يعرض 1 - 20 نتائج من 130 نتيجة بحث عن '"numerical procedures"', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
  5. 5
  6. 6

    المؤلفون: Milićević, Srđan

    المساهمون: Kostić, Vladimir, Cvetković, Ljiljana, Doroslovački, Ksenija, Nedović, Maja, Tomljanović, Zoran

    المصدر: CRIS UNS
    Универзитет у Новом Саду

  7. 7
    Academic Journal

    المصدر: Fractals

    Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092934157&doi=10.1142%2fS0218348X20501066&partnerID=40&md5=2bc51c714df3d9a0472daa62a3960d18; 28; Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., Castella, M., Vardas, P., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18, pp. 1609-1678; Haissaguerre, M, Jais, P, Shah, D C, Garrigue, S, Takahashi, A., Lavergne, T., Hocini, M., Clementy, J., Electrophysiological End Point for Catheter Ablation of Atrial Fibrillation Initiated From Multiple Pulmonary Venous Foci (2000) Circulation, 101, pp. 1409-1417; Jalife, J., Mechanisms of persistent atrial fibrillation (2014) Curr. Opini. Cardiol, 29, pp. 20-27; Yoshida, K., Aonuma, K., Catheter ablation of atrial fibrillation: Past, present, and future directions (2012) J. Arrhythmia, 28, pp. 83-90; Corradi, D., Atrial fibrillation from the pathologist's perspective (2014) Cardiovasc. Pathol, 23, pp. 71-84; Grandi, E., Workman, A. J., Pandit, S. V., Altered Excitation-Contraction Coupling in Human Chronic Atrial Fibrillation (2012) J. Atr. Fibrillation, 4, pp. 37-53; Workman, A. J., Kane, K. A., Rankin, A. C., The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation (2001) Cardiovasc. Res, 52, pp. 226-235; Burstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) J. Am. Coll. Cardiol, 51, pp. 802-809; Kallergis, E. M., Goudis, C. A., Vardas, P. E., Atrial fibrillation: A progressive atrial myopathy or a distinct disease? (2014) Int. J. Cardiol, 171, pp. 126-133; Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L., Panfilov, A. V., Zhang, H., Models of cardiac tissue electrophysiology: Progress, challenges and open questions (2011) Progr. Biophys. Mol. Biol, 104, pp. 22-48; Nattel, S., Harada, M., Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives (2014) J. Am. Coll. Cardiol, 63, pp. 2335-2345; Allessie, M., Ausma, J., Schotten, U., Electrical, contractile and structural remodeling during atrial fibrillation (2002) Cardiovascu. Res, 54, pp. 230-246; Vandersickel, N., Watanabe, M., Tao, Q., Fostier, J., Zeppenfeld, K., Panfilov, A. V., Dynamical anchoring of distant arrhythmia sources by fibrotic regions via restructuring of the activation pattern (2018) PLoS Comput. Biol, 14, pp. 1-19; Campos, F. O., Shiferaw, Y., Weber, R., Plank, G., Microscopic isthmuses and fibrosis within the border zone of infarcted hearts promote calcium-mediated ectopy and conduction block (2018) Front. Physiol, 6, pp. 1-14; Vigmond, E., Pashaei, A., Amraoui, S., Cochet andM, H., Hassaguerre. Percolation as a mechanism to explain atrial fractionated electrograms and reentry in a fibrosis model based on imaging data (2016) Heart Rhythm, 13, pp. 1536-1543; Zhan, H.-q., Xia, L., Shou, G.-f., Zang, Y.-l., Liu, F., Crozier, S., Fibroblast proliferation alters cardiac excitation conduction and contraction: A computational study (2014) J. Zhejiang Univ. Sci. B, 15, pp. 225-242; Alonso, S., Bär, M., Reentry near the percolation threshold in a heterogeneous discrete model for cardiac tissue (2013) Phys. Rev. Lett, 110, pp. 1-5; Duverger, J. E., Jacquemet, V., Vinet, A., Comtois, P., In silico study of multicellular automaticity of heterogeneous cardiac cell monolayers: Effects of automaticity strength and structural linear anisotropy (2018) PLoS Computat. Biol, 14, p. e1005978; Deng, D., Murphy, M. J., Hakim, J. B., Franceschi, W. H., Zahid, S., Pashakhanloo, F., Trayanova, N. A., Boyle, P. M., Sensitivity of reentrant driver localization to electrophysiological parameter variability in image-based computational models of persistent atrial fibrillation sustained by a fibrotic substrate (2017) Chaos, 27, p. 093932; Krogh-Madsen, T., Abbott, G. W., Christini, D. J., Effects of electrical and structural remodeling on atrial fibrillation maintenance: A simulation study (2012) PLoS Computa. Biol, 8, p. e1002390; Spach, M. S., Heidlage, J. F., The stochastic nature of cardiac propagation at a microscopic level. electrical description of myocardial architecture and its application to conduction (1995) Circul. Res, 76, pp. 366-380; Lim, H., Cun, W., Wang, Y., Gray, R. A., Glimm, J., The role of conductivity discontinuities in design of cardiac defibrillation (2018) Chaos, 28, p. 013106; Zahid, S., Cochet, H., Boyle, P. M., Schwarz, E. L., Whyte, K. N., Vigmond, E. J., Dubois, R., Trayanova, N. A., Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern (2016) Cardiovasc. Res, 110, pp. 443-454; Coudière, Y., Henry, J., Labarthe, S., A two layers monodomain model of cardiac electrophysiology of the atria (2015) J. Math. Biol, 71, pp. 1607-1641; Lin, J., Keener, J. P., Microdomain effects on transverse cardiac propagation (2014) Biophys. J, 106, pp. 925-931; Stinstra, J., Macleod, R., Henriquez, C., Incorporating histology into a 3D microscopic computer model of myocardium to study propagation at a cellular level (2010) Ann. Biomed. Eng, 38, pp. 1399-1414; Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, K., A numerical method for the fractional Fitzhugh-Nagumo monodomain model (2012) Math. Soc, 54, pp. 608-629; Bueno-Orovio, A., Kay, D., Burrage, K., Fourier spectral methods for fractional-in-space reactiondiffusion equations (2014) BIT Numer. Math, 54, pp. 937-954; Cusimano, N., Bueno-Orovio, A., Turner, I., Burrage, K., On the order of the fractional Laplacian in determining the spatio-temporal evolution of a space-fractional model of cardiac electrophysiology (2015) PLoS ONE, 10, p. e0143938; Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y., A new collection of real world applications of fractional calculus in science and engineering (2018) Commun. Nonlinear Sci. Numer. Simul, 64, pp. 213-231; Sopasakis, P., Sarimveis, H., Macheras, P., Dokoumetzidis, A., Fractional calculus in pharmacokinetics (2018) J. Pharmacokinet. Pharmacodyn, 45, pp. 107-125; Tenreiro Machado, J. A., Kiryakova, V., The chronicles of fractional calculus (2017) Fract. Calc. Appl. Anal, 20, pp. 307-336; Ionescu, C., Lopes, A., Copot, D., Machado, J. A. T., Bates, J. H. T., The role of fractional calculus in modeling biological phenomena: A review (2017) Commun. Nonlinear Sc. Numer. Simul, 51, pp. 141-159; Maione, G., Nigmatullin, R. R., Tenreiro Machado, J. A., Sabatier, J., New challenges in fractional systems 2014 (2015) Math. Prob. Eng, 2015, pp. 1-3; Oldham, K., Spanier, J., The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order (1974) Mathematics in Science and Engineering, , (Elsevier Science); Miller, K. S., Ross, B., (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations, , (Wiley); Pozrikidis, C., (2016) The Fractional Laplacian, , (Taylor & Francis); Baleanu, D., Fernandez, A., On some new properties of fractional derivatives with Mittag-Leffler kernel (2018) Commun. Nonlinear Sci. Numer. Simul, 59, pp. 444-462; Samko, S. G., Kilbas, A. A., Marichev, O. I., (1993) Fractional Integrals and Derivatives: Theory and Applications, , (CRC); Tarasov, V. E., Map of discrete system into continuous (2006) J. Math. Phys, 47; Tarasov, V. E., Continuous limit of discrete systems with long-range interaction (2006) J. Phys. A: Math. Gene, 39, pp. 14895-14910; Bessonov, L., (1973) Applied Electricity for Engineers, , (Izdat. Mir); Raab, R. E., De Lange, O. L., de Lange, O. L., (2005) Multipole Theory in Electromagnetism: Classical, Quantum, and Symmetry Aspects, with Applications, , Oxford University Press, International Series of Monographs on Physics (OUP Oxford); Tenreiro Machado, J. A., Jesus, I. S., Galhano, A., Cunha, J. B., Fractional order electromagnetics (2006) Signal Process, 86, pp. 2637-2644; Engheta, N., On fractional calculus and fractional multipoles in electromagnetism (1996) IEEE Trans. Antennas Propag, 44, pp. 554-566; Spira, A. W., The nexus in the intercalated disc of the canine heart: Quantitative data for an estimation of its resistance (1971) J. Ultrastruct. Res, 34, pp. 409-425; Weidmann, S., Hodgkin, A. L., The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle (1966) J. Phys, 187, pp. 323-342; Page, E., Shibata, Y., Permeable junctions between cardiac cells (1981) Ann. Rev. Phys, 43, pp. 431-441; Harris, A. L., Emerging issues of connexin channels: Biophysics fills the gap (2001) Q. Rev.Biophy, 34, pp. 325-472; Prudat, Y., Kucera, J. P., Nonlinear behaviour of conduction and block in cardiac tissue with heterogeneous expression of connexin 43 (2014) Curr. Ther. Res. Clin. Exp, 76, pp. 46-54; Howard Evans, W., Cell communication across gap junctions: A historical perspective and current developments (2015) Biochem. Soc. Trans, 43, pp. 450-459; Hülser, D. F., Eckert, R., Irmer, U., Kriŝciukaitis, A., Mindermann, A., Pleiss, J., Rehkopf, B., Traub, O., Intercellular communication via gap junction channels (1998) Bioelectrochem. Bioenerge, 45, pp. 55-65; Sosinsky, G. E., Nicholson, B. J., Structural organization of gap junction channels (2005) Biochim. Biophys. Acta Biomembr, 1711, pp. 99-125; Berkowitz, B., Klafter, J., Metzler, R., Scher, H., Physical pictures of transport in heterogeneous media: Advection-dispersion, random walk and fractional derivative formulations (2002) Water Res. Res, 38, pp. 1-12; Havlin, S., Ben-Avraham, D., Diffusion in disordered media (2002) Adv. Phys, 51, pp. 187-292; Tarasov, V. E., Zaslavsky, G. M., Fractional dynamics of coupled oscillators with long-range interaction (2006) Chaos, 16, pp. 1-13; Ortigueira, M. D., Machado, J. A. T., On fractional vectorial calculus (2018) Bull. Pol. Acad. Sci. Tech. Sci, 66, pp. 389-402; Tenreiro Machado, J. A., Pinto, C. M.A., Lopes, A. M., A review on the characterization of signals and systems by power law distributions (2015) Signal Process, 107, pp. 246-253; Li, Y., Farrher, G., Kimmich, R., Sub-and superdiffusive molecular displacement laws in disordered porous media probed by nuclear magnetic resonance (2006) Phys. Rev. E, Stat. Nonlinear Soft Matter Phys, 74, pp. 1-7; Kimmich, R., Strange kinetics, porous media, and NMR (2002) Chem. Phys, 284, pp. 253-285; Ben-Avraham, D., Diffusion in disordered media (1991) Chemomet. Intell. Lab. Syst, 10, pp. 117-122; Mandelbrot, B. B., (1983) The Fractal Geometry of Nature Einaudi Paperbacks, , (Henry Holt and Company); Miao, T., Chen, A., Xu, Y., Cheng, S., Yu, B., A fractal permeability model for porous-fracture media with the transfer of fluids from porous matrix to fracture (2019) Fractals, 27, p. 1950121; Zheng, Q., Fan, J., Li, X., Wang, S., Fractal model of gas diffusion in fractured porous media (2018) Fractals, 26, p. 1850065; Cai, J., Wei, W., Hu, X., Wood, D. A., Electrical conductivity models in saturated porous media: A review (2017) Earth-Sci. Rev, 171, pp. 419-433; Wei, W., Cai, J., Hu, X., Han, Q., An electrical conductivity model for fractal porous media (2015) Geophys. Res. Lett, 42, pp. 4833-4840; Tenreiro Machado, J. A., Galhano, A. M. S. F., Fractional order inductive phenomena based on the skin effect (2012) Nonlinear Dyn, 68, pp. 107-115; Amadu, M., Pegg, M. J., A mathematical determination of the pore size distribution and fractal dimension of a porous sample using spontaneous imbibition dynamics theory (2018) J. Pet. Expl. Prod. Technol, 9, pp. 1-9; Amadu, M., Pegg, M. J., Theoretical and experimental determination of the fractal dimension and pore size distribution index of a porous sample using spontaneous imbibition dynamics theory Mumuni (2018) J. Pet. Sci. Eng, 167, pp. 785-795; Zheng, Q., Li, X., Gas diffusion coefficient of fractal porous media by Monte Carlo simulations (2015) Fractals, 23, p. 1550012; Plonsey, R., Barr, R. C., (2007) Bioelectricity: A Quantitative Approach, , (Springer, US); Weinberg, S. H., Spatial discordance and phase reversals during alternate pacing in discrete-time kinematic and cardiomyocyte ionic models (2015) Chaos, 25; Lemay, M., de Lange, E., Kucera, J. P., Uncovering the dynamics of cardiac systems using stochastic pacing and frequency domain analyses (2012) PLoS Comput. Biol, 8, p. e1002399; De Lange, E., Kucera, J. P., The transfer functions of cardiac tissue during stochastic pacing (2009) Biophys. J, 96, pp. 294-311; Méhauté, A. L., Nigmatullin, R. R., Nivanen, L., Flèches du temps et géométrie fractale (1998) Collection Systèmes Complexes, , (Hermès); Nigmatullin, R. R., Le Mehaute, A., Is there geometrical/ physicalmeaning of the fractional integral with complex exponent? (2005) J. Non-Cryst. Solids, 351, pp. 2888-2899; Hartley, T. T, Tomhartleyaolcom, E., Lorenzo, C. F., Adams, J. L., Conjugated-order differintegrals (2005) ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1597-1602. , (2005); Sornette, D., Discrete-scale invariance and complex dimensions (1998) Phys. Rep, 297, pp. 239-270; Marchuk, G. I., On the construction and comparison of difference schemes (1968) Apl. Mat, 13, pp. 103-132; Strang, G., On the construction and comparison of difference schemes (1968) J. Numer. Anal, 5, pp. 506-517; Ugarte, J. P., Tobón, C., Lopes, A. M., Tenreiro Machado, J. A., Atrial rotor dynamics under complex fractional order diffusion (2018) Front. Physiol, 9, pp. 1-14; Courtemanche, M., Ramirez, R. J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Amer. J. Phys, 275, pp. H301-H321; Wilhelms, M., Hettmann, H., Maleckar, M. M., Koivumäki, J. T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2013) Front. Physiol, 3, pp. 1-16; Xu, Y., Sharma, D., Li, G., Liu, Y., Atrial remodeling: New pathophysiological mechanism of atrial fibrillation (2013) Med. Hypotheses, 80, pp. 53-56; Heijman, J., Algalarrondo, V., Voigt, N., Melka, J., Wehrens, X. H. T., Dobrev, D., Nattel, S., The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: A critical analysis (2016) Cardiovasc. Res, 109, pp. 467-479; Miragoli, M., Gaudesius, G., Rohr, S., Electrotonic modulation of cardiac impulse conduction by myofibroblasts (2006) Circul. Res, 98, pp. 801-810; Bode, F., Kilborn, M., Karasik, P., Franz, M. R., The repolarization-excitability relationship in the human right atrium is unaffected by cycle length, recording site and prior arrhythmias (2001) J. Am. Coll. Cardiol, 37, pp. 920-925; Boutjdir, M., Le Heuzey, J. Y., Lavergne, T., Chauvaud, S., Guize, L., Carpentier, A., Peronneau, P., Inhomogeneity of Cellular Refractoriness in Human Atrium: Factor of Arrhythmia? L'hétérogénéité des périodes réfractaires cellulaires de l'oreillette humaine: Un facteur d'arythmie? (1986) Pac. Clin. Electrophysiol, 9, pp. 1095-1100; Kamalvand, K., Tan, K., Lloyd, G., Gill, J., Bucknall, C., Sulke, N., Alterations in atrial electrophysiology associated with chronic atrial fibrillation in man (1999) Eur. Heart J, 20, pp. 888-895; Bueno-orovio, A., Kay, D., Grau, V., Rodriguez, Blanca, Burrage, Kevin, Soc Interface, J. R., Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization (2014) J. R. Soc. Interface, 11, p. 20140352; Spach, M. S., Heidlage, J. F., Dolber, P. C., Barr, R. C., Extracellular discontinuities in cardiac muscle: Evidence for capillary effects on the action potential foot (1998) Circul. Res, 83, pp. 1144-1164; Hanson, B., Suton, P., Elameri, N., Gray, M., Critchley, H., Gill, J. S., Taggart, P., Interaction of activation-repolarization coupling and restitution properties in humans (2009) Circul. Arrhythmia Electrophysiol, 2, pp. 162-170; Boyett, M. R., Honjo, H., Yamamoto, M., Nikmaram, M. R., Niwa, R., Kodama, I., Downward gradient in action potential duration along conduction path in and around the sinoatrial node (1999) Amer. J. Phys. Heart and Circul. Physiol, 276, pp. H686-H698; Li, Z., Liu, Y., Hertervig, E., Kongstad, O., Yuan, S., Regional heterogeneity of right atrial repolarization. Monophasic action potential mapping in swine (2011) Scand. Cardiovasc. J, 45, pp. 336-341; Ridler, M. E., Lee, M., McQueen, D., Peskin, C., Vigmond, E., Arrhythmogenic consequences of action potential duration gradients in the atria (2011) Can. J. Cardiol, 27, pp. 112-119; Hurtado, D. E., Castro, S., Gizzi, A., Computational modeling of non-linear diffusion in cardiac electrophysiology: A novel porous-medium approach (2016) Comput. Methods Appl. Mech. Eng, 300, pp. 70-83; Liebovitch, L. S., Scheurle, D., Rusek, M., Zochowski, M., Fractal methods to analyze ion channel kinetics (2001) Methods, 24, pp. 359-375; Nigmatullin, R. R., Baleanu, D., New relationships connecting a class of fractal objects and fractional integrals in space (2013) Fract. Calc. Appl. Anal, 16, pp. 911-936; Nigmatullin, R. R., Zhang, W., Gubaidullin, I., Accurate relationships between fractals and fractional integrals: New approaches and evaluations (2017) Fract. Calc. Appl. Anal, 20, pp. 1263-1280; Sornette, D., Johansen, A., Arneodo, A., Muzy, J. F., Saleur, H., Complex fractal dimensions describe the hierarchical structure of diffusionlimited-aggregate clusters (1996) Phys. Rev. Lett, 76, pp. 251-254; Mondal, A., Sachse, F. B., Moreno, A. P., Modulation of asymmetric flux in heterotypic gap junctions by pore shape, particle size and charge (2017) Front. Physiol, 8, pp. 1-15; Hall, J. E., Gourdie, R. G., Spatial organization of cardiac gap junctions can affect access resistance (1995) Microsc. Res. Techn, 31, pp. 446-451; Zamir, M., On fractal properties of arterial trees (1999) J. Theor. Biol, 197, pp. 517-526; Zenin, O. K., Kizilova, N. N., Filippova, E. N., Studies on the structure of human coronary vasculature (2007) Biophysics, 52, pp. 499-503; Goldberger, A. L., West, B. J., Fractals in physiology and medicine (1987) Yale J. Biol. Med, 60, pp. 421-435; Goldberger, A. L., Rigney, D. R., West, B. J., Chaos Fractals Human Physiology (1990) Sci. Pict, 262, pp. 42-49; Dickinson, R. B., Guido, S., Tranquillo, R. T., Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels (1994) Ann. Biomed. Eng, 22, pp. 342-356; Nogueira, I. R., Alves, S. G., Ferreira, S. C., Scaling laws in the diffusion limited aggregation of persistent random walkers (2011) Phys. A, Stat.Mech. Appl, 390, pp. 4087-4094; Meerschaert, M. M., Mortensen, J., Wheatcraft, S. W., Fractional vector calculus for fractional advection-dispersion (2006) Phys. A, Stat. Mech. Appl, 367, pp. 181-190; Tarasov, V. E., Fractional vector calculus and fractional Maxwell's equations (2008) Anna. Phys, 323, pp. 2756-2778; Magin, R. L., Abdullah, O., Baleanu, D., Zhou, X. J., Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation (2008) J. Magn. Reson, 190, pp. 255-270; Qin, S., Liu, F., Turner, I. W., Yang, Q., Yu, Q., Modelling anomalous diffusion using fractional Bloch-Torrey equations on approximate irregular domains (2018) Comput. Math. Appl, 75, pp. 7-21; Yu, Q., Reutens, D., O'Brien, K., Vegh, V., Tissue microstructure features derived from anomalous diffusion measurements in magnetic resonance imaging (2017) Human Brain Mapp, 38, pp. 1068-1081; Bueno-Orovio, A., Teh, I., Schneider, J. E., Burrage, K., Grau, V., Anomalous Diffusion in Cardiac Tissue as an Index of Myocardial Microstructure (2016) IEEE Trans. Med. Imag, 35, pp. 2200-2207; http://hdl.handle.net/11407/5904

  8. 8
  9. 9
    Dissertation/ Thesis
  10. 10
  11. 11
  12. 12
    Academic Journal

    المؤلفون: Kalmar, L.

    وصف الملف: application/pdf

    Relation: Kalmar L. Calculation of the real performance curve of radial flow fan impeller / L. Kalmar // Резание и инструмент в технологических системах : междунар. науч.-техн. сб. – Харьков : НТУ "ХПИ", 2010. – Вып. 78. – С. 71-80.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/18322

  13. 13
    Academic Journal
  14. 14
    Dissertation/ Thesis
  15. 15
    Dissertation/ Thesis

    المؤلفون: Milićević, Srđan

    المساهمون: Kostić, Vladimir, Cvetković, Ljiljana, Doroslovački, Ksenija, Nedović, Maja, Tomljanović, Zoran

    المصدر: Универзитет у Новом Саду

  16. 16
  17. 17
    Academic Journal
  18. 18
  19. 19
  20. 20
    Academic Journal