-
1Academic Journal
المؤلفون: Jihahm Yoo, Haesung Lee
المصدر: AIMS Mathematics, Vol 9, Iss 10, Pp 27000-27027 (2024)
مصطلحات موضوعية: sobolev spaces, boundary value problems, existence and uniqueness, physics-informed neural networks (pinn), $ l^2 $-contraction estimates, error estimates, Mathematics, QA1-939
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2473-6988
-
2Academic Journal
المصدر: Machine Learning: Science and Technology, Vol 5, Iss 3, p 035030 (2024)
مصطلحات موضوعية: porous flow, composite porous-fluid system, physics-informed neural networks (PINN), turbulent flow, Reynolds-averaged Navier-Stokes (RANS), Computer engineering. Computer hardware, TK7885-7895, Electronic computers. Computer science, QA75.5-76.95
Relation: https://doi.org/10.1088/2632-2153/ad63f4; https://doaj.org/toc/2632-2153; https://doaj.org/article/9097d28c9fa642ec96197d447f38c8a4
-
3Academic Journal
المؤلفون: Chengping Rao, Hao Sun, Yang Liu
المصدر: Theoretical and Applied Mechanics Letters, Vol 10, Iss 3, Pp 207-212 (2020)
مصطلحات موضوعية: Physics-informed neural networks (PINN), Deep learning, Fluid dynamics, Incompressible laminar flow, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Yuting Yang, Gang Mei
المصدر: Mathematics; Volume 10; Issue 16; Pages: 2945
مصطلحات موضوعية: soil–water infiltration, numerical investigation, deep learning, physics-informed neural networks (PINN)
وصف الملف: application/pdf
Relation: Mathematics and Computer Science; https://dx.doi.org/10.3390/math10162945
الاتاحة: https://doi.org/10.3390/math10162945
-
5Academic Journal
المؤلفون: Yi Huang, Zhiyu Zhang, Xing Zhang
المصدر: Fluids; Volume 7; Issue 2; Pages: 56
مصطلحات موضوعية: physics-informed neural networks (PINN), direct-forcing immersed boundary method, incompressible laminar flow, circular cylinder
وصف الملف: application/pdf
Relation: Mathematical and Computational Fluid Mechanics; https://dx.doi.org/10.3390/fluids7020056
-
6Academic Journal
المساهمون: Earth Science and Engineering Program, King Abdulllah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, Physical Science and Engineering (PSE) Division, Seismic Wave Analysis Group, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
مصطلحات موضوعية: physics-informed neural networks (PINN), uncertainty quantification, Laplace approximation, hypocenter localization, microseismic, inversion, deep learning
وصف الملف: application/pdf
Relation: github:izzatum/laplace-hypopinn; https://iopscience.iop.org/article/10.1088/2632-2153/ac94b3; 2205.14439; Izzatullah, M., Yildirim, I. E., Waheed, U. B., & Alkhalifah, T. (2022). Laplace HypoPINN: physics-informed neural network for hypocenter localization and its predictive uncertainty. Machine Learning: Science and Technology, 3(4), 045001. https://doi.org/10.1088/2632-2153/ac94b3; MACHINE LEARNING-SCIENCE AND TECHNOLOGY; 045001; http://hdl.handle.net/10754/683709; WOS:000864902700001