يعرض 1 - 7 نتائج من 7 نتيجة بحث عن '"polymer microfluidic devices"', وقت الاستعلام: 0.33s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: This work was supported by the Bashkir State Medical University Strategic Academic Leadership Program (PRIORITY-2030)., Работа выполнена за счет средств Программы стратегического академического лидерства Башкирского государственного медицинского университета (ПРИОРИТЕТ-2030).

    المصدر: Creative surgery and oncology; Том 13, № 4 (2023); 311-319 ; Креативная хирургия и онкология; Том 13, № 4 (2023); 311-319 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/863/574; Fabre K., Berridge B., Proctor W.R., Ralston S., Will Y., Baran S.W., et al. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. Lab Chip. 2020;20(6):1049–57. DOI:10.1039/c9lc01168d; Park S.M., Eom S., Hong H., Yoon J., Lee S.J., Kim B.Ch., et al. Reconstruction of in vivo-like in vitro model: enabling technologies of microfluidic systems for dynamic biochemical/mechanical stimuli. Microelectron Eng. 2019;203–204:6–24. DOI:10.1016/j.mee.2018.10.010; Wu Q., Liu J., Wang X., Feng L., Wu J., Zhu X., et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online. 2020;19(1):9. DOI:10.1186/s12938-020-0752-0; Sun W., Luo Z., Lee J., Kim H., Lee K., Tebon P., et al. Organ-on-achip for cancer and immune organs modeling. Adv Healthc Mater. 2019;8:1801363. DOI:10.1002/adhm.201801363; Trujillo-de Santiago G., Flores-Garza B.G., Tavares-Negrete J.A., LaraMayorga I.M., González-Gamboa I., Zhang Y.S., et al. The Tumor-onChip: recent advances in the development of microfluidic systems to recapitulate the physiology of solid tumors. Materials. 2019;12:2945. DOI:10.3390/ma12182945; Vormann M.K., Gijzen L., Hutter S., Boot L., Nicolas A., van den Heuvel A., et al. Nephrotoxicity and kidney transport assessment on 3D perfused proximal tubules. AAPS J. 2018;20:90. DOI:10.1208/s12248-018-0248-z; Kramlinger V.M., Dalvie D., Heck C.J.S., Kalgutkar A.S., O’Neill J., Su D., et al. Future of biotransformation science in the pharmaceutical industry. Drug Metab Dispos. 2022;50(3):258–67. DOI:10.1124/dmd.121.000658; Lee S.J., Lee H.A. Trends in the development of human stem cellbased non-animal drug testing models. Korean J Physiol Pharmacol. 2020;24(6):441–52. DOI:10.4196/kjpp.2020.24.6.441; Andersen M.L., Winter L.M.F. Animal models in biological and biomedical research — experimental and ethical concerns. An Acad Bras Cienc. 2019;91(suppl 1):e20170238. DOI:10.1590/0001-3765201720170238; European Parliament [Internet]. [cited 2022 Feb 25]. Available from: https://www.Europarl.Europa.Eu/Plenary/En/Vod.Html?Mode=chapter&vodLanguage=EN&vodId=6ea360e5-0dd3-Decd-2a72-642c028c0a34&date=20210708#; Ma C., Peng Y., Li H., Chen W. Organ-on-a-Chip: a new paradigm for drug development. Trends Pharmacol Sci. 2021;42(2):119–33. DOI:10.1016/j.tips.2020.11.009; Liu X., Fang J., Huang S., Wu X., Xie X., Wang J., et al. Tumor-on-aChip: from bioinspired design to biomedical application. Microsyst Nanoeng. 2021;7:50. DOI:10.1038/s41378-021-00277-8; Ingber D.E. Developmentally inspired human “Organs on Chips”. Development. 2018;145(16):dev156125. DOI:10.1242/dev.156125; Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y., Ingber D.E. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–8. DOI:10.1126/science.1188302; Paloschi V., Sabater-Lleal M., Middelkamp H., Vivas A., Johansson S., van der Meer A., et al. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc Res. 2021;117(14):2742–54. DOI:10.1093/cvr/cvab088; Ma L.-D., Wang Y.-T., Wang J.-R., Wu J.-L., Meng X.-S., Hu P., et al. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip. 2018;18:2547–62. DOI:10.1039/c8lc00333e; Marrero D., Pujol-Vila F., Vera D., Gabriel G., Illa X., Elizalde-Torrent A., et al. Gut-on-a-chip: Mimicking and monitoring the human intestine. Biosens Bioelectron. 2021;181:113156. DOI:10.1016/j.bios.2021.113156; Chou D.B., Frismantas V., Milton Y., David R., Pop-Damkov P., Ferguson D., et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng. 2020;4(4):394–406. DOI:10.1038/s41551-019-0495-z; Soo J.Y.-C., Jansen J., Masereeuw R., Little M.H. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol. 2018;14:378–93. DOI:10.1038/s41581-018-0003-9; Lee J., Kim S. Kidney-on-a-Chip: a new technology for predicting drug efficacy, interactions, and drug-induced nephrotoxicity. Curr Drug Metab. 2018;19(7):577–83. DOI:10.2174/1389200219666180309101844; Homan K.A., Kolesky D.B., Skylar-Scott M.A., Herrmann J., Obuobi H., Moisan A., et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep. 2016;6:34845. DOI:10.1038/srep34845; Lin N.Y.C., Homan K.A., Robinson S.S., Kolesky D.B., Duarte N., Moisan A., et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci U S A. 2019;116(12):5399–404. DOI:10.1073/pnas.1815208116; Wang J., Wang C., Xu N., Liu Z.F., Pang D.W., Zhang Z.L. A virusinduced kidney disease model based on organ-on-a-chip: Pathogenesis exploration of virus-related renal dysfunctions. Biomaterials. 2019;219:119367. DOI:10.1016/j.biomaterials.2019.119367; Ross E.J., Gordon E.R., Sothers H., Darji R., Baron O., Haithcock D., et al. Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles. Sci Rep. 2021;11:14053. DOI:10.1038/s41598-021-93570-5; Musah S., Mammoto A., Ferrante T.C., Jeanty S.S.F., Hirano-Kobayashi M., Mammoto T., et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng. 2017;1:0069. DOI:10.1038/s41551-017-0069; Roye Y., Bhattacharya R., Mou X., Zhou Y., Burt M.A., Musah S. A personalized glomerulus chip engineered from stem cell-derived epithelium and vascular endothelium. Micromachines (Basel). 2021;12(8):967. DOI:10.3390/mi12080967; Tiong H.Y., Huang P., Xiong S., Li Y., Vathsala A., Zink D. Druginduced nephrotoxicity: clinical impact and preclinical in vitro models. Mol Pharm. 2014;11:1933–48. DOI:10.1021/mp400720w; Petrosyan A., Cravedi P., Villani V., Angeletti A., Manrique J., Renieri A., et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat Commun. 2019;10: 3656. DOI:10.1038/s41467-019-11577-z; Sekhoacha M., Riet K., Motloung P., Gumenku L., Adegoke A., Mashele S. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules. 2022;27(17):5730. DOI:10.3390/molecules27175730; Pomerantz M.M., Qiu X., Zhu Y., Takeda D.Y., Pan W., Baca S.C., et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet. 2020;52:790–9. DOI:10.1038/s41588-020-0664-8; Lamb L.E., Knudsen B.S., Miranti C.K. E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model. J Cell Sci. 2010;123:266–76. DOI:10.1242/jcs.054502; Al-Samadi A., Poor B., Tuomainen K., Liu V., Hyytiäinen A., Suleymanova I., et al. In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients. Exp Cell Res. 2019;383(2):111508. DOI:10.1016/j.yexcr.2019.111508; Jiang L., Ivich F., Tahsin S., Tran M., Frank S.B., Miranti C.K., et al. Human stroma and epithelium co-culture in a microfluidic model of a human prostate gland. Biomicrofluidics. 2019;13(6):064116. DOI:10.1063/1.5126714; Wagenlehner F.M.E., Bjerklund Johansen T.E., Cai T., Koves B., Kranz J., Pilatz A., et al. Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol. 2020;17(10):586–600. DOI:10.1038/s41585-020-0362-4; Del Piccolo N., Shirure V.S., Bi Y., Goedegebuure S.P., Gholami S., Hughes C.C.W., et al. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev. 2021;175:113798. DOI:10.1016/j.addr.2021.05.008; Sharma K., Dhar N., Thacker V.V., Simonet T.M., Signorino-Gelo F., Knott G.W., et al. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. Elife. 2021;10:e66481. DOI:10.7554/eLife.66481; Galateanu B., Hudita A., Biru E.I., Iovu H., Zaharia C., Simsensohn E., et al. Applications of polymers for organ-on-chip technology in urology. Polymers (Basel). 2022;14(9):1668. DOI:10.3390/polym14091668; Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–49. DOI:10.3322/caac.21660; Zhu S., Zhu Z., Ma A.-H., Sonpavde G.P., Cheng F., Pan C. Preclinical models for bladder cancer research. Hematol Clin. 2021;35:613–32. DOI:10.1016/j.hoc.2021.02.007; Fan W., Xiong Q., Ge Y., Liu T., Zeng S., Zhao J. Identifying the grade of bladder cancer cells using microfluidic chips based on impedance. Analyst. 2022;147(8):1722–9. DOI:10.1039/d2an00026a; Liu P.F., Cao Y.W., Zhang S.D., Zhao Y., Liu X.G., Shi H.Q., et al. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget. 2015;6(35):37695–705. DOI:10.18632/oncotarget.6070; Xu X.-D., Shao S.-X., Cao Y.-W., Yang X.-C., Shi H.-Q., Wang Y.-L., et al. The study of energy metabolism in bladder cancer cells in co-culture conditions using a microfluidic chip. Int J Clin Exp Med. 2015;8:12327. PMID: 26550142; Imparato G., Urciuolo F., Netti P.A. Organ on chip technology to model cancer growth and metastasis. Bioengineering (Basel). 2022;9(1):28. DOI:10.3390/bioengineering9010028; Shourabi A.Y., Kashaninejad N., Saidi M.S. An integrated microfluidic concentration gradient generator for mechanical stimulation and drug delivery. J Sci Adv Mater Devices. 2021;6:280–90. DOI:10.1016/j.jsamd.2021.02.009; https://www.surgonco.ru/jour/article/view/863

  2. 2
  3. 3

    المصدر: Sensors 20 (2020), Nr. 15
    Sensors, Vol 20, Iss 4086, p 4086 (2020)
    Sensors (Basel, Switzerland)
    Sensors
    Volume 20
    Issue 15

    وصف الملف: application/pdf

  4. 4
    Conference
  5. 5
  6. 6
    Academic Journal
  7. 7