-
1Academic Journal
المؤلفون: Tomasz Merder, Piotr Warzecha, Jacek Pieprzyca, Marek Warzecha, Robert Wende, Artur Hutny
المصدر: Materials, Vol 16, Iss 24, p 7698 (2023)
مصطلحات موضوعية: ladle furnace, ladle, numerical modeling, physical modeling, numerical procedures, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, QC120-168.85
Relation: https://www.mdpi.com/1996-1944/16/24/7698; https://doaj.org/toc/1996-1944; https://doaj.org/article/a5239542a81e408c81c18a90a3b53140
-
2Academic Journal
المؤلفون: Ragulskis, Kazimieras, Maskeliūnas, Rimas, Pauliukas, Arvydas, Paškevičius, Petras, Bubulis, Algimantas, Korpach, Anatolii, Ragulskis, Liutauras Mykolas
المصدر: Agricultural engineering., Kaunas : Vytautas Magnus University, 2021, vol. 53, p. 47-54. ; ISSN 1392-1134 ; eISSN 2345-0371
مصطلحات موضوعية: elastic structure, hybrid experimental – numerical procedures, large amplitude vibrations, time averaged moiré, reflection moiré
وصف الملف: application/pdf
-
3Academic Journal
المؤلفون: Muhammad Zafar, Muhammad A. Rana, Muhammad Zahid, Babar Ahmad
المصدر: Coatings; Volume 9; Issue 7; Pages: 458
مصطلحات موضوعية: upper-convected Maxwell flow, roll coating analysis, lubrication approximation theory, numerical procedures, porous web
وصف الملف: application/pdf
-
4Academic Journal
المؤلفون: Behrens, Bernd-Arno, Chugreev, Alexander, Kock, C.
المصدر: IOP Conference Series: Materials Science and Engineering 461 (2018), Nr. 1
مصطلحات موضوعية: Alloy steel, Binary alloys, Chromium alloys, Molybdenum alloys, Phase transitions, Residual stresses, A-thermomechanical process, Adjustment parameter, Manufacturing process, Numerical approaches, Numerical procedures, Residual stress state, Temperature profiles, Time temperature transformation diagrams, Metadata, ddc:530, Konferenzschrift
-
5
المؤلفون: Dragan Poljak, Vicko Doric, M. Birkic
المصدر: Journal of Electromagnetic Waves and Applications. 35:705-738
مصطلحات موضوعية: 010302 applied physics, Materials science, Acoustics, ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION, General Physics and Astronomy, 020206 networking & telecommunications, Curved wires, multilayer, set of Pocklington IDEs, reflection coefficient, radiated fields, numerical procedures, engineering applications, 02 engineering and technology, Radiation, 01 natural sciences, Electronic, Optical and Magnetic Materials, Set (abstract data type), 0103 physical sciences, Hardware_INTEGRATEDCIRCUITS, 0202 electrical engineering, electronic engineering, information engineering, Electrical and Electronic Engineering, Reflection coefficient
-
6
المؤلفون: Milićević, Srđan
المساهمون: Kostić, Vladimir, Cvetković, Ljiljana, Doroslovački, Ksenija, Nedović, Maja, Tomljanović, Zoran
المصدر: CRIS UNS
Универзитет у Новом Садуمصطلحات موضوعية: minimal Geršgorin set, Geršgorinovi krugovi, нумерички распон, Applied linear algebra, localization of eigenvalues, numerical procedures, Geršgorin circles, minimal Geršgorin set, numerical range, convex polygon, numerički postupci, Primena linearne algebre, lokalizacija karakterističnih korena, numerički postupci, Geršgorinovi krugovi, minimalni Geršgorinov skup, numerički raspon, konveksni poligon, Applied linear algebra, локализација карактеристичних коренa, numerical range, нумерички поступци, минимални Гершгоринов скуп, convex polygon, numerički raspon, minimalni Geršgorinov skup, lokalizacija karakterističnih korena, Geršgorin circles, Гершгоринови кругови, конвексни полигон, Примена линеарне алгебре, локализација карактеристичних коренa, нумерички поступци, Гершгоринови кругови, минимални Гершгоринов скуп, нумерички распон, конвексни полигон, numerical procedures, konveksni poligon, Примена линеарне алгебре, Primena linearne algebre, localization of eigenvalues
-
7Academic Journal
المؤلفون: Ugarte J.P., Tobón C., Lopes A.M., Machado J.A.T.
المصدر: Fractals
مصطلحات موضوعية: Atrial Electrophysiology, Atrial Fibrillation, Complex Order Derivatives, Fractals, Myocardium Heterogeneities, Cytology, Electrophysiology, Heart, Structural properties, Tissue, Cardiac conductions, Complex-order derivatives, Electrical and structural properties, Electrical propagation, Electrophysiological properties, Mathematical equations, Numerical procedures, Structural remodeling, Fractal dimension
Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092934157&doi=10.1142%2fS0218348X20501066&partnerID=40&md5=2bc51c714df3d9a0472daa62a3960d18; 28; Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., Castella, M., Vardas, P., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18, pp. 1609-1678; Haissaguerre, M, Jais, P, Shah, D C, Garrigue, S, Takahashi, A., Lavergne, T., Hocini, M., Clementy, J., Electrophysiological End Point for Catheter Ablation of Atrial Fibrillation Initiated From Multiple Pulmonary Venous Foci (2000) Circulation, 101, pp. 1409-1417; Jalife, J., Mechanisms of persistent atrial fibrillation (2014) Curr. Opini. Cardiol, 29, pp. 20-27; Yoshida, K., Aonuma, K., Catheter ablation of atrial fibrillation: Past, present, and future directions (2012) J. Arrhythmia, 28, pp. 83-90; Corradi, D., Atrial fibrillation from the pathologist's perspective (2014) Cardiovasc. Pathol, 23, pp. 71-84; Grandi, E., Workman, A. J., Pandit, S. V., Altered Excitation-Contraction Coupling in Human Chronic Atrial Fibrillation (2012) J. Atr. Fibrillation, 4, pp. 37-53; Workman, A. J., Kane, K. A., Rankin, A. C., The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation (2001) Cardiovasc. Res, 52, pp. 226-235; Burstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) J. Am. Coll. Cardiol, 51, pp. 802-809; Kallergis, E. M., Goudis, C. A., Vardas, P. E., Atrial fibrillation: A progressive atrial myopathy or a distinct disease? (2014) Int. J. Cardiol, 171, pp. 126-133; Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L., Panfilov, A. V., Zhang, H., Models of cardiac tissue electrophysiology: Progress, challenges and open questions (2011) Progr. Biophys. Mol. Biol, 104, pp. 22-48; Nattel, S., Harada, M., Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives (2014) J. Am. Coll. Cardiol, 63, pp. 2335-2345; Allessie, M., Ausma, J., Schotten, U., Electrical, contractile and structural remodeling during atrial fibrillation (2002) Cardiovascu. Res, 54, pp. 230-246; Vandersickel, N., Watanabe, M., Tao, Q., Fostier, J., Zeppenfeld, K., Panfilov, A. V., Dynamical anchoring of distant arrhythmia sources by fibrotic regions via restructuring of the activation pattern (2018) PLoS Comput. Biol, 14, pp. 1-19; Campos, F. O., Shiferaw, Y., Weber, R., Plank, G., Microscopic isthmuses and fibrosis within the border zone of infarcted hearts promote calcium-mediated ectopy and conduction block (2018) Front. Physiol, 6, pp. 1-14; Vigmond, E., Pashaei, A., Amraoui, S., Cochet andM, H., Hassaguerre. Percolation as a mechanism to explain atrial fractionated electrograms and reentry in a fibrosis model based on imaging data (2016) Heart Rhythm, 13, pp. 1536-1543; Zhan, H.-q., Xia, L., Shou, G.-f., Zang, Y.-l., Liu, F., Crozier, S., Fibroblast proliferation alters cardiac excitation conduction and contraction: A computational study (2014) J. Zhejiang Univ. Sci. B, 15, pp. 225-242; Alonso, S., Bär, M., Reentry near the percolation threshold in a heterogeneous discrete model for cardiac tissue (2013) Phys. Rev. Lett, 110, pp. 1-5; Duverger, J. E., Jacquemet, V., Vinet, A., Comtois, P., In silico study of multicellular automaticity of heterogeneous cardiac cell monolayers: Effects of automaticity strength and structural linear anisotropy (2018) PLoS Computat. Biol, 14, p. e1005978; Deng, D., Murphy, M. J., Hakim, J. B., Franceschi, W. H., Zahid, S., Pashakhanloo, F., Trayanova, N. A., Boyle, P. M., Sensitivity of reentrant driver localization to electrophysiological parameter variability in image-based computational models of persistent atrial fibrillation sustained by a fibrotic substrate (2017) Chaos, 27, p. 093932; Krogh-Madsen, T., Abbott, G. W., Christini, D. J., Effects of electrical and structural remodeling on atrial fibrillation maintenance: A simulation study (2012) PLoS Computa. Biol, 8, p. e1002390; Spach, M. S., Heidlage, J. F., The stochastic nature of cardiac propagation at a microscopic level. electrical description of myocardial architecture and its application to conduction (1995) Circul. Res, 76, pp. 366-380; Lim, H., Cun, W., Wang, Y., Gray, R. A., Glimm, J., The role of conductivity discontinuities in design of cardiac defibrillation (2018) Chaos, 28, p. 013106; Zahid, S., Cochet, H., Boyle, P. M., Schwarz, E. L., Whyte, K. N., Vigmond, E. J., Dubois, R., Trayanova, N. A., Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern (2016) Cardiovasc. Res, 110, pp. 443-454; Coudière, Y., Henry, J., Labarthe, S., A two layers monodomain model of cardiac electrophysiology of the atria (2015) J. Math. Biol, 71, pp. 1607-1641; Lin, J., Keener, J. P., Microdomain effects on transverse cardiac propagation (2014) Biophys. J, 106, pp. 925-931; Stinstra, J., Macleod, R., Henriquez, C., Incorporating histology into a 3D microscopic computer model of myocardium to study propagation at a cellular level (2010) Ann. Biomed. Eng, 38, pp. 1399-1414; Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, K., A numerical method for the fractional Fitzhugh-Nagumo monodomain model (2012) Math. Soc, 54, pp. 608-629; Bueno-Orovio, A., Kay, D., Burrage, K., Fourier spectral methods for fractional-in-space reactiondiffusion equations (2014) BIT Numer. Math, 54, pp. 937-954; Cusimano, N., Bueno-Orovio, A., Turner, I., Burrage, K., On the order of the fractional Laplacian in determining the spatio-temporal evolution of a space-fractional model of cardiac electrophysiology (2015) PLoS ONE, 10, p. e0143938; Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y., A new collection of real world applications of fractional calculus in science and engineering (2018) Commun. Nonlinear Sci. Numer. Simul, 64, pp. 213-231; Sopasakis, P., Sarimveis, H., Macheras, P., Dokoumetzidis, A., Fractional calculus in pharmacokinetics (2018) J. Pharmacokinet. Pharmacodyn, 45, pp. 107-125; Tenreiro Machado, J. A., Kiryakova, V., The chronicles of fractional calculus (2017) Fract. Calc. Appl. Anal, 20, pp. 307-336; Ionescu, C., Lopes, A., Copot, D., Machado, J. A. T., Bates, J. H. T., The role of fractional calculus in modeling biological phenomena: A review (2017) Commun. Nonlinear Sc. Numer. Simul, 51, pp. 141-159; Maione, G., Nigmatullin, R. R., Tenreiro Machado, J. A., Sabatier, J., New challenges in fractional systems 2014 (2015) Math. Prob. Eng, 2015, pp. 1-3; Oldham, K., Spanier, J., The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order (1974) Mathematics in Science and Engineering, , (Elsevier Science); Miller, K. S., Ross, B., (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations, , (Wiley); Pozrikidis, C., (2016) The Fractional Laplacian, , (Taylor & Francis); Baleanu, D., Fernandez, A., On some new properties of fractional derivatives with Mittag-Leffler kernel (2018) Commun. Nonlinear Sci. Numer. Simul, 59, pp. 444-462; Samko, S. G., Kilbas, A. A., Marichev, O. I., (1993) Fractional Integrals and Derivatives: Theory and Applications, , (CRC); Tarasov, V. E., Map of discrete system into continuous (2006) J. Math. Phys, 47; Tarasov, V. E., Continuous limit of discrete systems with long-range interaction (2006) J. Phys. A: Math. Gene, 39, pp. 14895-14910; Bessonov, L., (1973) Applied Electricity for Engineers, , (Izdat. Mir); Raab, R. E., De Lange, O. L., de Lange, O. L., (2005) Multipole Theory in Electromagnetism: Classical, Quantum, and Symmetry Aspects, with Applications, , Oxford University Press, International Series of Monographs on Physics (OUP Oxford); Tenreiro Machado, J. A., Jesus, I. S., Galhano, A., Cunha, J. B., Fractional order electromagnetics (2006) Signal Process, 86, pp. 2637-2644; Engheta, N., On fractional calculus and fractional multipoles in electromagnetism (1996) IEEE Trans. Antennas Propag, 44, pp. 554-566; Spira, A. W., The nexus in the intercalated disc of the canine heart: Quantitative data for an estimation of its resistance (1971) J. Ultrastruct. Res, 34, pp. 409-425; Weidmann, S., Hodgkin, A. L., The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle (1966) J. Phys, 187, pp. 323-342; Page, E., Shibata, Y., Permeable junctions between cardiac cells (1981) Ann. Rev. Phys, 43, pp. 431-441; Harris, A. L., Emerging issues of connexin channels: Biophysics fills the gap (2001) Q. Rev.Biophy, 34, pp. 325-472; Prudat, Y., Kucera, J. P., Nonlinear behaviour of conduction and block in cardiac tissue with heterogeneous expression of connexin 43 (2014) Curr. Ther. Res. Clin. Exp, 76, pp. 46-54; Howard Evans, W., Cell communication across gap junctions: A historical perspective and current developments (2015) Biochem. Soc. Trans, 43, pp. 450-459; Hülser, D. F., Eckert, R., Irmer, U., Kriŝciukaitis, A., Mindermann, A., Pleiss, J., Rehkopf, B., Traub, O., Intercellular communication via gap junction channels (1998) Bioelectrochem. Bioenerge, 45, pp. 55-65; Sosinsky, G. E., Nicholson, B. J., Structural organization of gap junction channels (2005) Biochim. Biophys. Acta Biomembr, 1711, pp. 99-125; Berkowitz, B., Klafter, J., Metzler, R., Scher, H., Physical pictures of transport in heterogeneous media: Advection-dispersion, random walk and fractional derivative formulations (2002) Water Res. Res, 38, pp. 1-12; Havlin, S., Ben-Avraham, D., Diffusion in disordered media (2002) Adv. Phys, 51, pp. 187-292; Tarasov, V. E., Zaslavsky, G. M., Fractional dynamics of coupled oscillators with long-range interaction (2006) Chaos, 16, pp. 1-13; Ortigueira, M. D., Machado, J. A. T., On fractional vectorial calculus (2018) Bull. Pol. Acad. Sci. Tech. Sci, 66, pp. 389-402; Tenreiro Machado, J. A., Pinto, C. M.A., Lopes, A. M., A review on the characterization of signals and systems by power law distributions (2015) Signal Process, 107, pp. 246-253; Li, Y., Farrher, G., Kimmich, R., Sub-and superdiffusive molecular displacement laws in disordered porous media probed by nuclear magnetic resonance (2006) Phys. Rev. E, Stat. Nonlinear Soft Matter Phys, 74, pp. 1-7; Kimmich, R., Strange kinetics, porous media, and NMR (2002) Chem. Phys, 284, pp. 253-285; Ben-Avraham, D., Diffusion in disordered media (1991) Chemomet. Intell. Lab. Syst, 10, pp. 117-122; Mandelbrot, B. B., (1983) The Fractal Geometry of Nature Einaudi Paperbacks, , (Henry Holt and Company); Miao, T., Chen, A., Xu, Y., Cheng, S., Yu, B., A fractal permeability model for porous-fracture media with the transfer of fluids from porous matrix to fracture (2019) Fractals, 27, p. 1950121; Zheng, Q., Fan, J., Li, X., Wang, S., Fractal model of gas diffusion in fractured porous media (2018) Fractals, 26, p. 1850065; Cai, J., Wei, W., Hu, X., Wood, D. A., Electrical conductivity models in saturated porous media: A review (2017) Earth-Sci. Rev, 171, pp. 419-433; Wei, W., Cai, J., Hu, X., Han, Q., An electrical conductivity model for fractal porous media (2015) Geophys. Res. Lett, 42, pp. 4833-4840; Tenreiro Machado, J. A., Galhano, A. M. S. F., Fractional order inductive phenomena based on the skin effect (2012) Nonlinear Dyn, 68, pp. 107-115; Amadu, M., Pegg, M. J., A mathematical determination of the pore size distribution and fractal dimension of a porous sample using spontaneous imbibition dynamics theory (2018) J. Pet. Expl. Prod. Technol, 9, pp. 1-9; Amadu, M., Pegg, M. J., Theoretical and experimental determination of the fractal dimension and pore size distribution index of a porous sample using spontaneous imbibition dynamics theory Mumuni (2018) J. Pet. Sci. Eng, 167, pp. 785-795; Zheng, Q., Li, X., Gas diffusion coefficient of fractal porous media by Monte Carlo simulations (2015) Fractals, 23, p. 1550012; Plonsey, R., Barr, R. C., (2007) Bioelectricity: A Quantitative Approach, , (Springer, US); Weinberg, S. H., Spatial discordance and phase reversals during alternate pacing in discrete-time kinematic and cardiomyocyte ionic models (2015) Chaos, 25; Lemay, M., de Lange, E., Kucera, J. P., Uncovering the dynamics of cardiac systems using stochastic pacing and frequency domain analyses (2012) PLoS Comput. Biol, 8, p. e1002399; De Lange, E., Kucera, J. P., The transfer functions of cardiac tissue during stochastic pacing (2009) Biophys. J, 96, pp. 294-311; Méhauté, A. L., Nigmatullin, R. R., Nivanen, L., Flèches du temps et géométrie fractale (1998) Collection Systèmes Complexes, , (Hermès); Nigmatullin, R. R., Le Mehaute, A., Is there geometrical/ physicalmeaning of the fractional integral with complex exponent? (2005) J. Non-Cryst. Solids, 351, pp. 2888-2899; Hartley, T. T, Tomhartleyaolcom, E., Lorenzo, C. F., Adams, J. L., Conjugated-order differintegrals (2005) ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1597-1602. , (2005); Sornette, D., Discrete-scale invariance and complex dimensions (1998) Phys. Rep, 297, pp. 239-270; Marchuk, G. I., On the construction and comparison of difference schemes (1968) Apl. Mat, 13, pp. 103-132; Strang, G., On the construction and comparison of difference schemes (1968) J. Numer. Anal, 5, pp. 506-517; Ugarte, J. P., Tobón, C., Lopes, A. M., Tenreiro Machado, J. A., Atrial rotor dynamics under complex fractional order diffusion (2018) Front. Physiol, 9, pp. 1-14; Courtemanche, M., Ramirez, R. J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Amer. J. Phys, 275, pp. H301-H321; Wilhelms, M., Hettmann, H., Maleckar, M. M., Koivumäki, J. T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2013) Front. Physiol, 3, pp. 1-16; Xu, Y., Sharma, D., Li, G., Liu, Y., Atrial remodeling: New pathophysiological mechanism of atrial fibrillation (2013) Med. Hypotheses, 80, pp. 53-56; Heijman, J., Algalarrondo, V., Voigt, N., Melka, J., Wehrens, X. H. T., Dobrev, D., Nattel, S., The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: A critical analysis (2016) Cardiovasc. Res, 109, pp. 467-479; Miragoli, M., Gaudesius, G., Rohr, S., Electrotonic modulation of cardiac impulse conduction by myofibroblasts (2006) Circul. Res, 98, pp. 801-810; Bode, F., Kilborn, M., Karasik, P., Franz, M. R., The repolarization-excitability relationship in the human right atrium is unaffected by cycle length, recording site and prior arrhythmias (2001) J. Am. Coll. Cardiol, 37, pp. 920-925; Boutjdir, M., Le Heuzey, J. Y., Lavergne, T., Chauvaud, S., Guize, L., Carpentier, A., Peronneau, P., Inhomogeneity of Cellular Refractoriness in Human Atrium: Factor of Arrhythmia? L'hétérogénéité des périodes réfractaires cellulaires de l'oreillette humaine: Un facteur d'arythmie? (1986) Pac. Clin. Electrophysiol, 9, pp. 1095-1100; Kamalvand, K., Tan, K., Lloyd, G., Gill, J., Bucknall, C., Sulke, N., Alterations in atrial electrophysiology associated with chronic atrial fibrillation in man (1999) Eur. Heart J, 20, pp. 888-895; Bueno-orovio, A., Kay, D., Grau, V., Rodriguez, Blanca, Burrage, Kevin, Soc Interface, J. R., Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization (2014) J. R. Soc. Interface, 11, p. 20140352; Spach, M. S., Heidlage, J. F., Dolber, P. C., Barr, R. C., Extracellular discontinuities in cardiac muscle: Evidence for capillary effects on the action potential foot (1998) Circul. Res, 83, pp. 1144-1164; Hanson, B., Suton, P., Elameri, N., Gray, M., Critchley, H., Gill, J. S., Taggart, P., Interaction of activation-repolarization coupling and restitution properties in humans (2009) Circul. Arrhythmia Electrophysiol, 2, pp. 162-170; Boyett, M. R., Honjo, H., Yamamoto, M., Nikmaram, M. R., Niwa, R., Kodama, I., Downward gradient in action potential duration along conduction path in and around the sinoatrial node (1999) Amer. J. Phys. Heart and Circul. Physiol, 276, pp. H686-H698; Li, Z., Liu, Y., Hertervig, E., Kongstad, O., Yuan, S., Regional heterogeneity of right atrial repolarization. Monophasic action potential mapping in swine (2011) Scand. Cardiovasc. J, 45, pp. 336-341; Ridler, M. E., Lee, M., McQueen, D., Peskin, C., Vigmond, E., Arrhythmogenic consequences of action potential duration gradients in the atria (2011) Can. J. Cardiol, 27, pp. 112-119; Hurtado, D. E., Castro, S., Gizzi, A., Computational modeling of non-linear diffusion in cardiac electrophysiology: A novel porous-medium approach (2016) Comput. Methods Appl. Mech. Eng, 300, pp. 70-83; Liebovitch, L. S., Scheurle, D., Rusek, M., Zochowski, M., Fractal methods to analyze ion channel kinetics (2001) Methods, 24, pp. 359-375; Nigmatullin, R. R., Baleanu, D., New relationships connecting a class of fractal objects and fractional integrals in space (2013) Fract. Calc. Appl. Anal, 16, pp. 911-936; Nigmatullin, R. R., Zhang, W., Gubaidullin, I., Accurate relationships between fractals and fractional integrals: New approaches and evaluations (2017) Fract. Calc. Appl. Anal, 20, pp. 1263-1280; Sornette, D., Johansen, A., Arneodo, A., Muzy, J. F., Saleur, H., Complex fractal dimensions describe the hierarchical structure of diffusionlimited-aggregate clusters (1996) Phys. Rev. Lett, 76, pp. 251-254; Mondal, A., Sachse, F. B., Moreno, A. P., Modulation of asymmetric flux in heterotypic gap junctions by pore shape, particle size and charge (2017) Front. Physiol, 8, pp. 1-15; Hall, J. E., Gourdie, R. G., Spatial organization of cardiac gap junctions can affect access resistance (1995) Microsc. Res. Techn, 31, pp. 446-451; Zamir, M., On fractal properties of arterial trees (1999) J. Theor. Biol, 197, pp. 517-526; Zenin, O. K., Kizilova, N. N., Filippova, E. N., Studies on the structure of human coronary vasculature (2007) Biophysics, 52, pp. 499-503; Goldberger, A. L., West, B. J., Fractals in physiology and medicine (1987) Yale J. Biol. Med, 60, pp. 421-435; Goldberger, A. L., Rigney, D. R., West, B. J., Chaos Fractals Human Physiology (1990) Sci. Pict, 262, pp. 42-49; Dickinson, R. B., Guido, S., Tranquillo, R. T., Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels (1994) Ann. Biomed. Eng, 22, pp. 342-356; Nogueira, I. R., Alves, S. G., Ferreira, S. C., Scaling laws in the diffusion limited aggregation of persistent random walkers (2011) Phys. A, Stat.Mech. Appl, 390, pp. 4087-4094; Meerschaert, M. M., Mortensen, J., Wheatcraft, S. W., Fractional vector calculus for fractional advection-dispersion (2006) Phys. A, Stat. Mech. Appl, 367, pp. 181-190; Tarasov, V. E., Fractional vector calculus and fractional Maxwell's equations (2008) Anna. Phys, 323, pp. 2756-2778; Magin, R. L., Abdullah, O., Baleanu, D., Zhou, X. J., Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation (2008) J. Magn. Reson, 190, pp. 255-270; Qin, S., Liu, F., Turner, I. W., Yang, Q., Yu, Q., Modelling anomalous diffusion using fractional Bloch-Torrey equations on approximate irregular domains (2018) Comput. Math. Appl, 75, pp. 7-21; Yu, Q., Reutens, D., O'Brien, K., Vegh, V., Tissue microstructure features derived from anomalous diffusion measurements in magnetic resonance imaging (2017) Human Brain Mapp, 38, pp. 1068-1081; Bueno-Orovio, A., Teh, I., Schneider, J. E., Burrage, K., Grau, V., Anomalous Diffusion in Cardiac Tissue as an Index of Myocardial Microstructure (2016) IEEE Trans. Med. Imag, 35, pp. 2200-2207; http://hdl.handle.net/11407/5904
-
8Academic Journal
المؤلفون: Umazano, J.P., Bertolotto, J.A.
المصدر: J Chem Phys 2013;138(9)
مصطلحات موضوعية: Analytic solution, Electric field strength, Hydrodynamic coupling, Molecular orientational, Numerical approaches, Numerical procedures, Numerical results, Orientational distribution functions, Dichroism, Electric fields, Finite difference method, Power quality, DNA, water, article, chemical structure, chemistry, electromagnetic field, hydrodynamics, solution and solubility, Electromagnetic Fields, Models, Molecular, Solutions
وصف الملف: application/pdf
Relation: http://hdl.handle.net/20.500.12110/paper_00219606_v138_n9_p_Umazano; http://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00219606_v138_n9_p_Umazano_oai
-
9Dissertation/ Thesis
المؤلفون: Milićević Srđan
Thesis Advisors: Kostić Vladimir, Cvetković Ljiljana, Doroslovački Ksenija, Nedović Maja, Tomljanović Zoran
مصطلحات موضوعية: Applied linear algebra, localization of eigenvalues, numerical procedures, Geršgorin circles, minimal Geršgorin set, numerical range, convex polygon, Примена линеарне алгебре, локализација карактеристичних коренa, нумерички поступци, Гершгоринови кругови, минимални Гершгоринов скуп, нумерички распон, конвексни полигон, Primena linearne algebre, lokalizacija karakterističnih korena, numerički postupci, Geršgorinovi krugovi, minimalni Geršgorinov skup, numerički raspon, konveksni poligon
الاتاحة: https://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija158955836512747.pdf?controlNumber=(BISIS)114425&fileName=158955836512747.pdf&id=15366&source=NDLTD&language=en
https://www.cris.uns.ac.rs/record.jsf?recordId=114425&source=NDLTD&language=en -
10
مصطلحات موضوعية: minimal Geršgorin set, Geršgorinovi krugovi, нумерички распон, numerički postupci, Applied linear algebra, локализација карактеристичних коренa, numerical range, нумерички поступци, минимални Гершгоринов скуп, convex polygon, numerički raspon, minimalni Geršgorinov skup, lokalizacija karakterističnih korena, Geršgorin circles, Гершгоринови кругови, конвексни полигон, numerical procedures, konveksni poligon, Примена линеарне алгебре, Primena linearne algebre, localization of eigenvalues
URL الوصول: https://explore.openaire.eu/search/publication?articleId=dris___00968::aba1badbf2e2e18a8d4ec625481bd2a0
https://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija158955836512747.pdf?controlNumber=(BISIS)114425&fileName=158955836512747.pdf&id=15366&source=OpenAIRE&language=en -
11
المؤلفون: Kamra, Veenu, Dreher, Achim
المصدر: IEEE Transactions on Microwave Theory and Techniques. 67:584-591
مصطلحات موضوعية: Optical fiber, Materials science, Physics::Optics, Conformal map, 02 engineering and technology, Dielectric, discrete mode matching, law.invention, Matrix (mathematics), conformal, Optics, law, numerical procedures, Dispersion (optics), 0202 electrical engineering, electronic engineering, information engineering, Multilayered microwave structures, Electrical and Electronic Engineering, Anisotropy, Radiation, business.industry, 020206 networking & telecommunications, Condensed Matter Physics, Equivalent circuit, anisotropic media, business, Stripline
-
12Academic Journal
المؤلفون: Kalmar, L.
مصطلحات موضوعية: numerical procedures, blade effects, constrain force field, energy loss, числовые процедуры, рабочее колесо, радиальный поток
وصف الملف: application/pdf
Relation: Kalmar L. Calculation of the real performance curve of radial flow fan impeller / L. Kalmar // Резание и инструмент в технологических системах : междунар. науч.-техн. сб. – Харьков : НТУ "ХПИ", 2010. – Вып. 78. – С. 71-80.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/18322
-
13Academic Journal
المؤلفون: Mişcoi, G.C., Mishkoy, G., Rykov, V.V., Рыков, В.В., Giordano, S., Bejan, A.I.
المصدر: Automation and Remote Control 980-992
مصطلحات موضوعية: Analytical results, Computational aspects, functional equation, Numerical procedures, Numerical solution, Priority queueing, Queueing system, System workloads
وصف الملف: application/pdf
Relation: https://ibn.idsi.md/vizualizare_articol/198813; urn:issn:00051179
-
14Dissertation/ Thesis
المؤلفون: Milićević Srđan
المساهمون: Kostić Vladimir, Cvetković Ljiljana, Doroslovački Ksenija, Nedović Maja, Tomljanović Zoran
المصدر: CRIS UNS
مصطلحات موضوعية: Applied linear algebra, localization of eigenvalues, numerical procedures, Geršgorin circles, minimal Geršgorin set, numerical range, convex polygon, Примена линеарне алгебре, локализација карактеристичних коренa, нумерички поступци, Гершгоринови кругови, минимални Гершгоринов скуп, нумерички распон, конвексни полигон, Primena linearne algebre, lokalizacija karakterističnih korena, numerički postupci, Geršgorinovi krugovi, minimalni Geršgorinov skup, numerički raspon, konveksni poligon
الاتاحة: https://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija158955836512747.pdf?controlNumber=(BISIS)114425&fileName=158955836512747.pdf&id=15366&source=OpenAIRE&language=en
https://www.cris.uns.ac.rs/record.jsf?recordId=114425&source=OpenAIRE&language=en -
15Dissertation/ Thesis
المؤلفون: Milićević, Srđan
المساهمون: Kostić, Vladimir, Cvetković, Ljiljana, Doroslovački, Ksenija, Nedović, Maja, Tomljanović, Zoran
المصدر: Универзитет у Новом Саду
مصطلحات موضوعية: Applied linear algebra, localization of eigenvalues, numerical procedures, Geršgorin circles, minimal Geršgorin set, numerical range, convex polygon, Примена линеарне алгебре, Primena linearne algebre, локализација карактеристичних коренa, нумерички поступци, Гершгоринови кругови, минимални Гершгоринов скуп, нумерички распон, конвексни полигон, lokalizacija karakterističnih korena, numerički postupci, Geršgorinovi krugovi, minimalni Geršgorinov skup, numerički raspon, konveksni poligon
Relation: https://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija158955836512747.pdf?controlNumber=(BISIS)114425&fileName=158955836512747.pdf&id=15366&source=NaRDuS&language=sr; https://www.cris.uns.ac.rs/record.jsf?recordId=114425&source=NaRDuS&language=sr; https://www.cris.uns.ac.rs/DownloadFileServlet/IzvestajKomisije158955837539035.pdf?controlNumber=(BISIS)114425&fileName=158955837539035.pdf&id=15367&source=NaRDuS&language=sr; /DownloadFileServlet/IzvestajKomisije158955837539035.pdf?controlNumber=(BISIS)114425&fileName=158955837539035.pdf&id=15367; https://nardus.mpn.gov.rs/handle/123456789/17379; https://nardus.mpn.gov.rs/bitstream/id/65054/IzvestajKomisije.pdf; https://nardus.mpn.gov.rs/bitstream/id/65053/Disertacija.pdf; https://hdl.handle.net/21.15107/rcub_nardus_17379
الاتاحة: https://nardus.mpn.gov.rs/handle/123456789/17379
https://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija158955836512747.pdf?controlNumber=(BISIS)114425&fileName=158955836512747.pdf&id=15366&source=NaRDuS&language=sr
https://www.cris.uns.ac.rs/record.jsf?recordId=114425&source=NaRDuS&language=sr
https://www.cris.uns.ac.rs/DownloadFileServlet/IzvestajKomisije158955837539035.pdf?controlNumber=(BISIS)114425&fileName=158955837539035.pdf&id=15367&source=NaRDuS&language=sr
https://nardus.mpn.gov.rs/bitstream/id/65054/IzvestajKomisije.pdf
https://nardus.mpn.gov.rs/bitstream/id/65053/Disertacija.pdf
https://hdl.handle.net/21.15107/rcub_nardus_17379 -
16
المؤلفون: Achim Dreher, Veenu Kamra
مصطلحات موضوعية: Materials science, business.industry, HFSS, Coplanar waveguide, 020208 electrical & electronic engineering, Physics::Optics, 020206 networking & telecommunications, 02 engineering and technology, Dielectric, Microwave transmission, discrete mode matching, Condensed Matter Physics, Characteristic impedance, Microstrip, Condensed Matter::Materials Science, numerical procedures, 0202 electrical engineering, electronic engineering, information engineering, Optoelectronics, Multilayered microwave structures, Electrical and Electronic Engineering, Propagation constant, anisotropic media, business, Anisotropy
-
17Academic Journal
المؤلفون: Leonard Kleinrock, Farid Mehovic
المساهمون: The Pennsylvania State University CiteSeerX Archives
مصطلحات موضوعية: multiuser queues, numerical procedures, optimistic concurrency control, queueing, special queues, transition probabilities, one-dimensional
وصف الملف: application/pdf
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.228.4084; http://www.lk.cs.ucla.edu/data/files/Kleinrock/Poisson%20winner%20queues.pdf
-
18Academic Journal
المؤلفون: McCabe, James S., Demars, Kyle J.
المصدر: Mechanical and Aerospace Engineering Faculty Research & Creative Works
مصطلحات موضوعية: Data handling, Earth (planet), Information fusion, Numerical methods, Probability density function, Radar stations, Radar tracking, Sensor networks, Approximate methods, Computationally efficient, Distributed sensor networks, Ground based radar, Ground based sensors, Numerical procedures, Orbit determination, Probability densities, Orbits, Aerospace Engineering
Relation: https://scholarsmine.mst.edu/mec_aereng_facwork/3964; https://doi.org/10.23919/ICIF.2018.8455534
-
19Report
المؤلفون: Kunkel, Peter, Mehrmann, Volker
مصطلحات موضوعية: info:eu-repo/classification/ddc/510, ddc:510, consistent systems, numerical procedures, MSC 65L05
Relation: urn:nbn:de:bsz:ch1-199800633; https://monarch.qucosa.de/id/qucosa%3A17436; https://monarch.qucosa.de/api/qucosa%3A17436/attachment/ATT-0/; https://monarch.qucosa.de/api/qucosa%3A17436/attachment/ATT-1/; https://monarch.qucosa.de/api/qucosa%3A17436/attachment/ATT-2/
-
20Academic Journal
المؤلفون: Funari, Marco Franscesco, Lonetti, Paolo
المصدر: Funari , M F & Lonetti , P 2017 , ' Initiation and evolution of debonding phenomena in layered structures ' , Theoretical and Applied Fracture Mechanics , vol. 92 , pp. 133-145 . https://doi.org/10.1016/j.tafmec.2017.05.030
مصطلحات موضوعية: ALE, Crack initiation, Debonding, Dynamic fracture mechanics, FEM, Cracks, Fracture mechanics, Mesh generation, Multilayers, Numerical methods, Shear deformation, Arbitrary Lagrangian Eulerian formulations, Convergence and stability, Moving mesh techniques, Numerical approaches, Numerical procedures, Sensitivity studies, Shear deformable beams, Finite element method