يعرض 1 - 20 نتائج من 318 نتيجة بحث عن '"phantom study"', وقت الاستعلام: 0.66s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المساهمون: This work was prepared by the author in terms of R&D "Development and creation of a hardware and software complex for opportunistic screening of osteoporosis" (EGISU No.: 123031400007-7) in accordance with Order No. 1196 dated 21. 12. 2022 "On Approval of state assignments, financial support of which is carried out at the expense of the budget of the Moscow to state budgetary (autonomous) institutions subordinate to the Moscow City Health Department, for 2023 and the planning period of 2024 and 2025", Moscow City Health Department., данная работа подготовлена автором в рамках НИОКР «Разработка и создание аппаратно-программного комплекса для оппортунистического скрининга остеопороза» (№ ЕГИСУ: 123031400007–7) в соответствии с Приказом от 21. 12. 2022 г. № 1196 «Об утверждении государственных заданий, финансовое обеспечение которых осуществляется за счет средств бюджета города Москвы государственным бюджетным (автономным) учреждениям, подведомственным Департаменту здравоохранения города Москвы, на 2023 год и плановый период 2024 и 2025 годов» Департамента здравоохранения города Москвы.

    المصدر: Research and Practical Medicine Journal; Том 11, № 4 (2024); 73-87 ; Research'n Practical Medicine Journal; Том 11, № 4 (2024); 73-87 ; 2410-1893 ; 10.17709/2410-1893-2024-11-4

    وصف الملف: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/1049/665; Computed tomography (CT) imaging units per million people, 2021. World Health Organisation: 2023. Режим доступа: https://ourworldindata.org/grapher/availability-of-computed-tomography-ct-imaging.; Meyer E, Raupach R, Lell M, Schmidt B, Kachelrieß M. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 2010;37:5482–5493. doi:10.1118/1.3484090; Charles A. Kelsey. The Physics of Radiology, 4 th Edited by H.E.Johns, J.R.Cunningham. Med Phys. 1984; pp. 731–732. doi:10.1118/1.595545; Wellenberg RHH, Hakvoort ET, Slump CH, Boomsma MF, Maas M, Streekstra GJ. Metal artifact reduction techniques in musculoskeletal CT‑imaging. Eur J Radiol. 2018 Oct;107:60–69. doi:10.1016/j.ejrad.2018.08.010; Kosmas C, Hojjati M, Young P, Abedi A, Gholamrezanezhad A, Rajiah P. Dual‑layer spectral computerized tomography for metal artifact reduction: small versus large orthopedic devices. Skeletal Radiol. 2019;48(12):1981–1990. doi:10.1007/s00256‑019‑03248‑3; Bolstad K, Flatabø S, Aadnevik D, Dalehaug I, Vetti N. Metal artifact reduction in CT, a phantom study: Subjective and objective evaluation of four commercial metal artifact reduction algorithms when used on three different orthopedic metal implants. Acta Radiol. 2018;59(9):1110–1118. doi:10.1177/0284185117751278; King J, Whittam S, Smith D, Al‑Qaisieh B. The impact of a metal artefact reduction algorithm on treatment planning for patients undergoing radiotherapy of the pelvis. Phys Imaging Radiat Oncol. 2022 Nov 12;24:138–143. doi:10.1016/j.phro.2022.11.007; Li B, Huang J, Ruan J, Peng Q, Huang S, Li Y, Li F. Dosimetric impact of CT metal artifact reduction for spinal implants in stereotactic body radiotherapy planning. Quant Imaging Med Surg. 2023 Dec 1;13(12):8290–8302. doi:10.21037/qims‑23‑442; Vellarackal AJ, Kaim AH. Metal artefact reduction of different alloys with dual energy computed tomography (DECT). Sci Rep. 2021 Jan 26;11(1):2211. doi:10.1038/s41598‑021‑81600‑1; Zhang H, Wang L, Li L, Cai A, Hu G, Yan B. Iterative metal artifact reduction for x‑ray computed tomography using unmatched projector/backprojector pairs. Med Phys. 2016 Jun;43(6):3019–3033. doi:10.1118/1.4950722; Huflage H, Grunz JP, Hackenbroch C, Halt D, Luetkens KS, Alfred Schmidt AM, et al. Metal artefact reduction in low‑dose computed tomography: Benefits of tin prefiltration versus postprocessing of dual‑energy datasets over conventional CT imaging. Radiography (Lond). 2022 Aug;28(3):690–696. doi:10.1016/j.radi.2022.05.006; Mohammadinejad P, Baffour FI, Adkins MC, Yu L, McCollough CH, Fletcher JG, Glazebrook KN. Benefits of iterative metal artifact reduction and dual‑energy CT towards mitigating artifact in the setting of total shoulder prostheses. Skeletal Radiol. 2021 Jan;50(1):51–58. doi:10.1007/s00256‑020‑03528‑3; Roth TD, Maertz NA, Parr JA, Buckwalter KA, Choplin RH. CT of the hip prosthesis: appearance of components, fixation, and complications. Radiographics. 2012 Jul‑Aug;32(4):1089–1107. doi:10.1148/rg.324115183; Васильев Ю. А., Семенов Д. С., Ахмад Е. С., Панина О. Ю., Сергунова К. А., Петряйкин А. В. Метод оценки влияния алгоритмов подавления артефактов от металлов в КТ на количественные характеристики изображений. Медицинская техника. 2020;4(322):43–45.; Selles M, Stuivenberg VH, Wellenberg RHH, van de Riet L, Nijholt IM, van Osch JAC, et al. Quantitative analysis of metal artifact reduction in total hip arthroplasty using virtual monochromatic imaging and orthopedic metal artifact reduction, a phantom study. Insights Imaging. 2021 Nov 24;12(1):171. doi:10.1186/s13244‑021‑01111‑5; Шубняков И. И., Риахи А., Денисов А. О., Корыткин А. А., Алиев А. Г., Вебер Е. В., и др. Основные тренды в эндопротезировании тазобедренного сустава на основании данных регистра артропластики НМИЦ ТО им. Р.Р. Вредена с 2007 по 2020 г. Травматология и ортопедия России. 2021;27(3):119–142. doi:10.21823/2311‑2905‑2021‑27‑3‑119‑142; Metal artifact reduction for orthopedic implants. Philips Professional healthcare. Режим доступа: https://www.usa.philips.com/healthcare/product/HCNOCTN192/omar-metal-artifact-reduction-for-orthopedic-implants.; Iterative Metal Artifact Reduction (iMAR): Technical Principles and Clinical Results in Radiation Therapy. Siemens‑healthineers. Режим доступа: https://marketing.webassets.siemens-healthineers.com/1800000004904518/83085a287878/RO_Internet_Whitepaper_iMAR_1800000004904518.pdf.; Smart Metal Artifact Reduction (MAR). GE Healthcare: 10 июля 2024. Режим доступа: https://www.gehealthcare.com/en-sg/-/jssmedia/widen/2018/01/25/0204/gehealthcarecom/migrated/2018/02/19/0836/omography-abstracts-metal-artifact-reduction-gehc-brochure_ct-metal-artifact-reduction_pdf.pdf?rev=-1&hash=31ACF01E996A0E76CD1BE595E9DEE697; Single Energy Metal Artifact Reduction. Toshiba Medical. Режим доступа: https://us.medical.canon/download/ct-aq-one-genesis-wp-semar.; Andersson KM, Norrman E, Geijer H, Krauss W, Cao Y, Jendeberg J, et al. Visual grading evaluation of commercially available metal artefact reduction techniques in hip prosthesis computed tomography. Br J Radiol. 2016 Jul;89(1063):20150993. doi:10.1259/bjr.20150993; Selles M, van Osch JAC, Maas M, Boomsma MF, Wellenberg RHH. Advances in metal artifact reduction in CT images: A review of traditional and novel metal artifact reduction techniques. Eur J Radiol. 2024 Jan;170:111276. doi:10.1016/j.ejrad.2023.111276; Selles M, Slotman DJ, van Osch JAC, Nijholt IM, Wellenberg RHH, Maas M, Boomsma MF. Is AI the way forward for reducing metal artifacts in CT? Development of a generic deep learning‑based method and initial evaluation in patients with sacroiliac joint implants. Eur J Radiol. 2023 Jun;163:110844. doi:10.1016/j.ejrad.2023.110844; Arabi H, Zaidi H. Deep learning‑based metal artefact reduction in PET/CT imaging. Eur Radiol. 2021 Aug;31(8):6384–6396. doi:10.1007/s00330‑021‑07709‑z; Feldhaus FW, Böning G, Kahn J, Fehrenbach U, Maurer M, Renz D, Streitparth F. Improvement of image quality and diagnostic confidence using Smart MAR ‑ a projection‑based CT protocol in patients with orthopedic metallic implants in hip, spine, and shoulder. Acta Radiol. 2020 Oct;61(10):1421–1430. doi:10.1177/0284185120903446; Shim E, Kang Y, Ahn JM, Lee E, Lee JW, Oh JH, Kang HS. Metal Artifact Reduction for Orthopedic Implants (O‑MAR): Usefulness in CT Evaluation of Reverse Total Shoulder Arthroplasty. AJR Am J Roentgenol. 2017 Oct;209(4):860–866. doi:10.2214/ajr.16.17684; Хоссаин, Ш. Д., Петряйкин, А. В., Мураев, А. А., Данаев, А. Б., Буренчев, Д. В., Долгалев, А. А., и др. Рентгеноконтрастные шаблоны для определения минеральной плотности кости по данным конусно‑лучевой и мультиспиральной компьютерной томографии. Digital Diagnostics. 2023;4(3):292–305. doi:10.17816/dd501771; Методика приготовления и использования стандартных образцов гидроортофосфата калия в средствах контроля рентгеновских методов остеоденситометрии. 2е изд. М.: ГБУЗ “НПКЦ ДиТ ДЗМ”; 2020, 20 c.; https://www.rpmj.ru/rpmj/article/view/1049

  7. 7
  8. 8
    Academic Journal
  9. 9
    Report

    المؤلفون: Høiness, Johan Sina

    المصدر: Høiness, Johan Sina. Assessing SPECT imaging of 212-Pb by 3D-printed anthropomorphic phantoms and Monte Carlo simulations. Master thesis, University of Oslo, 2024

  10. 10
    Academic Journal
  11. 11
    Academic Journal

    المصدر: Proceedings on Automation in Medical Engineering; Vol. 2 No. 1 (2023): Proc AUTOMED; 767 ; 10.18416/AUTOMED.2023

    مصطلحات موضوعية: Computed tomography, Image quality, Image noise, Phantom study

    وصف الملف: application/pdf

  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal

    المصدر: Møller , J M , Boesen , L , Hansen , A E , Kettles , K & Løgager , V 2023 , ' Quantification of cross-vendor variation in ADC measurements in vendor-specific prostate MRI-protocols ' , European Journal of Radiology , vol. 165 , 110942 . https://doi.org/10.1016/j.ejrad.2023.110942

    مصطلحات موضوعية: ADC, MRI, Phantom study, PI-RADS, Prostate cancer

    وصف الملف: application/pdf

  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal