-
1Academic Journal
المؤلفون: A. G. Vardikian, S. V. Piatnitskaia, V. A. Solntsev, B. I. Shamsov, V. N. Pavlov, А. Г. Вардикян, С. В. Пятницкая, В. А. Солнцев, Б. И. Шамсов, В. Н. Павлов
المساهمون: This work was supported by the Bashkir State Medical University Strategic Academic Leadership Program (PRIORITY-2030)., Работа выполнена за счет средств Программы стратегического академического лидерства Башкирского государственного медицинского университета (ПРИОРИТЕТ-2030).
المصدر: Creative surgery and oncology; Том 13, № 4 (2023); 311-319 ; Креативная хирургия и онкология; Том 13, № 4 (2023); 311-319 ; 2076-3093 ; 2307-0501
مصطلحات موضوعية: тестирование препаратов, tumor-on-a-chip, polymer microfluidic devices, kidney-on-a-chip, bladder-on-a-chip, prostate-on-a-chip, drug testing, опухоль-на-чипе, полимерные микрофлюидные устройства, почка-на-чипе, мочевой пузырь-на-чипе, простата-на-чипе
وصف الملف: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/863/574; Fabre K., Berridge B., Proctor W.R., Ralston S., Will Y., Baran S.W., et al. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. Lab Chip. 2020;20(6):1049–57. DOI:10.1039/c9lc01168d; Park S.M., Eom S., Hong H., Yoon J., Lee S.J., Kim B.Ch., et al. Reconstruction of in vivo-like in vitro model: enabling technologies of microfluidic systems for dynamic biochemical/mechanical stimuli. Microelectron Eng. 2019;203–204:6–24. DOI:10.1016/j.mee.2018.10.010; Wu Q., Liu J., Wang X., Feng L., Wu J., Zhu X., et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online. 2020;19(1):9. DOI:10.1186/s12938-020-0752-0; Sun W., Luo Z., Lee J., Kim H., Lee K., Tebon P., et al. Organ-on-achip for cancer and immune organs modeling. Adv Healthc Mater. 2019;8:1801363. DOI:10.1002/adhm.201801363; Trujillo-de Santiago G., Flores-Garza B.G., Tavares-Negrete J.A., LaraMayorga I.M., González-Gamboa I., Zhang Y.S., et al. The Tumor-onChip: recent advances in the development of microfluidic systems to recapitulate the physiology of solid tumors. Materials. 2019;12:2945. DOI:10.3390/ma12182945; Vormann M.K., Gijzen L., Hutter S., Boot L., Nicolas A., van den Heuvel A., et al. Nephrotoxicity and kidney transport assessment on 3D perfused proximal tubules. AAPS J. 2018;20:90. DOI:10.1208/s12248-018-0248-z; Kramlinger V.M., Dalvie D., Heck C.J.S., Kalgutkar A.S., O’Neill J., Su D., et al. Future of biotransformation science in the pharmaceutical industry. Drug Metab Dispos. 2022;50(3):258–67. DOI:10.1124/dmd.121.000658; Lee S.J., Lee H.A. Trends in the development of human stem cellbased non-animal drug testing models. Korean J Physiol Pharmacol. 2020;24(6):441–52. DOI:10.4196/kjpp.2020.24.6.441; Andersen M.L., Winter L.M.F. Animal models in biological and biomedical research — experimental and ethical concerns. An Acad Bras Cienc. 2019;91(suppl 1):e20170238. DOI:10.1590/0001-3765201720170238; European Parliament [Internet]. [cited 2022 Feb 25]. Available from: https://www.Europarl.Europa.Eu/Plenary/En/Vod.Html?Mode=chapter&vodLanguage=EN&vodId=6ea360e5-0dd3-Decd-2a72-642c028c0a34&date=20210708#; Ma C., Peng Y., Li H., Chen W. Organ-on-a-Chip: a new paradigm for drug development. Trends Pharmacol Sci. 2021;42(2):119–33. DOI:10.1016/j.tips.2020.11.009; Liu X., Fang J., Huang S., Wu X., Xie X., Wang J., et al. Tumor-on-aChip: from bioinspired design to biomedical application. Microsyst Nanoeng. 2021;7:50. DOI:10.1038/s41378-021-00277-8; Ingber D.E. Developmentally inspired human “Organs on Chips”. Development. 2018;145(16):dev156125. DOI:10.1242/dev.156125; Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y., Ingber D.E. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–8. DOI:10.1126/science.1188302; Paloschi V., Sabater-Lleal M., Middelkamp H., Vivas A., Johansson S., van der Meer A., et al. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc Res. 2021;117(14):2742–54. DOI:10.1093/cvr/cvab088; Ma L.-D., Wang Y.-T., Wang J.-R., Wu J.-L., Meng X.-S., Hu P., et al. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip. 2018;18:2547–62. DOI:10.1039/c8lc00333e; Marrero D., Pujol-Vila F., Vera D., Gabriel G., Illa X., Elizalde-Torrent A., et al. Gut-on-a-chip: Mimicking and monitoring the human intestine. Biosens Bioelectron. 2021;181:113156. DOI:10.1016/j.bios.2021.113156; Chou D.B., Frismantas V., Milton Y., David R., Pop-Damkov P., Ferguson D., et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng. 2020;4(4):394–406. DOI:10.1038/s41551-019-0495-z; Soo J.Y.-C., Jansen J., Masereeuw R., Little M.H. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol. 2018;14:378–93. DOI:10.1038/s41581-018-0003-9; Lee J., Kim S. Kidney-on-a-Chip: a new technology for predicting drug efficacy, interactions, and drug-induced nephrotoxicity. Curr Drug Metab. 2018;19(7):577–83. DOI:10.2174/1389200219666180309101844; Homan K.A., Kolesky D.B., Skylar-Scott M.A., Herrmann J., Obuobi H., Moisan A., et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep. 2016;6:34845. DOI:10.1038/srep34845; Lin N.Y.C., Homan K.A., Robinson S.S., Kolesky D.B., Duarte N., Moisan A., et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci U S A. 2019;116(12):5399–404. DOI:10.1073/pnas.1815208116; Wang J., Wang C., Xu N., Liu Z.F., Pang D.W., Zhang Z.L. A virusinduced kidney disease model based on organ-on-a-chip: Pathogenesis exploration of virus-related renal dysfunctions. Biomaterials. 2019;219:119367. DOI:10.1016/j.biomaterials.2019.119367; Ross E.J., Gordon E.R., Sothers H., Darji R., Baron O., Haithcock D., et al. Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles. Sci Rep. 2021;11:14053. DOI:10.1038/s41598-021-93570-5; Musah S., Mammoto A., Ferrante T.C., Jeanty S.S.F., Hirano-Kobayashi M., Mammoto T., et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng. 2017;1:0069. DOI:10.1038/s41551-017-0069; Roye Y., Bhattacharya R., Mou X., Zhou Y., Burt M.A., Musah S. A personalized glomerulus chip engineered from stem cell-derived epithelium and vascular endothelium. Micromachines (Basel). 2021;12(8):967. DOI:10.3390/mi12080967; Tiong H.Y., Huang P., Xiong S., Li Y., Vathsala A., Zink D. Druginduced nephrotoxicity: clinical impact and preclinical in vitro models. Mol Pharm. 2014;11:1933–48. DOI:10.1021/mp400720w; Petrosyan A., Cravedi P., Villani V., Angeletti A., Manrique J., Renieri A., et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat Commun. 2019;10: 3656. DOI:10.1038/s41467-019-11577-z; Sekhoacha M., Riet K., Motloung P., Gumenku L., Adegoke A., Mashele S. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules. 2022;27(17):5730. DOI:10.3390/molecules27175730; Pomerantz M.M., Qiu X., Zhu Y., Takeda D.Y., Pan W., Baca S.C., et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet. 2020;52:790–9. DOI:10.1038/s41588-020-0664-8; Lamb L.E., Knudsen B.S., Miranti C.K. E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model. J Cell Sci. 2010;123:266–76. DOI:10.1242/jcs.054502; Al-Samadi A., Poor B., Tuomainen K., Liu V., Hyytiäinen A., Suleymanova I., et al. In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients. Exp Cell Res. 2019;383(2):111508. DOI:10.1016/j.yexcr.2019.111508; Jiang L., Ivich F., Tahsin S., Tran M., Frank S.B., Miranti C.K., et al. Human stroma and epithelium co-culture in a microfluidic model of a human prostate gland. Biomicrofluidics. 2019;13(6):064116. DOI:10.1063/1.5126714; Wagenlehner F.M.E., Bjerklund Johansen T.E., Cai T., Koves B., Kranz J., Pilatz A., et al. Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol. 2020;17(10):586–600. DOI:10.1038/s41585-020-0362-4; Del Piccolo N., Shirure V.S., Bi Y., Goedegebuure S.P., Gholami S., Hughes C.C.W., et al. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev. 2021;175:113798. DOI:10.1016/j.addr.2021.05.008; Sharma K., Dhar N., Thacker V.V., Simonet T.M., Signorino-Gelo F., Knott G.W., et al. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. Elife. 2021;10:e66481. DOI:10.7554/eLife.66481; Galateanu B., Hudita A., Biru E.I., Iovu H., Zaharia C., Simsensohn E., et al. Applications of polymers for organ-on-chip technology in urology. Polymers (Basel). 2022;14(9):1668. DOI:10.3390/polym14091668; Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–49. DOI:10.3322/caac.21660; Zhu S., Zhu Z., Ma A.-H., Sonpavde G.P., Cheng F., Pan C. Preclinical models for bladder cancer research. Hematol Clin. 2021;35:613–32. DOI:10.1016/j.hoc.2021.02.007; Fan W., Xiong Q., Ge Y., Liu T., Zeng S., Zhao J. Identifying the grade of bladder cancer cells using microfluidic chips based on impedance. Analyst. 2022;147(8):1722–9. DOI:10.1039/d2an00026a; Liu P.F., Cao Y.W., Zhang S.D., Zhao Y., Liu X.G., Shi H.Q., et al. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget. 2015;6(35):37695–705. DOI:10.18632/oncotarget.6070; Xu X.-D., Shao S.-X., Cao Y.-W., Yang X.-C., Shi H.-Q., Wang Y.-L., et al. The study of energy metabolism in bladder cancer cells in co-culture conditions using a microfluidic chip. Int J Clin Exp Med. 2015;8:12327. PMID: 26550142; Imparato G., Urciuolo F., Netti P.A. Organ on chip technology to model cancer growth and metastasis. Bioengineering (Basel). 2022;9(1):28. DOI:10.3390/bioengineering9010028; Shourabi A.Y., Kashaninejad N., Saidi M.S. An integrated microfluidic concentration gradient generator for mechanical stimulation and drug delivery. J Sci Adv Mater Devices. 2021;6:280–90. DOI:10.1016/j.jsamd.2021.02.009; https://www.surgonco.ru/jour/article/view/863
-
2Academic Journal
المؤلفون: Spelthann, Simon, Unland, Stefanie, Thiem, Jonas, Jakobs, Florian, Kielhorn, Jana, Ang, Pen Yiao, Johannes, Hans-Hermann, Kracht, Dietmar, Neumann, Joerg, Ruehl, Axel, Kowalsky, Wolfgang, Ristau, Detlev
المصدر: Sensors 20 (2020), Nr. 15
مصطلحات موضوعية: Fiber optics, Integrated photonics, Polymer fiber amplifier, Polymer fiber laser, Rhodamine B, Efficiency, Fiber lasers, Microfluidics, Plastic optical fibers, Flexible technologies, High slope efficiency, Lab-on-a-chip devices, Numerical parameters, Optical analysis, Polymer microfluidic devices, Spectral tunability, Polymers, ddc:620
Relation: ESSN:1424-8220; http://dx.doi.org/10.15488/10809; https://www.repo.uni-hannover.de/handle/123456789/10887
-
3
المؤلفون: Jana Kielhorn, Stefanie Unland, Axel Ruehl, Wolfgang Kowalsky, Dietmar Kracht, Jonas Thiem, Pen Yiao Ang, Joerg Neumann, Hans-Hermann Johannes, Simon Spelthann, Detlev Ristau, Florian Jakobs
المصدر: Sensors 20 (2020), Nr. 15
Sensors, Vol 20, Iss 4086, p 4086 (2020)
Sensors (Basel, Switzerland)
Sensors
Volume 20
Issue 15مصطلحات موضوعية: Optical fiber, Rhodamine B, Polymers, Microfluidics, Dewey Decimal Classification::600 | Technik::620 | Ingenieurwissenschaften und Maschinenbau, Efficiency, 02 engineering and technology, Fiber optics, lcsh:Chemical technology, Spectral tunability, 01 natural sciences, Biochemistry, Analytical Chemistry, law.invention, Fiber lasers, Plastic optical fibers, Numerical parameters, law, lcsh:TP1-1185, Lab-on-a-chip devices, Instrumentation, chemistry.chemical_classification, Polymer, 021001 nanoscience & nanotechnology, Atomic and Molecular Physics, and Optics, Optoelectronics, ddc:620, 0210 nano-technology, Lasing threshold, Flexible technologies, Physics - Optics, Polymer fiber laser, Materials science, Optical analysis, Integrated photonics, FOS: Physical sciences, Article, 010309 optics, Fiber laser, High slope efficiency, 0103 physical sciences, Electrical and Electronic Engineering, business.industry, Polymer microfluidic devices, Laser, chemistry, Polymer fiber amplifier, Nanometre, Photonics, business, Optics (physics.optics)
وصف الملف: application/pdf
-
4Conference
المؤلفون: Çaǧatay E., Özer M.B., Çetin B.
المصدر: 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016
مصطلحات موضوعية: Acoustophoresis, Microfluidics, Particle manipulation, Finite element method, Fluidic devices, Geometry, Piezoelectric actuators, 3-d modeling, Experimental analysis, Geometric properties, Microfluidic chip, Polymer microfluidic devices, Three dimensional finite element model
وصف الملف: application/pdf
Relation: http://hdl.handle.net/11693/37522
الاتاحة: http://hdl.handle.net/11693/37522
-
5
المؤلفون: Çaǧatay, E., Mehmet Bülent Özer, Çetin, B.
المصدر: Proceedings of the 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016
Scopus-Elsevierمصطلحات موضوعية: Microfluidic chip, Finite element method, Fluidic devices, Experimental analysis, Three dimensional finite element model, Acoustophoresis, Microfluidics, Particle manipulation, Polymer microfluidic devices
وصف الملف: application/pdf
-
6Academic Journal
المؤلفون: You, Byoung Hee, Park, Daniel S, Rani, Sudheer D, Murphy, Michael C
المصدر: Faculty Publications
مصطلحات موضوعية: Assembly tolerance analysis, Monte Carlo simulation, double-sided injection molding, modularization, passive kinematic alignment, polymer microfluidic devices
-
7Academic Journal
المؤلفون: Shiu, Pun-Pang (Matthew)
المصدر: Digitized Theses
مصطلحات موضوعية: Micromold, polymer microfluidic devices, laser micromachining, laser microwelding, micro-EDM, hot intrusion, non-lithography microfabrication, LCWM, LEDM2, LHEM
وصف الملف: application/pdf
Relation: https://ir.lib.uwo.ca/digitizedtheses/3871; https://ir.lib.uwo.ca/context/digitizedtheses/article/7685/viewcontent/2023_04_08_Fabrication_of_Micromolds_for_Polymer_Microfluidic_Devices_OCR.pdf