يعرض 1 - 20 نتائج من 157 نتيجة بحث عن '"nonlinear memory"', وقت الاستعلام: 0.77s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Conference

    المساهمون: AMCAD ENGINEERING, Partenaire privé, Systèmes RF (XLIM-SRF), XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)

    المصدر: 103RD ARFTG MICROWAVE MEASUREMENT CONFERENCE (Advanced Measurement Techniques for Next-G Communication Systems)
    https://unilim.hal.science/hal-04608654
    103RD ARFTG MICROWAVE MEASUREMENT CONFERENCE (Advanced Measurement Techniques for Next-G Communication Systems), Jun 2024, Washington DC, United States

    جغرافية الموضوع: Washington DC, United States

    Time: Washington DC, United States

    Relation: hal-04608654; https://unilim.hal.science/hal-04608654

  9. 9
    Academic Journal

    المساهمون: Universidad de Sevilla. Departamento de Teoría de la Señal y Comunicaciones

    Relation: IEEE Transactions on Microwave Theory and Techniques, 55 (3), 449-457.; TEC2004-06451-C05-03; https://ieeexplore.ieee.org/abstract/document/4118399; https://idus.us.es/handle//11441/130494

  10. 10
    Academic Journal

    المساهمون: Universidad de Sevilla. Departamento de Teoría de la Señal y Comunicaciones

    Relation: IEEE Transactions on Microwave Theory and Techniques, 56 (11), 2536-2544.; TEC2004-06451-C05-03; P07-TIC-02649; https://ieeexplore.ieee.org/abstract/document/4655623; https://idus.us.es/handle//11441/130353

  11. 11
    Academic Journal

    المساهمون: Giorgi Claudio, Golden John Murrough

    وصف الملف: ELETTRONICO

    Relation: info:eu-repo/semantics/altIdentifier/pmid/36234142; info:eu-repo/semantics/altIdentifier/wos/WOS:000867008600001; volume:15; issue:19; firstpage:6804; journal:MATERIALS; https://hdl.handle.net/11379/564660; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85139860906

  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المؤلفون: Jleli M., Samet B., Vetro C.

    المساهمون: Jleli M., Samet B., Vetro C.

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000586243700001; volume:12; issue:10; firstpage:1; lastpage:12; numberofpages:12; journal:SYMMETRY; http://hdl.handle.net/10447/442542

  15. 15
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4574654; zbl:Zbl 07675567; reference:[1] Bayraktar, S., Gür, Ş.: Continuous dependence of solutions for damped improved Boussinesq equation.Turk. J. Math. 44 (2020), 334-341. Zbl 1450.35042, MR 4059543, 10.3906/mat-1912-20; reference:[2] Benilan, P., Crandall, M. G.: The continuous dependence on $\phi$ of solutions of $u_{t}-\Delta_{\phi}(u)=0$.Indiana Univ. Math. J. 30 (1981), 161-177. Zbl 0482.35012, MR 0604277, 10.1512/iumj.1981.30.30014; reference:[3] Boumaza, N., Boulaaras, S.: General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel.Math. Methods Appl. Sci. 41 (2018), 6050-6069. Zbl 1415.35038, MR 3879228, 10.1002/mma.5117; reference:[4] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Martinez, P.: General decay rate estimates for viscoelastic dissipative systems.Nonlinear Anal., Theory Methods Appl., Ser. A 68 (2008), 177-193. Zbl 1124.74009, MR 2361147, 10.1016/j.na.2006.10.040; reference:[5] Cockburn, B., Gripenber, G.: Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations.J. Differ. Equations 151 (1999), 231-251. Zbl 0921.35017, MR 1669570, 10.1006/jdeq.1998.3499; reference:[6] Conti, M., Pata, V.: General decay properties of abstract linear viscoelasticity.Z. Angew. Math. Phys. 71 (2020), Article ID 6, 21 pages. Zbl 1430.35030, MR 4041122, 10.1007/s00033-019-1229-5; reference:[7] D'Abbicco, M.: The influence of a nonlinear memory on the damped wave equation.Nonlinear Anal., Theory Methods Appl., Ser. A 95 (2014), 130-145. Zbl 1284.35286, MR 3130512, 10.1016/j.na.2013.09.006; reference:[8] D'Abbicco, M., Lucente, S.: The beam equation with nonlinear memory.Z. Angew. Math. Phys. 67 (2016), Article ID 60, 18 pages. Zbl 1361.35116, MR 3493963, 10.1007/s00033-016-0655-x; reference:[9] Douglis, A.: The continuous dependence of generalized solutions of non-linear partial differential equations upon initial data.Commun. Pure Appl. Math. 14 (1961), 267-284. Zbl 0117.31102, MR 0139848, 10.1002/cpa.3160140307; reference:[10] Duvaut, G., Lions, J. L.: Inequalities in Mechanics and Physics.Grundlehren der mathematischen Wissenschaften 219. Springer, Berlin (1976). Zbl 0331.35002, MR 0521262, 10.1007/978-3-642-66165-5; reference:[11] Ekinci, F., Pişkin, E., Boulaaras, S. M., Mekawy, I.: Global existence and general decay of solutions for a quasilinear system with degenerate damping terms.J. Funct. Spaces 2021 (2021), Article ID 4316238, 10 pages. Zbl 1472.35239, MR 4283631, 10.1155/2021/4316238; reference:[12] Fino, A. Z.: Critical exponent for damped wave equations with nonlinear memory.Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 5495-5505. Zbl 1222.35025, MR 2819292, 10.1016/j.na.2011.01.039; reference:[13] Gripenberg, G.: Global existence of solutions of Volterra integrodifferential equations of parabolic type.J. Differ. Equations 102 (1993), 382-390. Zbl 0780.45012, MR 1216735, 10.1006/jdeq.1993.1035; reference:[14] Gür, Ş., Uysal, M. E.: Continuous dependence of solutions to the strongly damped nonlinear Klein-Gordon equation.Turk. J. Math. 42 (2018), 904-910. Zbl 1424.35261, MR 3804959, 10.3906/mat-1706-30; reference:[15] Han, X., Wang, M.: General decay of energy for a viscoelastic equation with nonlinear damping.J. Franklin Inst. 347 (2010), 806-817. Zbl 1286.35148, MR 2645392, 10.1016/j.jfranklin.2010.02.010; reference:[16] Hao, J., Wei, H.: Blow-up and global existence for solution of quasilinear viscoelastic wave equation with strong damping and source term.Bound. Value Probl. 2017 (2017), Article ID 65, 12 pages. Zbl 1379.35192, MR 3647200, 10.1186/s13661-017-0796-7; reference:[17] Hassan, J. H., Messaoudi, S. A.: General decay results for a viscoelastic wave equation with a variable exponent nonlinearity.Asymptotic Anal. 125 (2021), 365-388. MR 4374601, 10.3233/ASY-201661; reference:[18] Hrusa, W. J.: Global existence and asymptotic stability for a semilinear hyperbolic Volterra equation with large initial data.SIAM J. Math. Anal. 16 (1985), 110-134. Zbl 0571.45007, MR 0772871, 10.1137/0516007; reference:[19] Jleli, M., Samet, B., Vetro, C.: Large time behavior for inhomogeneous damped wave equations with nonlinear memory.Symmetry 12 (2020), Article ID 1609, 12 pages. 10.3390/sym12101609; reference:[20] John, F.: Continuous dependence on data for solutions of partial differential equations with a prescribed bound.Commun. Pure Appl. Math. 13 (1960), 551-586. Zbl 0097.08101, MR 130456, 10.1002/cpa.3160130402; reference:[21] Kaddour, T. H., Reissig, M.: Global well-posedness for effectively damped wave models with nonlinear memory.Commun. Pure Appl. Anal. 20 (2021), 2039-2064. Zbl 1466.35264, MR 4259639, 10.3934/cpaa.2021057; reference:[22] Kafini, M., Messaoudi, S. A.: A blow-up result in a Cauchy viscoelastic problem.Appl. Math. Lett. 21 (2008), 549-553. Zbl 1149.35076, MR 2412376, 10.1016/j.aml.2007.07.004; reference:[23] Kafini, M., Mustafa, M. I.: Blow-up result in a Cauchy viscoelastic problem with strong damping and dispersive.Nonlinear Anal., Real World Appl. 20 (2014), 14-20. Zbl 1295.35129, MR 3233895, 10.1016/j.nonrwa.2014.04.005; reference:[24] Li, Q., He, L.: General decay and blow-up of solutions for a nonlinear viscoelastic wave equation with strong damping.Bound. Value Probl. 2018 (2018), Article ID 153, 22 pages. MR 3859565, 10.1186/s13661-018-1072-1; reference:[25] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Etudes mathematiques. Dunod, Paris (1969), French. Zbl 0189.40603, MR 0259693; reference:[26] Long, N. T., Dinh, A. P. N., Truong, L. X.: Existence and decay of solutions of a nonlinear viscoelastic problem with a mixed nonhomogeneous condition.Numer. Funct. Anal. Optim. 29 (2008), 1363-1393. Zbl 1162.35053, MR 2479113, 10.1080/01630560802605955; reference:[27] Mesloub, F., Boulaaras, S.: General decay for a viscoelastic problem with not necessarily decreasing kernel.J. Appl. Math. Comput. 58 (2018), 647-665. Zbl 1403.35050, MR 3847059, 10.1007/s12190-017-1161-9; reference:[28] Messaoudi, S. A.: Blow up and global existence in a nonlinear viscoelastic wave equation.Math. Nachr. 260 (2003), 58-66. Zbl 1035.35082, MR 2017703, 10.1002/mana.200310104; reference:[29] Messaoudi, S. A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source.Nonlinear Anal., Theory Methods Appl., Ser. A 69 (2008), 2589-2598. Zbl 1154.35066, MR 2446355, 10.1016/j.na.2007.08.035; reference:[30] Mustafa, M. I.: General decay result for nonlinear viscoelastic equations.J. Math. Anal. Appl. 457 (2018), 134-152. Zbl 1379.35028, MR 3702699, 10.1016/j.jmaa.2017.08.019; reference:[31] Mustafa, M. I.: Optimal decay rates for the viscoelastic wave equation.Math. Methods Appl. Sci. 41 (2018), 192-204. Zbl 1391.35058, MR 3745365, 10.1002/mma.4604; reference:[32] Ngoc, L. T. P., Quynh, D. T. N., Triet, N. A., Long, N. T.: Linear approximation and asymptotic expansion associated to the Robin-Dirichlet problem for a Kirchhoff-Carrier equation with a viscoelastic term.Kyungpook Math. J. 59 (2019), 735-769. MR 4057771; reference:[33] Pan, J. Q.: The continuous dependence on nonlinearities of solutions of the Neumann problem of a singular parabolic equation.Nonlinear Anal., Theory Methods Appl., Ser. A 67 (2007), 2081-2090. Zbl 1123.35026, MR 2331859, 10.1016/j.na.2006.09.017; reference:[34] Quynh, D. T. N., Nam, B. D., Thanh, L. T. M., Dung, T. T. M., Nhan, N. H.: High-order iterative scheme for a viscoelastic wave equation and numerical results.Math. Probl. Eng. 2021 (2021), Article ID 9917271, 27 pages. MR 4274176, 10.1155/2021/9917271; reference:[35] Shang, Y., Guo, B.: On the problem of the existence of global solutions for a class of nonlinear convolutional intergro-differential equations of pseudoparabolic type.Acta Math. Appl. Sin. 26 (2003), 511-524 Chinese. Zbl 1057.45004, MR 2022221

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20