يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"neuro-fuzzy systems and immune systems"', وقت الاستعلام: 0.39s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
  4. 4
  5. 5
    Electronic Resource

    Additional Titles: Detección y diagnóstico de fallas mediante técnicas de inteligencia artificial, un estado del arte

    المصدر: DYNA; Vol. 83, Núm. 199 (2016); 19-28; 2346-2183; 0012-7353

    URL: https://revistas.unal.edu.co/index.php/dyna/article/view/55612/57576
    https://revistas.unal.edu.co/index.php/dyna/article/view/55612/63408
    https://revistas.unal.edu.co/index.php/dyna/article/view/55612/57576
    https://revistas.unal.edu.co/index.php/dyna/article/view/55612/63408
    *ref*/Venkatasubramanian, V., Rengaswamy, R., Yin K. and Kavuri, S., A review of process fault detection and diagnosis: Part I: Quantitative model-based methods, Computers & Chemical Engineering, 27(3), pp. 293-311, 2003. DOI: 10.1016/S0098- 1354(02)00160-6.
    *ref*/Venkatasubramanian, V., Rengaswamy, R., Yin K. and Kavuri, S., A review of process fault detection and diagnosis: Part II: Qualitative models and search strategies, Computers & Chemical Engineering, 27(3), pp. 313-326, 2003. DOI: 10.1016/S0098- 1354(02)00161-8.
    *ref*/Venkatasubramanian, V., Rengaswamy, R., Yin K. and Kavuri, S., A review of process fault detection and diagnosis: Part III: Process history based methods, Computers & Chemical Engineering, 27(3), pp. 327-346, 2003. DOI: 10.1016/S0098-1354(02)00162-X.
    *ref*/Angeli, C. and Chatzinikolaou, A., On-line fault detection techniques for technical systems: A survey. International Journal of Computer Science & Applications, 1(1), pp. 12-30, 2004.DOI: 10.1.1.100.6189. Hurtado-Cortés et al / DYNA 83 (199), pp. 19-28, December 2016. 27
    *ref*/Hwang, I., Kim, S. Kim, Y. and Seah, C., A survey of fault detection, isolation, and reconfiguration methods, IEEE Transactions on Control Systems Technology, 18(3), pp. 636-653, 2010. DOI: 10.1109/TCST.2009.2026285.
    *ref*/Dash, S. and Venkatasubramanian, V., Challenges in the industrial applications of fault diagnostic systems, Computers & Chemical Engineering, 24(2-7), pp. 785-791, 2000. DOI: 10.1016/S0098-1354(00)00374-4.
    *ref*/Marzat, J., Piet-Lahanier, H., Damongeot, F., Walter, E. et all, Autonomous fault diagnosis: state of the art and aeronautical benchmark, in Proceedings of the 3rd European Conference for Aero- Space Sciences, EUCASS’2009, 2009. HAL: 00429743.
    *ref*/Frank, P. and Köppen-Seliger, B., Fuzzy logic and neural network applications to fault diagnosis. International Journal of Approximate Reasoning, 16(1), pp. 67-88, 1997. DOI: 10.1016/S0888-613X(96)00116-8.
    *ref*/DAMADICS, DAMADICS RTN Information Web site. [Online]. [Date of reference October 26th of 2015]. Available at: http://diag.mchtr.pw.edu.pl/DAMADICS/.
    *ref*/Fekih, A. Xu, H. and Chowdhury, F., Two neural net-learning methods for model based fault detection, in Fault Detection, Supervision and Safety of Technical Processes 2006, Hong-Yue Zhang, Ed. Oxford: Elsevier Science Ltd, 2007. pp. 72-77. DOI: 10.3182/20060829-4-CN-2909.00011.
    *ref*/Madani, K., A survey of artificial neural networks based fault detection and fault diagnosis techniques, in Neural Networks. International Joint Conference on Neural Networks, IJCNN'99, 5, pp. 3442-3446, 1999. DOI: 10.1109/IJCNN.1999.836218.
    *ref*/Demetgul, M., Unal, M., Tansel, I. and Yazıcıoğlu, O., Fault diagnosis on bottle filling plant using genetic-based neural network, Advances in Engineering Software, 42(12), pp. 1051-1058, 2011. DOI: 10.1016/j.advengsoft.2011.07.004.
    *ref*/Ghate, V. and Dudul, S., Optimal MLP neural network classifier for fault detection of three phase induction motor, Expert Systems with Applications, 37(4), pp. 3468-3481, 2010. DOI: 10.1016/j.eswa.2009.10.041.
    *ref*/Krzysztof, S., Neural networks based diagnostic system for industrial purifying fumes installation, in Fault Detection, Supervision and Safety of Technical Processes 2006, Hong-Yue Zhang, Ed. Oxford: Elsevier Science Ltd, 2007, pp. 681-686.
    *ref*/Jakubek, S. and Strasser, T., Artificial neural networks for fault detection in large-scale data acquisition systems, Engineering Applications of Artificial Intelligence, 17(3), pp. 233-248, 2004. DOI: 10.1016/j.engappai.2004.03.002.
    *ref*/Eski, I., Erkaya, S., Savas, S. and Yildirim, S., Fault detection on robot manipulators using artificial neural networks, Robotics and Computer-Integrated Manufacturing, 27(1), pp. 115-123, 2011. DOI: 10.1016/j.rcim.2010.06.017.
    *ref*/Karpenko, M. and Sepehri, N., A neural network based fault detection and identification scheme for pneumatic process control valves, in 2001 IEEE International Conference on Systems, Man, and Cybernetics, 1, pp. 93-98, 2001. DOI: 10.1109/ICSMC.2001.969794.
    *ref*/Sadeghi, M., Rafiee, J., Arvani, F. and Harifi, A., A Fault detection and identification system for gearboxes using neural networks, in International Conference on Neural Networks and Brain, ICNNB'05, 2, pp. 964-969, 2005. DOI: 10.1109/ICNNB.2005.1614780.
    *ref*/Kourd, Y. and Guersi, N., Faults diagnosis by neural networks application on DAMADICS Benchmark, in 4th International Conference on Computer Integrated Manufacturing CIP'2007, 2007.
    *ref*/Witczak, M., Korbicz, J., Mrugalski, M. and Patton, R., A GMDH neural network-based approach to robust fault diagnosis: Application to the DAMADICS benchmark problem, Control Engineering Practice, 14(6), pp. 671-683, 2006. DOI: 10.1016/j.conengprac.2005.04.007.
    *ref*/Zhengdao, Z. and Weihua, Z., Neural network based fault detection and identification for fighter control surface failure, in Control and Decision Conference, CCDC'09. pp. 5256-5261, 2009.
    *ref*/Samy, I., Postlethwaite, I. and Gu, D., Survey and application of sensor fault detection and isolation schemes, Control Engineering Practice, 19(7), pp. 658-674, 2011. DOI: 10.1016/j.conengprac.2011.03.002.
    *ref*/Catelani, M. and Fort, A., Soft fault detection and isolation in analog circuits: some results and a comparison between a fuzzy approach and radial basis function networks, IEEE Transactions on Instrumentation and Measurement, 51(2), pp. 196-202, 2002. DOI: 10.1109/19.997811.
    *ref*/White, C. and Lakany, H., A fuzzy inference system for fault detection and isolation: Application to a fluid system, Expert Systems with Applications, 35(3), pp. 1021-1033, 2008. DOI: 10.1016/j.eswa.2007.08.029.
    *ref*/Mendonça, L., Sousa, J. and Sá da Costa, J., An architecture for fault detection and isolation based on fuzzy methods, Expert Systems with Applications, 36(2), Part 1, pp. 1092-1104, 2009. DOI: 10.1016/j.eswa.2007.11.009.
    *ref*/Lemos, A. Caminhas, W. and Gomide, F., Adaptive fault detection and diagnosis using an evolving fuzzy classifier, Information Sciences: An International Journal, 222, 64-85, 2013. DOI: 10.1016/j.ins.2011.08.030.
    *ref*/Lemos, A. Caminhas, W. and Gomide, F., Multivariable Gaussian Evolving Fuzzy Modeling System, IEEE Transactions on Fuzzy Systems, 19(1), pp. 91-104, Feb. 2011. DOI: 10.1109/TFUZZ.2010.2087381.
    *ref*/Rigatos, G., Fault detection and isolation based on fuzzy automata, Information Sciences, 179(12), pp. 1893-1902, 2009. DOI: 10.1016/j.ins.2009.01.015.
    *ref*/Srinivasan, D., Cheu, R. Poh, Y. and Ng, A., Automated fault detection in power distribution networks using a hybrid fuzzy–genetic algorithm approach, Engineering Applications of Artificial Intelligence, 13(4), pp. 407-418, 2000. DOI: 10.1016/S0952- 1976(00)00012-9.
    *ref*/Lo, C., Chan, P., Wong, Y., Rad, A. and Cheung, K., Fuzzygenetic algorithm for automatic fault detection in HVAC systems, Applied Soft Computing, 7(2), pp. 554-560, 2007. DOI: 10.1007/s12273-016-0285-4.
    *ref*/Boutros, T. and Liang, M., Mechanical fault detection using fuzzy index fusion, International Journal of Machine Tools and Manufacture, 47(11), pp. 1702-1714, 2007. DOI: 10.16/j.ijmachtools.2007.01.001.
    *ref*/Lughofer, E. and Guardiola, C., Applying evolving fuzzy models with adaptive local error bars to on-line fault detection, in 3rd International Workshop on Genetic and Evolving Systems, GEFS 2008, pp. 35-40, 2008. DOI: 10.1109/GEFS.2008.4484564.
    *ref*/Ganjdanesh, Y., Manjili, Y., Vafaei, M., Zamanizadeh, E. and Jahanshahi, E., Fuzzy fault detection and diagnosis under severely noisy conditions using feature-based approaches, in 2008 American Control Conference, pp. 3319-3324, 2008. DOI: 10.1109/ACC.2008.4587004.
    *ref*/Shabanian, M., and Montazeri, M., A neuro-fuzzy online fault detection and diagnosis algorithm for nonlinear and dynamic systems, International Journal of Control, Automation and Systems, 9(4), pp. 665-670, 2011. DOI: 10.1007/s12555-011-0407-9.
    *ref*/Tan, S., Lim, C. and Rao, M., A hybrid neural network model for rule generation and its application to process fault detection and diagnosis, Engineering Applications of Artificial Intelligence, 20(2), pp. 203-213, 2007. DOI: 10.1016/j.engappai.2006.06.007.
    *ref*/Kourd, Y., Guersi, N. and Lefebvre, D., Neuro-fuzzy approach for default Diagnosis: Application to the DAMADICS, in 4th IEEE International Conference on Digital Ecosystems and Technologies, DEST, pp. 107-111, 2010. DOI: 10.1109/DEST.2010.5610663.
    *ref*/Salahshoor, K., Khoshro, M. and Kordestani, M., Fault detection and diagnosis of an industrial steam turbine using a distributed configuration of adaptive neuro-fuzzy inference systems, Simulation Modelling Practice and Theory, 19(5), pp. 1280-1293, 2011. DOI: 10.1016/j.simpat.2011.01.005.
    *ref*/Chen, J., Roberts, C. and Weston, P., Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems, Control Engineering Practice, 16(5), pp. 585-596, 2008. DOI: 10.1016/j.conengprac.2007.06.007.
    *ref*/Kowal, M., Fault detection under fuzzy model uncertainty, International Journal of Automation and Computing, 4(2), pp. 117- 124, 2007. DOI: 10.1007/s11633-007-0117-1.
    *ref*/Korbicz, J. and Kowal, M., Neuro-fuzzy networks and their application to fault detection of dynamical systems, Engineering Hurtado-Cortés et al / DYNA 83 (199), pp. 19-28, December 2016. 28 Applications of Artificial Intelligence, 20(5), pp. 609-617, 2007. DOI: 10.1016/j.engappai.2006.11.009.
    *ref*/Sadeghian, M. and Fatehi, A., Identification, prediction and detection of the process fault in a cement rotary kiln by locally linear neuro-fuzzy technique, Journal of Process Control, 21(2), pp. 302- 308, 2011. DOI: 10.1016/j.jprocont.2010.10.009.
    *ref*/Yüksel, T. and Sezgin, A., Two fault detection and isolation schemes for robot manipulators using soft computing techniques, Applied Soft Computing, 10(1), pp. 125-134, 2010. DOI: 10.1016/j.asoc.2009.06.011.
    *ref*/Mok, H. and Chan, C., Online fault detection and isolation of nonlinear systems based on neurofuzzy networks, Engineering Applications of Artificial Intelligence, 21(2), pp. 171-181, 2008. DOI: 10.1016/j.engappai.2007.04.002.
    *ref*/Uppal, F., Patton, R. and Witczak, M., A neuro-fuzzy multiplemodel observer approach to robust fault diagnosis based on the DAMADICS benchmark problem, Control Engineering Practice, 14(6), pp. 699-717, 2006. DOI: 10.1016/j.conengprac.2005.04.015.
    *ref*/Calado, J., Sá da Costa, J. Bartys, M. and Korbicz, J., FDI approach to the DAMADICS benchmark problem based on qualitative reasoning coupled with fuzzy neural networks, Control Engineering Practice, 14(6), pp. 685-698, 2006. DOI: 10.1016/j.conengprac.2005.03.025.
    *ref*/Bocaniala, C. and Sá da Costa, J., Application of a novel fuzzy classifier to fault detection and isolation of the DAMADICS benchmark problem, Control Engineering Practice, 14(6), pp. 653- 669, 2006. DOI: 10.1016/j.conengprac.2005.06.008.
    *ref*/Xu, Y. and Wang, Z., On a fault detection system based on neurofuzzy fusion method, in Control and Decision Conference, CCDC, 2010, pp. 3190-3193, 2010. DOI: 10.1109/CCDC.2010.5498631.
    *ref*/Ruiz, D., Nougués, J. and Puigjaner, L., Fault diagnosis support system for complex chemical plants, Computers & Chemical Engineering, 25(1), pp. 151-160, 2001. DOI: 10.1016/S0098- 1354(00)00638-4.
    *ref*/Chen, X. and Huang, H., Immune feedforward neural network for fault detection, Tsinghua Science & Technology, 16(3), pp. 272-277, 2011. DOI: 10.1016/S1007-0214(11)70039-6.
    *ref*/Laurentys, C., Palhares, R. and Caminhas, W., Design of an artificial immune system based on Danger Model for fault detection, Expert Systems with Applications, 37(7), pp. 5145-5152, 2010. DOI: 10.1016/j.eswa.2009.12.079.
    *ref*/Laurentys, C., Palhares, R. and Caminhas, W., A novel Artificial Immune System for fault behavior detection, Expert Systems with Applications, 38(6), pp. 6957-6966, 2011. DOI: 10.1016/j.eswa.2010.12.019.
    *ref*/Weng, L., Bikdash, M., Liao, X. and Song, D., Immune system inspired fault detection and identification with application to crew exploration vehicles, in Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory, SSST'06, pp. 372-376, 2006. DOI: 10.1109/SSST.2006.1619127.
    *ref*/Cauvin, S. and Celse, B., CHEM: Advanced decision support systems for chemical/petrochemical process industries, in Computer Aided Chemical Engineering, 18, A. Barbosa-Póvoa and H. Matos, Ed. Elsevier, pp. 1027-1032, 2004. DOI: 10.1016/S1570- 7946(04)80237-2.
    *ref*/Kempowski, T., Surveillance de procédés à base de méthodes de classification: conception d’un outil d’aide pour la détection et le diagnostic des défaillances, INSA de Toulouse, 2004. tel-00010247.
    *ref*/Gamero, F., Colomer, J., Meléndez, J. and Berjaga, X., Qualtras: A tool for qualitative trend representations, in 20th International Workshop on Principles of Diagnosis, Stockholm, pp. 187-194, 2009.

  6. 6
    Electronic Resource