-
1Academic Journal
المؤلفون: X. Yan
المصدر: Проблемы анализа, Vol 13 (31), Iss 1, Pp 100-123 (2023)
مصطلحات موضوعية: space of homogeneous type, musielak–orlicz hardy space, littlewood–paley auxiliary function, 𝑔*_𝜆-function, Mathematics, QA1-939
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Bui The Anh, Cao Jun, Ky Luong Dang, Yang Dachun, Yang Sibei
المصدر: Analysis and Geometry in Metric Spaces, Vol 1, Iss 2013, Pp 69-129 (2013)
مصطلحات موضوعية: musielak-orlicz-hardy space, molecule, atom, maximal function, lusin area function, schrödinger operator, elliptic operator, riesz transform, Analysis, QA299.6-433
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2299-3274
-
3
المؤلفون: Dachun Yang, Guangheng Xie
المصدر: Banach J. Math. Anal. 13, no. 4 (2019), 884-917
Web of Scienceمصطلحات موضوعية: Pure mathematics, Statistics::Theory, 0211 other engineering and technologies, Mathematics::Classical Analysis and ODEs, σ-sublinear operator, 02 engineering and technology, Primary 60G42, Secondary 60G46, 42B25, 42B35, weak martingale Musielak–Orlicz Hardy space, 01 natural sciences, probability space, symbols.namesake, Probability space, Mathematics::Probability, Classical Analysis and ODEs (math.CA), FOS: Mathematics, martingale inequality, 60G46, 0101 mathematics, 60G42, Mathematics, 42B35, Mathematics::Functional Analysis, Algebra and Number Theory, atom, 010102 general mathematics, Probability (math.PR), 021107 urban & regional planning, Hardy space, Functional Analysis (math.FA), Mathematics - Functional Analysis, Mathematics - Classical Analysis and ODEs, symbols, Martingale (probability theory), 42B25, Analysis, Mathematics - Probability, Martingale inequality
وصف الملف: application/pdf
-
4
المؤلفون: Xianjie Yan
المصدر: Banach J. Math. Anal. 13, no. 4 (2019), 969-988
مصطلحات موضوعية: Pure mathematics, 0211 other engineering and technologies, Mathematics::Classical Analysis and ODEs, 02 engineering and technology, 01 natural sciences, symbols.namesake, 46E30, Musielak–Orlicz function, intrinsic square function, 42B30, 0101 mathematics, Mathematics, 42B35, Mathematics::Functional Analysis, Algebra and Number Theory, 010102 general mathematics, weak Musielak–Orlicz Hardy space, 021107 urban & regional planning, Function (mathematics), Hardy space, Atomic decomposition, Range (mathematics), symbols, 42B25, Analysis, atomic decomposition
وصف الملف: application/pdf
-
5
المؤلفون: Dachun Yang, Xing Fu
المصدر: Banach J. Math. Anal. 12, no. 4 (2018), 1017-1046
مصطلحات موضوعية: Pure mathematics, Mathematics::Classical Analysis and ODEs, 010103 numerical & computational mathematics, Characterization (mathematics), 01 natural sciences, Littlewood–Paley g-function, symbols.namesake, Wavelet, wavelet, 42B30, 0101 mathematics, Mathematics, Musielak–Orlicz Hardy space, Mathematics::Functional Analysis, Algebra and Number Theory, atom, Peetre-type maximal function, 010102 general mathematics, Hardy space, Infimum and supremum, symbols, Maximal function, 42C40, 42B20, 42B25, Analysis
وصف الملف: application/pdf
-
6Academic Journal
المؤلفون: Fu, Xing, Yang, Dachun
مصطلحات موضوعية: Musielak–Orlicz Hardy space, wavelet, atom, Peetre-type maximal function, Littlewood–Paley g-function, 42C40, 42B30, 42B20, 42B25
وصف الملف: application/pdf
Relation: https://projecteuclid.org/euclid.bjma/1536048016; Banach J. Math. Anal. 12, no. 4 (2018), 1017-1046
-
7
المؤلفون: The Anh Bui, Jun Cao, Luong Dang Ky, Dachun Yang, Sibei Yang
المصدر: Analysis and Geometry in Metric Spaces, Vol 1, Iss 2013, Pp 69-129 (2013)
مصطلحات موضوعية: Primary: 42B35, Secondary: 42B30, 42B25, 42B20, 35J10, 46E30, 47B38, 47B06, 30L99, maximal function, Mathematics::Classical Analysis and ODEs, schrödinger operator, lusin area function, Combinatorics, Riesz transform, symbols.namesake, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Order (group theory), elliptic operator, riesz transform, Mathematics, Mathematics::Functional Analysis, molecule, QA299.6-433, Applied Mathematics, musielak-orlicz-hardy space, atom, Muckenhoupt weights, Hardy space, Functional Analysis (math.FA), Mathematics - Functional Analysis, Elliptic operator, Mathematics - Classical Analysis and ODEs, Bounded function, Exponent, symbols, Maximal function, Geometry and Topology, Analysis
-
8Academic Journal
المؤلفون: DUONG, Xuan Thinh, TRAN, Tri Dung
مصطلحات موضوعية: Musielak–Orlicz function, Musielak–Orlicz Hardy space, functional calculus, Davies–Gaffney estimate, Riesz transform, 42B20, 42B25, 46B70, 47G30
وصف الملف: application/pdf
Relation: http://projecteuclid.org/euclid.jmsj/1453731532; J. Math. Soc. Japan 68, no. 1 (2016), 1-30
-
9Academic Journal
المؤلفون: Bui, The Anh, Ly, Fu Ken, Yang, Sibei
المصدر: Bui , T A , Ly , F K & Yang , S 2016 , ' Second-order Riesz transforms associated with magnetic Schrödinger operators ' , Journal of Mathematical Analysis and Applications , vol. 437 , no. 2 , pp. 1196-1218 . https://doi.org/10.1016/j.jmaa.2016.01.062
مصطلحات موضوعية: Magnetic Schrödinger operator, Musielak-Orlicz Hardy space, Riesz transform, Commutator, Muckenhoupt weight
-
10
المؤلفون: Xuan Thinh Duong, Tri Dung Tran
المصدر: J. Math. Soc. Japan 68, no. 1 (2016), 1-30
مصطلحات موضوعية: Pure mathematics, General Mathematics, Mathematics::Classical Analysis and ODEs, Duality (optimization), functional calculus, 01 natural sciences, Functional calculus, symbols.namesake, Riesz transform, Musielak–Orlicz function, 46B70, 0103 physical sciences, 0101 mathematics, Heat kernel, Mathematics, Discrete mathematics, Musielak–Orlicz Hardy space, Mathematics::Functional Analysis, 010102 general mathematics, Holomorphic functional calculus, Davies–Gaffney estimate, Hardy space, Metric space, Bounded function, symbols, 010307 mathematical physics, 42B20, 42B25, 47G30
وصف الملف: application/pdf
-
11Academic Journal
المؤلفون: Yang, Sibei
مصطلحات موضوعية: Musielak--Orlicz--Hardy space,
Schr\"odinger type operator, atom, second order Riesz transform, maximal inequality, 42B20, 42B30, 42B35, 35J10, 42B37, 46E30 وصف الملف: application/pdf
Relation: http://projecteuclid.org/euclid.afa/1429286037; Ann. Funct. Anal. 6, no. 3 (2015), 118-144
-
12Academic Journal
المؤلفون: Yang, Sibei
مصطلحات موضوعية: keyword:Musielak-Orlicz-Hardy space, keyword:Schrödinger operator, keyword:$L$-harmonic function, keyword:isomorphism of Hardy space, keyword:atom, keyword:molecule, msc:35J10, msc:42B20, msc:42B30, msc:42B35, msc:42B37, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR3407603; zbl:Zbl 06537690; reference:[1] Bonami, A., Grellier, S., Ky, L. D.: Paraproducts and products of functions in BMO$(\mathbb R^n)$ and ${\cal H}^1(\mathbb R^n)$ through wavelets.J. Math. Pures Appl. (9) 97 (2012), 230-241 French summary. MR 2887623, 10.1016/j.matpur.2011.06.002; reference:[2] Bonami, A., Iwaniec, T., Jones, P., Zinsmeister, M.: On the product of functions in BMO and $H^1$.Ann. Inst. Fourier 57 (2007), 1405-1439. Zbl 1132.42010, MR 2364134; reference:[3] Bui, T. A., Cao, J., Ky, L. D., Yang, D., Yang, S.: Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates.Anal. Geom. Metr. Spaces (electronic only) 1 (2013), 69-129. Zbl 1261.42034, MR 3108869, 10.2478/agms-2012-0006; reference:[4] Cao, J., Chang, D.-C., Yang, D., Yang, S.: Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces.Commun. Pure Appl. Anal. 13 (2014), 1435-1463. MR 3177739, 10.3934/cpaa.2014.13.1435; reference:[5] Duong, X. T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds.J. Am. Math. Soc. 18 (2005), 943-973. Zbl 1078.42013, MR 2163867, 10.1090/S0894-0347-05-00496-0; reference:[6] Dziubański, J., Zienkiewicz, J.: A characterization of Hardy spaces associated with certain Schrödinger operators.Potential Anal. 41 (2014), 917-930. Zbl 1301.42039, MR 3264827, 10.1007/s11118-014-9400-2; reference:[7] Dziubański, J., Zienkiewicz, J.: On isomorphisms of Hardy spaces associated with Schrödinger operators.J. Fourier Anal. Appl. 19 (2013), 447-456. Zbl 1305.42025, MR 3048584, 10.1007/s00041-013-9262-9; reference:[8] Fefferman, C. L., Stein, E. M.: $H^p$ spaces of several variables.Acta Math. 129 (1972), 137-193. MR 0447953, 10.1007/BF02392215; reference:[9] García-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies 116 North-Holland, Amsterdam (1985). MR 0807149; reference:[10] Grafakos, L.: Modern Fourier Analysis.Graduate Texts in Mathematics 250 Springer, New York (2009). Zbl 1158.42001, MR 2463316; reference:[11] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates.Mem. Am. Math. Soc. 1007 (2011), 78 pages. Zbl 1232.42018, MR 2868142; reference:[12] Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators.Math. Ann. 344 (2009), 37-116. Zbl 1162.42012, MR 2481054, 10.1007/s00208-008-0295-3; reference:[13] Hofmann, S., Mayboroda, S., McIntosh, A.: Second order elliptic operators with complex bounded measurable coefficients in $L^p$, Sobolev and Hardy spaces.Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 723-800 French summary. Zbl 1243.47072, MR 2931518, 10.24033/asens.2154; reference:[14] Hou, S., Yang, D., Yang, S.: Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications.Commun. Contemp. Math. 15 (2013), Article ID1350029, 37 pages. Zbl 1285.42020, MR 3139410; reference:[15] Janson, S.: Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation.Duke Math. J. 47 (1980), 959-982. Zbl 0453.46027, MR 0596123, 10.1215/S0012-7094-80-04755-9; reference:[16] Jiang, R., Yang, D.: Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates.Commun. Contemp. Math. 13 (2011), 331-373. Zbl 1221.42042, MR 2794490, 10.1142/S0219199711004221; reference:[17] Jiang, R., Yang, D.: New Orlicz-Hardy spaces associated with divergence form elliptic operators.J. Funct. Anal. 258 (2010), 1167-1224. Zbl 1205.46014, MR 2565837, 10.1016/j.jfa.2009.10.018; reference:[18] Jiang, R., Yang, D., Yang, D.: Maximal function characterizations of Hardy spaces associated with magnetic Schrödinger operators.Forum Math. 24 (2012), 471-494. Zbl 1248.42023, MR 2926631, 10.1515/form.2011.067; reference:[19] Ky, L. D.: Endpoint estimates for commutators of singular integrals related to Schrödinger operators.To appear in Rev. Mat. Iberoam.; reference:[20] Ky, L. D.: New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators.Integral Equations Oper. Theory 78 (2014), 115-150. Zbl 1284.42073, MR 3147406, 10.1007/s00020-013-2111-z; reference:[21] Ky, L. D.: Bilinear decompositions and commutators of singular integral operators.Trans. Am. Math. Soc. 365 (2013), 2931-2958. Zbl 1272.42010, MR 3034454; reference:[22] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034 Springer, Berlin (1983). Zbl 0557.46020, MR 0724434; reference:[23] Ouhabaz, E. M.: Analysis of Heat Equations on Domains.London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). Zbl 1082.35003, MR 2124040; reference:[24] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces.Pure and Applied Mathematics 146 Marcel Dekker, New York (1991). Zbl 0724.46032, MR 1113700; reference:[25] Semenov, Y. A.: Stability of $L^p$-spectrum of generalized Schrödinger operators and equivalence of Green's functions.Int. Math. Res. Not. 12 (1997), 573-593. Zbl 0905.47031, MR 1456565, 10.1155/S107379289700038X; reference:[26] Simon, B.: Functional Integration and Quantum Physics.AMS Chelsea Publishing, Providence (2005). Zbl 1061.28010, MR 2105995; reference:[27] Strömberg, J.-O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces.Indiana Univ. Math. J. 28 (1979), 511-544. MR 0529683, 10.1512/iumj.1979.28.28037; reference:[28] Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces.Lecture Notes in Mathematics 1381 Springer, Berlin (1989). Zbl 0676.42021, MR 1011673, 10.1007/BFb0091160; reference:[29] Yan, L.: Classes of Hardy spaces associated with operators, duality theorem and applications.Trans. Am. Math. Soc. 360 (2008), 4383-4408. Zbl 1273.42022, MR 2395177, 10.1090/S0002-9947-08-04476-0; reference:[30] Yang, D., Yang, S.: Musielak-Orlicz Hardy spaces associated with operators and their applications.J. Geom. Anal. 24 (2014), 495-570. Zbl 1302.42033, MR 3145932, 10.1007/s12220-012-9344-y; reference:[31] Yang, D., Yang, S.: Local Hardy spaces of Musielak-Orlicz type and their applications.Sci. China Math. 55 (2012), 1677-1720. Zbl 1266.42055, MR 2955251, 10.1007/s11425-012-4377-z
-
13
المؤلفون: Sibei Yang
المصدر: Ann. Funct. Anal. 6, no. 3 (2015), 118-144
مصطلحات موضوعية: Pure mathematics, Control and Optimization,
Schr\"odinger type operator, media_common.quotation_subject, Musielak--Orlicz--Hardy space, 35J10, Type (model theory), Space (mathematics), Operator (computer programming), 46E30, 42B30, 42B37, Mathematics, media_common, 42B35, Mathematics::Functional Analysis, Algebra and Number Theory, atom, Mathematical analysis, Muckenhoupt weights, Function (mathematics), maximal inequality, Infinity, Sobolev space, second order Riesz transform, Bounded function, 42B20, Analysis وصف الملف: application/pdf
-
14
المؤلفون: Sibei Yang
المصدر: Taiwanese J. Math. 18, no. 4 (2014), 1293-1328
مصطلحات موضوعية: General Mathematics, Mathematics::Analysis of PDEs, 35J10, Type (model theory), Space (mathematics), Schrödinger type operator, symbols.namesake, 46E30, Atom (measure theory), Nabla symbol, 42B30, 42B37, Mathematics, 42B35, Discrete mathematics, Lusin area function, Mathematics::Functional Analysis, fundamental solution, Semigroup, atom, Muckenhoupt weights, Hardy space, Musielak-Orlicz-Hardy space, second order Riesz transform, Bounded function, symbols, 42B20, 42B25
وصف الملف: application/pdf
-
15Academic Journal
المؤلفون: Yang, Sibei
مصطلحات موضوعية: Musielak-Orlicz-Hardy space, Schrödinger type operator, Lusin area function, atom, second order Riesz transform, fundamental solution, 42B20, 42B30, 42B35, 42B25, 35J10, 42B37, 46E30
وصف الملف: application/pdf
Relation: http://projecteuclid.org/euclid.twjm/1499706491; Taiwanese J. Math. 18, no. 4 (2014), 1293-1328
-
16Academic Journal
المؤلفون: Yang, Sibei
مصطلحات موضوعية: mathematics, Musielak-Orlicz-Hardy space, Schrödinger operator, L-harmonic function, isomorphism of Hardy space, atom, molecule
جغرافية الموضوع: 747-779
Time: 13, 51
وصف الملف: print; média; svazek
-
17
المؤلفون: Yang, Sibei
المصدر: Czechoslovak Mathematical Journal | 2015 Volume:65 | Number:3
-
18Electronic Resource
المؤلفون: Izuki, Mitsuo, Nakai, Eiichi, Sawano, Yoshihiro
مصطلحات الفهرس: Musielak-Orlicz Hardy space, wavelet characterization, atomic characterization, Marcinkiewicz operator, singular integral operator, Others, AO
URL:
https://dlisv03.media.osaka-cu.ac.jp/il/meta_pub/G0000438repository_111F0000020-21-2 http://dlisv03.media.osaka-cu.ac.jp/contents/osakacu/kiyo/111F0000020-21-2.pdf https://www.omu.ac.jp/orp/ocami/publications/preprint-series/ https://doi.org/10.1007/s00020-021-02672-2 https://doi.org/10.1007/s00020-021-02672-2 https://doi.org/10.1007/s00020-021-02672-2