-
1Academic Journal
المؤلفون: Yuchen Zhu
المصدر: Electronic Research Archive, Vol 32, Iss 11, Pp 5988-6007 (2024)
مصطلحات موضوعية: fractional biharmonic equation, exponentional nonlinear memory, blow-up, local existence, Mathematics, QA1-939, Applied mathematics. Quantitative methods, T57-57.97
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2688-1594
-
2Academic Journal
المؤلفون: Seyyid Ali Saiah, Abdelatif Kainane Mezadek, Mohamed Kainane Mezadek, Abdelhamid Mohammed Djaouti, Ashraf Al-Quran, Ali M. A. Bany Awad
المصدر: Mathematics, Vol 12, Iss 13, p 1942 (2024)
مصطلحات موضوعية: σ–evolution equations, small data solutions, global in time existence, fractional equations, nonlinear memory, weakly coupled system, Mathematics, QA1-939
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Sen Ming, Xiongmei Fan, Cui Ren, Yeqin Su
المصدر: AIMS Mathematics, Vol 8, Iss 2, Pp 4630-4644 (2023)
مصطلحات موضوعية: moore-gibson-thompson equation, general initial values, nonlinear memory terms, blow-up, test function method, Mathematics, QA1-939
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2473-6988
-
4Academic JournalThe finite time blow-up for Caputo-Hadamard fractional diffusion equation involving nonlinear memory
المؤلفون: Zhiqiang Li
المصدر: AIMS Mathematics, Vol 7, Iss 7, Pp 12913-12934 (2022)
مصطلحات موضوعية: caputo-hadamard derivative, fractional laplacian, nonlinear memory, finite time blow-up, fixed point argument, Mathematics, QA1-939
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2473-6988
-
5Academic Journal
المؤلفون: Quanguo Zhang, Yaning Li
المصدر: Fractal and Fractional; Volume 7; Issue 1; Pages: 56
مصطلحات موضوعية: time fractional diffusion system, blow-up, global existence, critical exponent, nonlinear memory
وصف الملف: application/pdf
Relation: General Mathematics, Analysis; https://dx.doi.org/10.3390/fractalfract7010056
-
6Academic Journal
المؤلفون: Soufiane Bousserhane Reda, Amer Memou, Abdelhak Berkane, Ahmed Himadan, Abdelkader Moumen, Hicham Saber, Tariq Alraqad
المصدر: Fractal and Fractional, Vol 7, Iss 11, p 788 (2023)
مصطلحات موضوعية: Lyapunov functions, wave equations, well-posedness, nonlinear memory term, exponential, multiplier method, Thermodynamics, QC310.15-319, Mathematics, QA1-939, Analysis, QA299.6-433
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: Jincheng Shi, Jianye Xia, Wenjing Zhi
المصدر: AIMS Mathematics, Vol 6, Iss 10, Pp 10907-10919 (2021)
مصطلحات موضوعية: wave equation, semilinear hyperbolic equation, generalized tricomi operator, blow-up, nonlinear memory term, Mathematics, QA1-939
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2473-6988
-
8Conference
المساهمون: AMCAD ENGINEERING, Partenaire privé, Systèmes RF (XLIM-SRF), XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)
المصدر: 103RD ARFTG MICROWAVE MEASUREMENT CONFERENCE (Advanced Measurement Techniques for Next-G Communication Systems)
https://unilim.hal.science/hal-04608654
103RD ARFTG MICROWAVE MEASUREMENT CONFERENCE (Advanced Measurement Techniques for Next-G Communication Systems), Jun 2024, Washington DC, United Statesمصطلحات موضوعية: Behavioral modeling, Nonlinear memory, power amplifiers, nonlinear characterization, [SPI]Engineering Sciences [physics], [NLIN]Nonlinear Sciences [physics]
جغرافية الموضوع: Washington DC, United States
Time: Washington DC, United States
Relation: hal-04608654; https://unilim.hal.science/hal-04608654
-
9Academic Journal
المساهمون: Universidad de Sevilla. Departamento de Teoría de la Señal y Comunicaciones
مصطلحات موضوعية: Behavioral models, Microwave amplifiers, Nonlinear memory effects, Volterra series
Relation: IEEE Transactions on Microwave Theory and Techniques, 55 (3), 449-457.; TEC2004-06451-C05-03; https://ieeexplore.ieee.org/abstract/document/4118399; https://idus.us.es/handle//11441/130494
-
10Academic Journal
المساهمون: Universidad de Sevilla. Departamento de Teoría de la Señal y Comunicaciones
مصطلحات موضوعية: Behavioral models, Nonlinear memory effects, Power amplifiers, System identification
Relation: IEEE Transactions on Microwave Theory and Techniques, 56 (11), 2536-2544.; TEC2004-06451-C05-03; P07-TIC-02649; https://ieeexplore.ieee.org/abstract/document/4655623; https://idus.us.es/handle//11441/130353
-
11Academic Journal
المؤلفون: Giorgi, Claudio, Golden, John Murrough
المساهمون: Giorgi Claudio, Golden John Murrough
مصطلحات موضوعية: dissipation, electric conductors with nonlinear memory, energy estimates, free energy, materials with memory, nonlinear viscoelasticity
وصف الملف: ELETTRONICO
Relation: info:eu-repo/semantics/altIdentifier/pmid/36234142; info:eu-repo/semantics/altIdentifier/wos/WOS:000867008600001; volume:15; issue:19; firstpage:6804; journal:MATERIALS; https://hdl.handle.net/11379/564660; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85139860906
-
12Academic Journal
المؤلفون: Jenkins, Alexander C., Sakellariadou, Mairi
المصدر: Jenkins , A C & Sakellariadou , M 2021 , ' Nonlinear gravitational-wave memory from cusps and kinks on cosmic strings ' , Classical and Quantum Gravity , vol. 38 , no. 16 , 165004 . https://doi.org/10.1088/1361-6382/ac1084
مصطلحات موضوعية: Cosmic strings, Gravitational waves, Nonlinear memory
-
13Academic Journal
المؤلفون: Zhang, Quan-Guo
المصدر: Topological Methods in Nonlinear Analysis; Online First Articles; 1 - 26 ; 1230-3429
مصطلحات موضوعية: Fractional diffusion-wave equation, blow-up, global existence, nonlinear memory, 35R11, 35B44, 35A01
-
14Academic Journal
المساهمون: Jleli M., Samet B., Vetro C.
مصطلحات موضوعية: Damped wave equation, Global weak solution, Inhomogeneous term, Nonexistence result, Nonlinear memory, Settore MAT/05 - Analisi Matematica
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000586243700001; volume:12; issue:10; firstpage:1; lastpage:12; numberofpages:12; journal:SYMMETRY; http://hdl.handle.net/10447/442542
-
15Academic Journal
مصطلحات موضوعية: keyword:viscoelastic equations, keyword:strong damping, keyword:nonlinear memory, keyword:general decay, msc:35L20, msc:35L70
وصف الملف: application/pdf
Relation: mr:MR4574654; zbl:Zbl 07675567; reference:[1] Bayraktar, S., Gür, Ş.: Continuous dependence of solutions for damped improved Boussinesq equation.Turk. J. Math. 44 (2020), 334-341. Zbl 1450.35042, MR 4059543, 10.3906/mat-1912-20; reference:[2] Benilan, P., Crandall, M. G.: The continuous dependence on $\phi$ of solutions of $u_{t}-\Delta_{\phi}(u)=0$.Indiana Univ. Math. J. 30 (1981), 161-177. Zbl 0482.35012, MR 0604277, 10.1512/iumj.1981.30.30014; reference:[3] Boumaza, N., Boulaaras, S.: General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel.Math. Methods Appl. Sci. 41 (2018), 6050-6069. Zbl 1415.35038, MR 3879228, 10.1002/mma.5117; reference:[4] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Martinez, P.: General decay rate estimates for viscoelastic dissipative systems.Nonlinear Anal., Theory Methods Appl., Ser. A 68 (2008), 177-193. Zbl 1124.74009, MR 2361147, 10.1016/j.na.2006.10.040; reference:[5] Cockburn, B., Gripenber, G.: Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations.J. Differ. Equations 151 (1999), 231-251. Zbl 0921.35017, MR 1669570, 10.1006/jdeq.1998.3499; reference:[6] Conti, M., Pata, V.: General decay properties of abstract linear viscoelasticity.Z. Angew. Math. Phys. 71 (2020), Article ID 6, 21 pages. Zbl 1430.35030, MR 4041122, 10.1007/s00033-019-1229-5; reference:[7] D'Abbicco, M.: The influence of a nonlinear memory on the damped wave equation.Nonlinear Anal., Theory Methods Appl., Ser. A 95 (2014), 130-145. Zbl 1284.35286, MR 3130512, 10.1016/j.na.2013.09.006; reference:[8] D'Abbicco, M., Lucente, S.: The beam equation with nonlinear memory.Z. Angew. Math. Phys. 67 (2016), Article ID 60, 18 pages. Zbl 1361.35116, MR 3493963, 10.1007/s00033-016-0655-x; reference:[9] Douglis, A.: The continuous dependence of generalized solutions of non-linear partial differential equations upon initial data.Commun. Pure Appl. Math. 14 (1961), 267-284. Zbl 0117.31102, MR 0139848, 10.1002/cpa.3160140307; reference:[10] Duvaut, G., Lions, J. L.: Inequalities in Mechanics and Physics.Grundlehren der mathematischen Wissenschaften 219. Springer, Berlin (1976). Zbl 0331.35002, MR 0521262, 10.1007/978-3-642-66165-5; reference:[11] Ekinci, F., Pişkin, E., Boulaaras, S. M., Mekawy, I.: Global existence and general decay of solutions for a quasilinear system with degenerate damping terms.J. Funct. Spaces 2021 (2021), Article ID 4316238, 10 pages. Zbl 1472.35239, MR 4283631, 10.1155/2021/4316238; reference:[12] Fino, A. Z.: Critical exponent for damped wave equations with nonlinear memory.Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 5495-5505. Zbl 1222.35025, MR 2819292, 10.1016/j.na.2011.01.039; reference:[13] Gripenberg, G.: Global existence of solutions of Volterra integrodifferential equations of parabolic type.J. Differ. Equations 102 (1993), 382-390. Zbl 0780.45012, MR 1216735, 10.1006/jdeq.1993.1035; reference:[14] Gür, Ş., Uysal, M. E.: Continuous dependence of solutions to the strongly damped nonlinear Klein-Gordon equation.Turk. J. Math. 42 (2018), 904-910. Zbl 1424.35261, MR 3804959, 10.3906/mat-1706-30; reference:[15] Han, X., Wang, M.: General decay of energy for a viscoelastic equation with nonlinear damping.J. Franklin Inst. 347 (2010), 806-817. Zbl 1286.35148, MR 2645392, 10.1016/j.jfranklin.2010.02.010; reference:[16] Hao, J., Wei, H.: Blow-up and global existence for solution of quasilinear viscoelastic wave equation with strong damping and source term.Bound. Value Probl. 2017 (2017), Article ID 65, 12 pages. Zbl 1379.35192, MR 3647200, 10.1186/s13661-017-0796-7; reference:[17] Hassan, J. H., Messaoudi, S. A.: General decay results for a viscoelastic wave equation with a variable exponent nonlinearity.Asymptotic Anal. 125 (2021), 365-388. MR 4374601, 10.3233/ASY-201661; reference:[18] Hrusa, W. J.: Global existence and asymptotic stability for a semilinear hyperbolic Volterra equation with large initial data.SIAM J. Math. Anal. 16 (1985), 110-134. Zbl 0571.45007, MR 0772871, 10.1137/0516007; reference:[19] Jleli, M., Samet, B., Vetro, C.: Large time behavior for inhomogeneous damped wave equations with nonlinear memory.Symmetry 12 (2020), Article ID 1609, 12 pages. 10.3390/sym12101609; reference:[20] John, F.: Continuous dependence on data for solutions of partial differential equations with a prescribed bound.Commun. Pure Appl. Math. 13 (1960), 551-586. Zbl 0097.08101, MR 130456, 10.1002/cpa.3160130402; reference:[21] Kaddour, T. H., Reissig, M.: Global well-posedness for effectively damped wave models with nonlinear memory.Commun. Pure Appl. Anal. 20 (2021), 2039-2064. Zbl 1466.35264, MR 4259639, 10.3934/cpaa.2021057; reference:[22] Kafini, M., Messaoudi, S. A.: A blow-up result in a Cauchy viscoelastic problem.Appl. Math. Lett. 21 (2008), 549-553. Zbl 1149.35076, MR 2412376, 10.1016/j.aml.2007.07.004; reference:[23] Kafini, M., Mustafa, M. I.: Blow-up result in a Cauchy viscoelastic problem with strong damping and dispersive.Nonlinear Anal., Real World Appl. 20 (2014), 14-20. Zbl 1295.35129, MR 3233895, 10.1016/j.nonrwa.2014.04.005; reference:[24] Li, Q., He, L.: General decay and blow-up of solutions for a nonlinear viscoelastic wave equation with strong damping.Bound. Value Probl. 2018 (2018), Article ID 153, 22 pages. MR 3859565, 10.1186/s13661-018-1072-1; reference:[25] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Etudes mathematiques. Dunod, Paris (1969), French. Zbl 0189.40603, MR 0259693; reference:[26] Long, N. T., Dinh, A. P. N., Truong, L. X.: Existence and decay of solutions of a nonlinear viscoelastic problem with a mixed nonhomogeneous condition.Numer. Funct. Anal. Optim. 29 (2008), 1363-1393. Zbl 1162.35053, MR 2479113, 10.1080/01630560802605955; reference:[27] Mesloub, F., Boulaaras, S.: General decay for a viscoelastic problem with not necessarily decreasing kernel.J. Appl. Math. Comput. 58 (2018), 647-665. Zbl 1403.35050, MR 3847059, 10.1007/s12190-017-1161-9; reference:[28] Messaoudi, S. A.: Blow up and global existence in a nonlinear viscoelastic wave equation.Math. Nachr. 260 (2003), 58-66. Zbl 1035.35082, MR 2017703, 10.1002/mana.200310104; reference:[29] Messaoudi, S. A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source.Nonlinear Anal., Theory Methods Appl., Ser. A 69 (2008), 2589-2598. Zbl 1154.35066, MR 2446355, 10.1016/j.na.2007.08.035; reference:[30] Mustafa, M. I.: General decay result for nonlinear viscoelastic equations.J. Math. Anal. Appl. 457 (2018), 134-152. Zbl 1379.35028, MR 3702699, 10.1016/j.jmaa.2017.08.019; reference:[31] Mustafa, M. I.: Optimal decay rates for the viscoelastic wave equation.Math. Methods Appl. Sci. 41 (2018), 192-204. Zbl 1391.35058, MR 3745365, 10.1002/mma.4604; reference:[32] Ngoc, L. T. P., Quynh, D. T. N., Triet, N. A., Long, N. T.: Linear approximation and asymptotic expansion associated to the Robin-Dirichlet problem for a Kirchhoff-Carrier equation with a viscoelastic term.Kyungpook Math. J. 59 (2019), 735-769. MR 4057771; reference:[33] Pan, J. Q.: The continuous dependence on nonlinearities of solutions of the Neumann problem of a singular parabolic equation.Nonlinear Anal., Theory Methods Appl., Ser. A 67 (2007), 2081-2090. Zbl 1123.35026, MR 2331859, 10.1016/j.na.2006.09.017; reference:[34] Quynh, D. T. N., Nam, B. D., Thanh, L. T. M., Dung, T. T. M., Nhan, N. H.: High-order iterative scheme for a viscoelastic wave equation and numerical results.Math. Probl. Eng. 2021 (2021), Article ID 9917271, 27 pages. MR 4274176, 10.1155/2021/9917271; reference:[35] Shang, Y., Guo, B.: On the problem of the existence of global solutions for a class of nonlinear convolutional intergro-differential equations of pseudoparabolic type.Acta Math. Appl. Sin. 26 (2003), 511-524 Chinese. Zbl 1057.45004, MR 2022221
-
16
المؤلفون: Lavrador, P.M., Pedro, J.C.
مصطلحات موضوعية: Behavioural modelling, RF power amplifier, Volterra series, Behavioural model, Feedback systems, Hammerstein system, Memory effects, Model extraction, Non-Linearity, Nonlinear memory, Power levels, Reference circuits, RF blocks, RF power amplifiers, Signal excitation, System level simulation, System levels, Test systems, Computer simulation, Control nonlinearities, Nonlinear feedback, Nonlinear systems, Power amplifiers, Mathematical models
وصف الملف: application/pdf
Relation: 978-1-4244-7412-7
الاتاحة: http://hdl.handle.net/10773/6256
-
17
المؤلفون: N’gohisse Konan Firmin, Yoro Gozo, Camara Zié
المصدر: International Journal of Numerical Methods and Applications. 20:55-75
مصطلحات موضوعية: Physics, Nonlinear system, Nonlinear memory, Mathematical analysis
-
18
المؤلفون: Ahmad Z. Fino
المصدر: Applicable Analysis. 101:4775-4792
مصطلحات موضوعية: Applied Mathematics, Nonlinear memory, 010102 general mathematics, Mathematics::Analysis of PDEs, Condensed Matter::Disordered Systems and Neural Networks, 01 natural sciences, Term (time), 010101 applied mathematics, Nonlinear system, Applied mathematics, Order (group theory), 0101 mathematics, Analysis, Mathematics
-
19
المؤلفون: Jiahui Huang
المصدر: Journal of Partial Differential Equations. 33:249-260
مصطلحات موضوعية: Nonlinear memory, Mathematical analysis, Free boundary problem, Mathematics
-
20
المؤلفون: Abdelatif Kainane Mezadek
المصدر: Journal of Partial Differential Equations. 33:291-312
مصطلحات موضوعية: Physics, Nonlinear memory, Mathematical analysis