees and management companies. Journal of Business Ethics, 94(2), 243-263. https://doi.org/10.1007/s10551-009-0260-4; Hartzmark, S. M. y Sussman, A. B. (2019). Do investors value sustainability? A natural experiment examining ranking and fund flows. The Journal of Finance, 74(6), 2789-2837. https://doi.org/10.1111/jofi.12841; Henke, H. M. (2016). The effect of social screening on bond mutual fund perfor¬mance. Journal of Banking & Finance, 67(1), 69-84. https://doi.org/10.1016/j. jbankfin.2016.01.010; Henriksson, R., Livnat, J., Pfeifer, P. y Stumpp, M. (2019). Integrating esg in portfolio construction. The Journal of Portfolio Management, 45(4), 67-81. https://doi. org/10.3905/jpm.2019.45.4.067; Hirschberger, M., Steuer, R. E., Utz, S., Wimmer, M. y Qi, Y. (2013). Computing the nondominated surface in tri-criterion portfolio selection. Operations Research, 61(1), 169-183. https://doi.org/10.1287/opre.1120.1140; Kolm, P., Tütüncü, R. y Fabozzi, F. (2014). 60 Years of portfolio optimization: Prac¬tical challenges and current trends. European Journal of Operational Research, 234(2), 356-371. https://doi.org/10.1016/j.ejor.2013.10.060; Lagerkvist, C. J., Edenbrandt, A. K., Tibbelin, I. y Wahlstedt, Y. (2020). Preferences for sustainable and responsible equity funds-A choice experiment with Swedish private investors. Journal of Behavioral and Experimental Finance, 28(1), 100406. https://doi.org/10.1016/j.jbef.2020.100406; Markowitz, H. (1952). Portfolio Selection. Journal of Finance, 7(1), 77–91.; Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investments. Wiley.; Naffa, H. y Fain, M. (2022). A factor approach to the performance of esg leaders and laggards. Finance Research Letters, 44(1), 102073. https://doi.org/10.1016/j. frl.2021.102073; Nofsinger, J. y Varma, A. (2014). Socially responsible funds and market crises. Journal of Banking & Finance, 48(1), 180-193. https://doi.org/10.1016/j.jbankfin.2013.12.016; Ortas, E., Moneva, J. M., Burritt, R. y Tingey-Holyoak, J. (2014). Does sustainability investment provide adaptive resilience to ethical investors? Evidence from Spain. Journal of Business Ethics, 124(2), 297-309. https://doi.org/10.1007/s10551-013- 1873-1; Pedersen, L. H., Fitzgibbons, S. y Pomorski, L. (2021). Responsible investing: The esg-efficient frontier. Journal of Financial Economics, 142(2), 572-597. https:// doi.org/10.1016/j.jfineco.2020.11.001; Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3), 425-442. https://doi.org/10.1111/j.1540-6261.1964. tb02865.x; Utz, S., Wimmer, M., Hirschberger, M., y Steuer, R. (2014). Tri-criterion inverse port¬folio optimization with application to socially responsible mutual funds. Euro¬pean Journal of Operational Research, 234(2), 491-498. https://doi.org/10.1016/j. ejor.2013.07.024; https://bdigital.uexternado.edu.co/handle/001/15344; https://doi.org/10.18601/17941113.n21.04
-
7Academic Journal
المؤلفون: Zapata Quimbayo, Carlos Andrés
مصطلحات موضوعية: optimal portfolio, robust optimization, uncertainty sets, portafolio óptimo, optimización robusta, conjuntos de incertidumbre
وصف الملف: application/pdf
Relation: https://revistas.uexternado.edu.co/index.php/odeon/article/download/7837/11404; Núm. 20 , Año 2021 : Enero-Junio; 121; 20; 93; Odeon; Bandi, C. y Bertsimas, D. (2012). Tractable stochastic analysis in high dimensions via robust optimization. Mathematical programming, 134(1), 23-70.; Ben-Tal, A. y Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23(4), 769-805.; Bertsimas, D., Darnell, C. y Soucy, R. (1999). Portfolio construction through mixedinteger programming at Grantham, Mayo, Van Otterloo and Company. Interfaces, 29(1), 49-66.; Bertsimas, D. y Brown, D. (2009). Constructing uncertainty sets for robust linear optimization. Operations Research, 57(6), 1483-1495.; Bertsimas, D., Brown, D. y Caramanis, C. (2011). Theory and applications of robust optimization. SIAM Review, 53(3), 464-501.; Best, M. y Grauer, R. (1991). On the sensitivity of mean variance efficient portfolios to changes in asset Means. The Review of Financial Studies, 4(2), 314-342.; Black, F. y Litterman, R. (1991). Global Asset Allocation with Equities, Bonds, and Currencies. Goldman, Sachs & Co Fixed Income Research, 1-44.; Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43.; Blog, B., Hoek, G., Kan, A. y Timmer, G. (1983). The optimal selection of small portfolios. Management Science, 29(7), 792-798.; Chopra, V. y Ziemba, W. (1993). The effects of errors in means, variances, and covariances on optimal portfolio choice. Journal of Portfolio Management, 19(2), 6-11.; Choueifaty, Y. y Coignard, Y. (2008). Toward maximum diversification. Journal of Portfolio Management, 35(1), 40-51.; El Ghaoui, L., Oustry, F. y Lebret, H. (1998). Robust solutions to uncertain semidefinite programs. SIAM Journal on Optimization, 9(1), 33-52.; El Ghaoui, L., Oks, M. y Oustry, F. (2003). Worst-case value-at-risk and robust portfolio optimization: A conic programming approach. Operations Research, 51(4), 543-556.; Elton, E., Gruber, M. y Padberg, M. (1976). Simple criteria for optimal portfolio selection. The Journal of Finance, 31(5), 1341-1357.; Fabozzi, F., Huang, D. y Zhou, G. (2010). Robust portfolios: Contributions from operations research and finance. Annals of Operations Research, 176(1), 191-220.; Fabozzi, F., Kolm, P., Pachamanova, D. A. y Focardi, S. (2007). Robust portfolio optimization and management. John Wiley & Sons.; Francis, J. y Kim, D. (2013). Modern Portfolio Theory: Foundations, Analysis, and New Developments. John Wiley & Sons.; Garlappi, L., Uppal, R. y Wang, T. (2007). Portfolio selection with parameter and model uncertainty: A multi-prior approach. Review of Financial Studies, 20(1), 41-81.; Georgantas, A., Doumpos, M. y Zopounidis, C. (2021). Robust optimization approaches for portfolio selection: a comparative analysis. Annals of Operations Research, 1-17.; Goldfarb, D. e Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1-38.; He, G. y Litterman, R. (1999). The intuition behind Black-Litterman model portfolios. Technical report, Goldman Sachs–Investment Management Research, 1-18.; Huang, D., Fabozzi, F. y Fukushima, M. (2007). Robust portfolio selection with uncertain exit time using worst-case VaR strategy. Operations Research Letters, 35, 627-635.; Idzorek, T. (2007). A step-by-step guide to the Black-Litterman model: Incorporating user-specified confidence levels (pp. 17-38). En S. Satchell (Ed.). Forecasting expected returns in the financial markets. Academic Press.; James, W. y Stein, C. (1961). Estimation with quadratic loss. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1, 361-380.; Kapsos, M., Christofides, N. y Rustem, B. (2014). Worst-case robust Omega ratio. European Journal of Operational Research, 234(2), 499-507.; Kara, G., Ozmen, A. y Weber, G. (2019). Stability advances in robust portfolio optimization under parallelepiped uncertainty. Central European Journal of Operations Research, 27(1), 241-261.; Keating, C. y Shadwick, W. (2002). A universal performance measure. Journal of Performance Measurement, 6(3), 59-84.; Kim, J., Kim, W. y Fabozzi, F. (2013). Recent developments in robust portfolios with a worst-case approach. Journal of Optimization Theory and Applications, 161(1), 103-121.; Kim, J., Kim, W., Kwon, D. y Fabozzi, F. (2018). Robust equity portfolio performance. Annals of Operations Research, 266(1-2), 293-312.; Kolm, P., Tütüncü, R. y Fabozzi, F. (2014). 60 years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research, 234(2), 356-371.; Ledoit, O. y Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10(5), 603-621.; Lintner, J. (1965). Security prices, risk, and maximal gains from diversification. The Journal of Finance, 20(4), 587-615.; Lobo, M. y Boyd, S. (2000). Portfolio optimization with linear and fixed transaction costs and bounds on risk. Annals of Operations Research, 152(1), 341-365.; Lu, Z. (2011b). Robust portfolio selection based on a joint ellipsoidal uncertainty set. Optimization Methods & Software, 26, 89-104.; Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.; Markowitz, H. (1959). Portfolio selection: efficient diversification of investments. Wiley.; Meucci, A. (2008). Fully flexible views: Theory and practice. Risk, 21(10), 97-102.; Meucci, A. (2009). Enhancing the Black-Litterman and related approaches: Views and stress-test on risk factors. Journal of Asset Management, 10, 89-96.; Meucci, A. (2011). Robust Bayesian Allocation. https://ssrn.com/abstract=681553, 1-18.; Michaud, R. (1989). The Markowitz optimization enigma: Is optimization optimal? Financial Analysts Journal, 45(1), 31-42.; Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768-783.; Pachamanova, D. y Fabozzi, F. (2012). Equity Portfolio Selection Models in Practice. Encyclopedia of Financial Models, 1, 61-87.; Rockefellar, R. y Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 3(1), 21-41.; Romero, C. (2010). La Teoría Moderna de Portafolio: un ensayo sobre sus formulaciones originales y sus repercusiones contemporáneas. ODEON, 5, 103-118.; Schöttle, K., Werner, R. y Zagst, R. (2010). Comparison and robustification of Bayes and Black-Litterman models. Mathematical Methods of Operations Research, 71(3), 453-475.; Sharma, A., Utz, S. y Mehra, A. (2017). Omega-CVaR portfolio optimization and its worst-case analysis. OR Spectrum, 39(2), 505-539.; Sharpe, W. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk. The Journal of Finance, 19(1), 425-42.; Sortino, F. y Price, L. (1994). Performance measurement in a downside risk framework. Journal of Investing, 3(3), 59-64.; Treynor, J. (1965) How to rate management of investment funds. Harvard Business Review, 43, 63-75.; Tütüncü, R. y Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132(1-4), 157-187.; Xidonas, P., Steuer, R. y Hassapis, C. (2020). Robust portfolio optimization: A categorized bibliographic review. Annals of Operations Research, 292(1), 533-552.; Yin, C., Perchet, R. y Soupé, F. (2021). A practical guide to robust portfolio optimization. Quantitative Finance, 21(6), 911-928.; Zhu, S. y Fukushima, M. (2009). Worst-case conditional value-at-risk with application to robust portfolio management. Operations Research, 57(5), 1155-1168.; Zymler, S., Kuhn, D. y Rustem, B. (2013). Worst-case value at risk of nonlinear portfolios. Management Science, 59(1), 172-188.; https://bdigital.uexternado.edu.co/handle/001/7928; https://doi.org/10.18601/17941113.n20.04
-
8Academic Journal
المصدر: Odeon; No. 21 (2021): Julio-Diciembre; 81-104 ; Odeon; Núm. 21 (2021): Julio-Diciembre; 81-104 ; 2346-2140 ; 1794-1113
مصطلحات موضوعية: Optimal portfolio, Bayesian methods, robust optimization, portafolio óptimo, métodos bayesianos, optimización robusta
وصف الملف: application/pdf
Relation: https://revistas.uexternado.edu.co/index.php/odeon/article/view/8490/13078; Avramov, D. y Zhou, G. (2010). Bayesian portfolio analysis. Annual Review of Financial Economics, 2(1), 25-47. https://faculty.runi.ac.il/davramov/paper10.pdf; Bade, A., Frahm, G. y Jaekel, U. (2009). A general approach to Bayesian portfolio optimization. Mathematical Methods of Operations Research, 70(2), 337-356. https://doi.org/10.1007/s00186-008-0271-4; Best, M. y Grauer, R. (1991). Sensitivity analysis for mean-variance portfolio problems. Management Science, 37(8), 980-989. https://doi.org/10.1287/mnsc.37.8.980; Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43. https://doi.org/10.2469/faj.v48.n5.28; Fabozzi, F., Focardi, S., Kolm, P. y Pachamanova, D. (2007). Robust portfolio optimi¬zation and management. John Wiley & Sons.; Fama, E. y French, K. (1993). Common risk factors in the returns on stocks and bonds. Journal of financial economics, 33(1), 3-56. https://doi.org/10.1016/0304- 405X(93)90023-5; Garlappi, L., Uppal, R. y Wang, T. (2007). Portfolio selection with parameter and mo¬del uncertainty: A multi-prior approach. The Review of Financial Studies, 20(1), 41-81. https://doi.org/10.1093/rfs/hhl003; Georgantas, A. (2020). Robust Optimization Approaches for Portfolio Selection: A Computational and Comparative Analysis. Working paper. https://arxiv.org/ abs/2010.13397; Goldfarb, D. e Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1-38. https://doi.org/10.1287/moor.28.1.1.14260; Halldórsson, B. y Tütüncü, R. H. (2003). An interior-point method for a class of saddle-point problems. Journal of Optimization Theory and Applications, 116(3), 559-590. https://doi.org/10.1023/A:1023065319772; Kim, W. C., Kim, J. H., Ahn, S. H. y Fabozzi, F. J. (2013). What do robust equity port¬folio models really do? Annals of Operations Research, 205(1), 141-168. https:// doi.org/10.1007/s10479-012-1247-6; Kim, W. C., Kim, J. H. y Fabozzi, F. J. (2015). Robust Equity Portfolio Management: Formulations, Implementations, and Properties Using MATLAB. John Wiley & Sons.; Kim, J. H., Kim, W. C., Kwon, D. G. y Fabozzi, F. J. (2018). Robust equity portfo¬lio performance. Annals of Operations Research, 266(1), 293-312. https://doi. org/10.1007/s10479-017-2739-1; Lobo, M. S., Vandenberghe, L., Boyd, S. y Lebret, H. (1998). Applications of second-order cone programming. Linear Algebra and its Applications, 284(1-3), 193-228. https://doi.org/10.1016/S0024-3795(98)10032-0; Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.; Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New Heaven: Yale university Press.; Meucci, A. (2005). Risk and asset allocation (vol. 1). Springer.; Meucci, A. (2011). Robust Bayesian Allocation. ssrn Working paper 681553. https:// papers.ssrn.com/sol3/papers.cfm?abstract_id=681553; Michaud, R. (1998). Efficient asset management: A practical guide to stock portfolio optimization and asset allocation. Oxford University Press.; Michaud, R. y Michaud, R. (2008). Estimation error and portfolio optimization: A resampling solution. Journal of Investment Management, 6(1), 8-28.; Nesterov, Y. y Nemirovsky, A. (1993). Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms. SIAM.; Pachamanova, D. y Fabozzi, F. (2012). Equity portfolio selection models in practice. En-cyclopedia of Financial Models, 1(1), 61-87. https://doi.org/10.1002/9781118182635. efm0046; Tütüncü, R. y Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132(1), 157-187. https://doi.org/10.1023/b:anor.0000045281.41041.ed; Williams, J. (1938). The Theory of Investment Value. Harvard University Press.; Zapata, C. (2021). Optimización robusta de portafolios: conjuntos de incertidumbre y contrapartes robustas. odeon, 20, 93-121. https://doi.org/10.18601/17941113.n20.04; https://revistas.uexternado.edu.co/index.php/odeon/article/view/8490
-
9Academic Journal
المؤلفون: Aragón Urrego, Daniel
المصدر: Odeon; No. 21 (2021): Julio-Diciembre; 105-124 ; Odeon; Núm. 21 (2021): Julio-Diciembre; 105-124 ; 2346-2140 ; 1794-1113
مصطلحات موضوعية: Optimal portfolio, risk parity, clustering, portafolio óptimo, paridad de riesgo
وصف الملف: application/pdf
Relation: https://revistas.uexternado.edu.co/index.php/odeon/article/view/8491/13079; Bechis, L. (2020). Machine learning portfolio optimization: Hierarchical risk parity and modern portfolio theory (Tesis de maestría). Libera Università Internazionale degli Studi Sociali Guido Carli. http://tesi.luiss.it/28022/1/709261_bechis _ luca.pdf; Bailey, D. y López de Prado, M. (2012). The Sharpe coefficient efficient frontier. Journal of Risk, 15(2): 3-44. https://doi.org/10.21314/jor.2012.255; Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43. https://doi.org/10.2469/faj.v48.n5.28; Clarke, R., De Silva, H. y Thorley, S. (2002). Portfolio constraints and the fundamental law of active management. Financial Analysts Journal, 58: 48-66. https://doi. org/10.2469/faj.v58.n5.2468; Ledoit, O. y Wolf, M. (2004). A well-conditioned estimator for large-dimensional co-variance matrices. Journal of Multivariate Analysis, 88(2), 365-411. https://doi. org/10.1016/S0047-259X(03)00096-4; León, D., Aragón, A., Sandoval, J., Hernández, G., Arévalo, A. y Niño, J. (2017). Clus-tering algorithms for risk-adjusted portfolio construction. Procedia Computer Science, 108, 1334-1343. https://doi.org/10.1016/j.procs.2017.05.185; López de Prado, M. (2016). Building diversified portfolios that outperform out of sam¬ple. The Journal of Portfolio Management, 42(4), 59-69. https://doi.org/10.3905/ jpm.2016.42.4.059; López de Prado, M. (2018). Advances in financial machine learning. John Wiley & Sons.; López de Prado, M. (2020). Machine learning for asset managers. Cambridge Uni¬versity Press.; Markowitz, H. (1952). Portfolio Selection. Journal of Finance, 7(1), 77-91.; Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investments. Wiley.; Mercader, M. (2021). Hierarchical Risk Parity: portfolio optimization. Mathema¬tics and Physics Engineering Final Project. Universitat Politécnica de Ca¬talunya. https://upcommons.upc.edu/bitstream/handle/2117/350200/tfg.pdf?sequence=1&isAllowed=y; Michaud, R. O. y Michaud, R. (2007). Estimation error and portfolio optimization: A Resampling Solution. Working paper. https://papers.ssrn.com/sol3/papers.cfm? abstract_id=2658657; Raffinot, T. (2018). The hierarchical equal risk contribution portfolio. Working paper. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3237540.; Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3), 425-442. https://doi.org/10.1111/j.1540-6261.1964. tb02865.x; Tatsat, H., Puri, S. y Lookabaugh, B. (2020). Machine Learning and Data Science Blueprints for Finance. O’Reilly Media.; Vyas, A. (2019). The hierarchical risk parity algorithm: An introduction. Hudson and Thames Quantitative Research. Working paper. https://hudsonthames.org/?avia_ forced_reroute=1; https://revistas.uexternado.edu.co/index.php/odeon/article/view/8491
-
10Academic Journal
المؤلفون: Zapata Q., Carlos Andrés
المصدر: Odeon; No. 21 (2021): Julio-Diciembre; 55-79 ; Odeon; Núm. 21 (2021): Julio-Diciembre; 55-79 ; 2346-2140 ; 1794-1113
مصطلحات موضوعية: optimal portfolio, ESG criteria, socially responsible investment, portafolio óptimo, criterios ASG, inversión socialmente responsable
وصف الملف: application/pdf
Relation: https://revistas.uexternado.edu.co/index.php/odeon/article/view/8489/13077; Acuerdo de París (2015). United Nations framework convention on climate change. https://unfccc.int/sites/default/files/english_paris_agreement.pdf; Alessandrini, F. y Jondeau, E. (2021). Optimal strategies for ESG portfolios. The Journal of Portfolio Management, 47(6), 114-138. https://doi.org/10.3905/jpm.2021.1.241; Ballestero, E., Bravo, M., Pérez-Gladish, B., Arenas-Parra, M. y Pla-Santamaría, D. (2012). Socially responsible investment: A multicriteria approach to portfolio selection combining ethical and financial objectives. European Journal of Ope¬rational Research, 216(2), 487-494. https://doi.org/10.1016/j.ejor.2011.07.011; Bender, J., He, C., Ooi, C., y Sun, X. (2020). Reducing the Carbon Intensity of Low Volatility Portfolios. Journal of Portfolio Management, 46(3), 108-22. https://doi. org/10.3905/jpm.2020.46.3.108; Branch, M., Goldberg, L. y Hand, P. (2019). A guide to ESG portfolio construction. The Journal of Portfolio Management, 45(4), 61-66. https://doi.org/10.3905/ jpm.2019.45.4.061; Caballero, A., Garcia, A., Salcedo, J. y Vercher, M. (2020). Tri-criterion model for cons-tructing low-carbon mutual fund portfolios: A preference-based multi-objective genetic algorithm approach. International Journal of Environmental Research and Public Health, 17(17), 6324. https://doi.org/10.3390/ijerph17176324; Calvo, C., Ivorra, C. y Liern, V. (2015). Finding socially responsible portfolios close to conventional ones. International Review of Financial Analysis, 40, 52-63. https:// doi.org/10.1016/j.irfa.2015.03.014; Cesarone, F., Martino, M. y Carleo, A. (2022). Does ESG impact really enhance port¬folio profitability? Sustainability, 14(4), 2050. https://doi.org/10.3390/su14042050; Chen, L., Zhang, L., Huang, J., Xiao, H. y Zhou, Z. (2021). Social responsibility port¬folio optimization incorporating ESG criteria. Journal of Management Science and Engineering, 6(1), 75-85. https://doi.org/10.1016/j.jmse.2021.02.005; Coqueret, G. (2022). Perspectives in sustainable equity investing. CRC Press.; De Spiegeleer, J., Höcht, S., Jakubowski, D., Reyners, S. y Schoutens, W. (2021). esg: A new dimension in portfolio allocation. Journal of Sustainable Finance & In¬vestment, 1-41. https://doi.org/10.1080/20430795.2021.1923336; Fabozzi, F., Kolm, P., Pachamanova, D. y Focardi, S. (2007). Robust Portfolio Opti¬mization and Management. John Wiley & Sons.; Francis, C. J. y Kim, D. (2013). Modern Portfolio Theory: Foundation, Analysis, and New Developments. Wiley Finance.; Gasser, S. M., Rammerstorfer, M. y Weinmayer, K. (2017). Markowitz revisited: Social portfolio engineering. European Journal of Operational Research, 258(3), 1181- 1190. https://doi.org/10.1016/j.ejor.2016.10.043; Gil-Bazo, J., Ruiz-Verdú, P. y Santos, A. A. (2010). The performance of socially res-ponsible mutual funds: The role of fees and management companies. Journal of Business Ethics, 94(2), 243-263. https://doi.org/10.1007/s10551-009-0260-4; Hartzmark, S. M. y Sussman, A. B. (2019). Do investors value sustainability? A natural experiment examining ranking and fund flows. The Journal of Finance, 74(6), 2789-2837. https://doi.org/10.1111/jofi.12841; Henke, H. M. (2016). The effect of social screening on bond mutual fund perfor¬mance. Journal of Banking & Finance, 67(1), 69-84. https://doi.org/10.1016/j. jbankfin.2016.01.010; Henriksson, R., Livnat, J., Pfeifer, P. y Stumpp, M. (2019). Integrating esg in portfolio construction. The Journal of Portfolio Management, 45(4), 67-81. https://doi. org/10.3905/jpm.2019.45.4.067; Hirschberger, M., Steuer, R. E., Utz, S., Wimmer, M. y Qi, Y. (2013). Computing the nondominated surface in tri-criterion portfolio selection. Operations Research, 61(1), 169-183. https://doi.org/10.1287/opre.1120.1140; Kolm, P., Tütüncü, R. y Fabozzi, F. (2014). 60 Years of portfolio optimization: Prac¬tical challenges and current trends. European Journal of Operational Research, 234(2), 356-371. https://doi.org/10.1016/j.ejor.2013.10.060; Lagerkvist, C. J., Edenbrandt, A. K., Tibbelin, I. y Wahlstedt, Y. (2020). Preferences for sustainable and responsible equity funds-A choice experiment with Swedish private investors. Journal of Behavioral and Experimental Finance, 28(1), 100406. https://doi.org/10.1016/j.jbef.2020.100406; Markowitz, H. (1952). Portfolio Selection. Journal of Finance, 7(1), 77–91.; Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investments. Wiley.; Naffa, H. y Fain, M. (2022). A factor approach to the performance of esg leaders and laggards. Finance Research Letters, 44(1), 102073. https://doi.org/10.1016/j. frl.2021.102073; Nofsinger, J. y Varma, A. (2014). Socially responsible funds and market crises. Journal of Banking & Finance, 48(1), 180-193. https://doi.org/10.1016/j.jbankfin.2013.12.016; Ortas, E., Moneva, J. M., Burritt, R. y Tingey-Holyoak, J. (2014). Does sustainability investment provide adaptive resilience to ethical investors? Evidence from Spain. Journal of Business Ethics, 124(2), 297-309. https://doi.org/10.1007/s10551-013- 1873-1; Pedersen, L. H., Fitzgibbons, S. y Pomorski, L. (2021). Responsible investing: The esg-efficient frontier. Journal of Financial Economics, 142(2), 572-597. https:// doi.org/10.1016/j.jfineco.2020.11.001; Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3), 425-442. https://doi.org/10.1111/j.1540-6261.1964. tb02865.x; Utz, S., Wimmer, M., Hirschberger, M., y Steuer, R. (2014). Tri-criterion inverse port¬folio optimization with application to socially responsible mutual funds. Euro¬pean Journal of Operational Research, 234(2), 491-498. https://doi.org/10.1016/j. ejor.2013.07.024; https://revistas.uexternado.edu.co/index.php/odeon/article/view/8489
-
11Academic Journal
المؤلفون: Zapata Quimbayo, Carlos Andrés
المصدر: ODEON; Núm. 20 (2021): Enero-Junio; 93-121 ; 2346-2140 ; 1794-1113
مصطلحات موضوعية: optimal portfolio, robust optimization, uncertainty sets, portafolio óptimo, optimización robusta, conjuntos de incertidumbre
وصف الملف: application/pdf
Relation: https://revistas.uexternado.edu.co/index.php/odeon/article/view/7837/11404; Bandi, C. y Bertsimas, D. (2012). Tractable stochastic analysis in high dimensions via robust optimization. Mathematical programming, 134(1), 23-70.; Ben-Tal, A. y Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23(4), 769-805.; Bertsimas, D., Darnell, C. y Soucy, R. (1999). Portfolio construction through mixedinteger programming at Grantham, Mayo, Van Otterloo and Company. Interfaces, 29(1), 49-66.; Bertsimas, D. y Brown, D. (2009). Constructing uncertainty sets for robust linear optimization. Operations Research, 57(6), 1483-1495.; Bertsimas, D., Brown, D. y Caramanis, C. (2011). Theory and applications of robust optimization. SIAM Review, 53(3), 464-501.; Best, M. y Grauer, R. (1991). On the sensitivity of mean variance efficient portfolios to changes in asset Means. The Review of Financial Studies, 4(2), 314-342.; Black, F. y Litterman, R. (1991). Global Asset Allocation with Equities, Bonds, and Currencies. Goldman, Sachs & Co Fixed Income Research, 1-44.; Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43.; Blog, B., Hoek, G., Kan, A. y Timmer, G. (1983). The optimal selection of small portfolios. Management Science, 29(7), 792-798.; Chopra, V. y Ziemba, W. (1993). The effects of errors in means, variances, and covariances on optimal portfolio choice. Journal of Portfolio Management, 19(2), 6-11.; Choueifaty, Y. y Coignard, Y. (2008). Toward maximum diversification. Journal of Portfolio Management, 35(1), 40-51.; El Ghaoui, L., Oustry, F. y Lebret, H. (1998). Robust solutions to uncertain semidefinite programs. SIAM Journal on Optimization, 9(1), 33-52.; El Ghaoui, L., Oks, M. y Oustry, F. (2003). Worst-case value-at-risk and robust portfolio optimization: A conic programming approach. Operations Research, 51(4), 543-556.; Elton, E., Gruber, M. y Padberg, M. (1976). Simple criteria for optimal portfolio selection. The Journal of Finance, 31(5), 1341-1357.; Fabozzi, F., Huang, D. y Zhou, G. (2010). Robust portfolios: Contributions from operations research and finance. Annals of Operations Research, 176(1), 191-220.; Fabozzi, F., Kolm, P., Pachamanova, D. A. y Focardi, S. (2007). Robust portfolio optimization and management. John Wiley & Sons.; Francis, J. y Kim, D. (2013). Modern Portfolio Theory: Foundations, Analysis, and New Developments. John Wiley & Sons.; Garlappi, L., Uppal, R. y Wang, T. (2007). Portfolio selection with parameter and model uncertainty: A multi-prior approach. Review of Financial Studies, 20(1), 41-81.; Georgantas, A., Doumpos, M. y Zopounidis, C. (2021). Robust optimization approaches for portfolio selection: a comparative analysis. Annals of Operations Research, 1-17.; Goldfarb, D. e Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1-38.; He, G. y Litterman, R. (1999). The intuition behind Black-Litterman model portfolios. Technical report, Goldman Sachs–Investment Management Research, 1-18.; Huang, D., Fabozzi, F. y Fukushima, M. (2007). Robust portfolio selection with uncertain exit time using worst-case VaR strategy. Operations Research Letters, 35, 627-635.; Idzorek, T. (2007). A step-by-step guide to the Black-Litterman model: Incorporating user-specified confidence levels (pp. 17-38). En S. Satchell (Ed.). Forecasting expected returns in the financial markets. Academic Press.; James, W. y Stein, C. (1961). Estimation with quadratic loss. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1, 361-380.; Kapsos, M., Christofides, N. y Rustem, B. (2014). Worst-case robust Omega ratio. European Journal of Operational Research, 234(2), 499-507.; Kara, G., Ozmen, A. y Weber, G. (2019). Stability advances in robust portfolio optimization under parallelepiped uncertainty. Central European Journal of Operations Research, 27(1), 241-261.; Keating, C. y Shadwick, W. (2002). A universal performance measure. Journal of Performance Measurement, 6(3), 59-84.; Kim, J., Kim, W. y Fabozzi, F. (2013). Recent developments in robust portfolios with a worst-case approach. Journal of Optimization Theory and Applications, 161(1), 103-121.; Kim, J., Kim, W., Kwon, D. y Fabozzi, F. (2018). Robust equity portfolio performance. Annals of Operations Research, 266(1-2), 293-312.; Kolm, P., Tütüncü, R. y Fabozzi, F. (2014). 60 years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research, 234(2), 356-371.; Ledoit, O. y Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10(5), 603-621.; Lintner, J. (1965). Security prices, risk, and maximal gains from diversification. The Journal of Finance, 20(4), 587-615.; Lobo, M. y Boyd, S. (2000). Portfolio optimization with linear and fixed transaction costs and bounds on risk. Annals of Operations Research, 152(1), 341-365.; Lu, Z. (2011b). Robust portfolio selection based on a joint ellipsoidal uncertainty set. Optimization Methods & Software, 26, 89-104.; Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.; Markowitz, H. (1959). Portfolio selection: efficient diversification of investments. Wiley.; Meucci, A. (2008). Fully flexible views: Theory and practice. Risk, 21(10), 97-102.; Meucci, A. (2009). Enhancing the Black-Litterman and related approaches: Views and stress-test on risk factors. Journal of Asset Management, 10, 89-96.; Meucci, A. (2011). Robust Bayesian Allocation. https://ssrn.com/abstract=681553, 1-18.; Michaud, R. (1989). The Markowitz optimization enigma: Is optimization optimal? Financial Analysts Journal, 45(1), 31-42.; Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768-783.; Pachamanova, D. y Fabozzi, F. (2012). Equity Portfolio Selection Models in Practice. Encyclopedia of Financial Models, 1, 61-87.; Rockefellar, R. y Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 3(1), 21-41.; Romero, C. (2010). La Teoría Moderna de Portafolio: un ensayo sobre sus formulaciones originales y sus repercusiones contemporáneas. ODEON, 5, 103-118.; Schöttle, K., Werner, R. y Zagst, R. (2010). Comparison and robustification of Bayes and Black-Litterman models. Mathematical Methods of Operations Research, 71(3), 453-475.; Sharma, A., Utz, S. y Mehra, A. (2017). Omega-CVaR portfolio optimization and its worst-case analysis. OR Spectrum, 39(2), 505-539.; Sharpe, W. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk. The Journal of Finance, 19(1), 425-42.; Sortino, F. y Price, L. (1994). Performance measurement in a downside risk framework. Journal of Investing, 3(3), 59-64.; Treynor, J. (1965) How to rate management of investment funds. Harvard Business Review, 43, 63-75.; Tütüncü, R. y Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132(1-4), 157-187.; Xidonas, P., Steuer, R. y Hassapis, C. (2020). Robust portfolio optimization: A categorized bibliographic review. Annals of Operations Research, 292(1), 533-552.; Yin, C., Perchet, R. y Soupé, F. (2021). A practical guide to robust portfolio optimization. Quantitative Finance, 21(6), 911-928.; Zhu, S. y Fukushima, M. (2009). Worst-case conditional value-at-risk with application to robust portfolio management. Operations Research, 57(5), 1155-1168.; Zymler, S., Kuhn, D. y Rustem, B. (2013). Worst-case value at risk of nonlinear portfolios. Management Science, 59(1), 172-188.; https://revistas.uexternado.edu.co/index.php/odeon/article/view/7837
-
12Academic Journal
المؤلفون: González Díez, Luis Alejandro
المساهمون: Cardona Llano, Juan Felipe
مصطلحات موضوعية: Criptoactivos, Portafolio óptimo, Alfa, MONEDA, RIESGO (FINANZAS), PORTAFOLIO DE INVERSIONES, SISTEMA FINANCIERO, Crypto-assets, Optimal portfolio, Alpha, Benchmark
جغرافية الموضوع: Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
وصف الملف: application/pdf
Relation: http://hdl.handle.net/10784/31190; 332.4 G643
الاتاحة: http://hdl.handle.net/10784/31190
-
13Academic Journal
المصدر: Lecturas de Economia; No. 97 (2022): July - December; 369-393 ; Lecturas de Economía; Núm. 97 (2022): Julio - Diciembre; 369-393 ; Lecturas de Economía; No. 97 (2022): juillet - décembre; 369-393 ; 2323-0622 ; 0120-2596
مصطلحات موضوعية: Portafolio óptimo, modelo Black-Litterman, lógica difusa, Modelo de Black-Litterman, Portafolio de inversiones, Bolsas de valores - Colombia, Economía, optimal portfolio, Black-Litterman model, fuzzy logic, Investments Portfolio, Economics, Stock exchanges - Colombia, portefeuille optimal, modèle Black-Litterman, logique floue, Logique diffuse, Portefeuille d'investissement, Économie, Bourse - Colombie
وصف الملف: application/pdf; text/xml; text/html
Relation: https://revistas.udea.edu.co/index.php/lecturasdeeconomia/article/view/346171/20809095; https://revistas.udea.edu.co/index.php/lecturasdeeconomia/article/view/346171/20811418; https://revistas.udea.edu.co/index.php/lecturasdeeconomia/article/view/346171/20811419; https://revistas.udea.edu.co/index.php/lecturasdeeconomia/article/view/346171
-
14Academic Journal
المؤلفون: Garduño-Ruiz, Genaro, García-Mejía, Juan Fernando, Granda-Gutierrez, Everardo Efrén, Martínez-Garduño, Yenit, Lizola-Margullis, Pedro Enrique, Laurent-Martínez, Laura Leticia
المصدر: Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI; Vol 10 No Especial4 (2022): Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI; 28-36 ; Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI; Vol. 10 Núm. Especial4 (2022): Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI; 28-36 ; 2007-6363 ; 10.29057/icbi.v10iEspecial4
مصطلحات موضوعية: Optimal Portfolio Theory, Artificial Immune System, Generalized Reduced Gradient, Genetic Algorithm, Teoría del portafolio optimo, Sistema Inmunológico Artificial, Gradiente Reducido Generalizado, Algoritmo Genético
وصف الملف: application/pdf
Relation: https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/9337/9382; https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/9337
-
15Academic Journal
المصدر: Revista Mexicana de Economía y Finanzas Nueva Época REMEF, Vol 16, Iss 4, Pp e533-e533 (2021)
مصطلحات موضوعية: portafolio óptimo, medida de riesgo, distribuciones α-estables, Public finance, K4430-4675, Finance, HG1-9999, Economics as a science, HB71-74
وصف الملف: electronic resource
-
16Academic Journal
المصدر: Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI; Vol 9 No 17 (2021): January - June; 132-135 ; Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI; Vol. 9 Núm. 17 (2021): Enero - Junio; 132-135 ; 2007-6363 ; 10.29057/icbi.v9i17
مصطلحات موضوعية: Markowitz theory, optimal portfolio, efficient frontier, Python, Jupyter Notebook, Teoría de Markowitz, portafolio óptimo, frontera eficiente
وصف الملف: application/pdf
Relation: https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/6807/8123; https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/6807
-
17Academic Journal
المصدر: Revista mexicana de economía y finanzas v.16 n.4 2021
مصطلحات موضوعية: Portafolio óptimo, medida de riesgo, distribuciones α-estables
وصف الملف: text/html
-
18Academic Journal
المصدر: Lecturas de Economia; No. 92 (2020): January-June; 33-66 ; Lecturas de Economía; Núm. 92 (2020): Enero-Junio; 33-66 ; Lecturas de Economía; No. 92 (2020): Enero-Junio; 33-66 ; 2323-0622 ; 0120-2596
مصطلحات موضوعية: portfolio selection, Markov chain, principal component analysis, risk aversion, stock index, Optimal portfolio, Investments Portfolio, Mathematical models, Principal components analysis (PCA), Stock exchanges - Stock price indexes, Economics, Composición de portafolios, cadenas de Markov, componentes principales, índice bursátil, aversión al riesgo, Portafolio óptimo, Portafolio de inversiones, Cadena de Markov, Modelos matemáticos, Análisis de componentes principales (ACP), Bolsa de valores - Índices bursátiles, Economía, sélection de portefeuille, chaîne de Markov, analyse des composantes principales, aversion au risque, indice boursier, Portefeuille optimal, Portefeuille d'investissement
وصف الملف: application/pdf; text/xml; application/zip; text/html
Relation: https://revistas.udea.edu.co/index.php/lecturasdeeconomia/article/view/338996/20795491; https://revistas.udea.edu.co/index.php/lecturasdeeconomia/article/view/338996/20802169; https://revistas.udea.edu.co/index.php/lecturasdeeconomia/article/view/338996/20802170; https://revistas.udea.edu.co/index.php/lecturasdeeconomia/article/view/338996/20802168; https://revistas.udea.edu.co/index.php/lecturasdeeconomia/article/view/338996
-
19
المؤلفون: Carlos Andres Zapata Quimbayo
مصطلحات موضوعية: uncertainty sets, Applied Mathematics, General Mathematics, robust optimization, conjuntos de incertidumbre, portafolio óptimo, optimal portfolio, optimización robusta
وصف الملف: application/pdf
-
20Academic Journal
المؤلفون: Climent-Hernández,José Antonio
المصدر: Revista mexicana de economía y finanzas v.12 n.2 2017
مصطلحات موضوعية: Portafolio óptimo, Medida de riesgo, Distribuciones α-estables
وصف الملف: text/html