يعرض 1 - 20 نتائج من 23 نتيجة بحث عن '"msc:93C65"', وقت الاستعلام: 0.61s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3780955; zbl:Zbl 06861613; reference:[1] Bof, N., Fornasini, E., Valcher, M.: Output feedback stabilization of Boolean control networks.Automatica 57 (2015), 21-28. MR 3350669, 10.1016/j.automatica.2015.03.032; reference:[2] Cassandras, C., Lafortune, S.: Introduction to Discrete Event System. Second edition.Springer Science and Business Media, New York 2008. MR 2364236, 10.1007/978-0-387-68612-7; reference:[3] Cheng, D.: Disturbance decoupling of Boolean control networks.IEEE Trans. Automat. Control 56 (2011), 2-10. MR 2777196, 10.1109/tac.2010.2050161; reference:[4] Cheng, D., He, F., Qi, H., Xu, T.: Modeling, analysis and control of networked evolutionary games.IEEE Trans. Automat. Control 60 (2015), 2402-2415. MR 3393130, 10.1109/tac.2015.2404471; reference:[5] Cheng, D., Qi, H.: Controllability and observability of Boolean control networks.Automatica 45 (2009), 1659-1667. 10.1016/j.automatica.2009.03.006; reference:[6] Cheng, D., Qi, H.: A linear representation of dynamics of Boolean networks.IEEE Trans. Automat. Control 55 (2010), 2251-2258. MR 2742217, 10.1109/tac.2010.2043294; reference:[7] Daniel, R., Markus, L.: Automata with modulo counters and nondeterministic counter bounds.Kybernetika 50 (2014), 66-94. 10.14736/kyb-2014-1-0066; reference:[8] Fornasini, E., Valcher, M. E: On the periodic trajectories of Boolean control networks.Automatica 49 (2013), 1506-1509. MR 3044035, 10.1016/j.automatica.2013.02.027; reference:[9] Holub, J.: The finite automata approaches in stringology.Kybernetika 48 (2012), 386-401.; reference:[10] Han, X., Chen, Z., Liu, Z., al., et: Calculation of siphons and minimal siphons in Petri nets based on semi-tensor product of matrices.IEEE Trans. Systems, Man Cybernet.: Systems 47 (2017), 531-536. 10.1109/tsmc.2015.2507162; reference:[11] Han, X., Chen, Z, Liu, Z., al., et: The detection and stabilisation of limit cycle for deterministic finite automata.Int. Control 91 (2017), 4, 874-886. MR 3772324, 10.1080/00207179.2017.1295319; reference:[12] Kobetski, A., Fabian, M: Time-optimal coordination of flexible manufacturing systems using deterministic finite automata and mixed integer linear programming.Discrete Event Dynamic Systems 19 (2009), 287-315. MR 2519802, 10.1007/s10626-009-0064-9; reference:[13] Li, H., Wang, Y.: Output feedback stabilization control design for BCNs.Automatica 49 (2013), 3641-3645. 10.1016/j.automatica.2013.09.023; reference:[14] Li, Z., Qiao, Y., Qi, H., Cheng, D.: Stability of switched polynomial systems.J. Systems Science Complexity 21 (2008), 362-377. 10.1007/s11424-008-9119-5; reference:[15] Ozveren, C., Willsky, A.: Output stabilizability of discrete event dynamic systems.IEEE Trans. Automat. Control 19 (1991), 925-935. MR 1116449, 10.1109/9.133186; reference:[16] Passino, K., Michel, A., Antsaklis, P.: Lyapunov stability of a class of discrete event systems.IEEE Trans. Automat. Control 39 (1994), 269-279. MR 1265411, 10.1109/9.272323; reference:[17] Syrmos, V., Abdallah, C., Dorato, P., al., et: Static output feedback - A survey.Automatica 33 (1997), 125-137. MR 1436056, 10.1016/s0005-1098(96)00141-0; reference:[18] Tiwari, S. P., Srivastava, A. K.: On a decomposition of fuzzy automata.Fuzzy Sets Systems 151 (2005), 503-511. 10.1016/j.fss.2004.06.014; reference:[19] Xu, X., Hong, Y.: Matrix expression and reachability analysis of finite automata.J. Control Theory Appl. 10 (2012), 210-215. MR 2915184, 10.1007/s11768-012-1178-4; reference:[20] Xu, X., Zhang, Y., Hong, Y.: Matrix approach to stabilization of deterministic finite automata.In: Proc. American Control Conference, Washington 2013, pp. 3242-3247. 10.1109/acc.2013.6580331; reference:[21] Yan, Y., Chen, Z., Liu, Z.: Solving type-2 fuzzy relation equations via semi-tensor product of matrices.Control Theory Technol. 12 (2014), 173-186. 10.1007/s11768-014-0137-7

  2. 2
    Academic Journal

    المؤلفون: Ji, Guangyou, Wang, Mingzhe

    وصف الملف: application/pdf

    Relation: reference:[1] Ahmad, F., Hejiao, H., Xiaolong, W.: Analysis of structure properties of Petri nets.Using Transition Vectors, Inform. Technol. J. 7 (2008), 285-291. 10.3923/itj.2008.285.291; reference:[2] Berthelot, G., Terrat, R.: Petri nets theory for correctness of protocols.IEEE Trans. Commun. COM-30 (1982), 12, 2497-2505. MR 0687447, 10.1109/TCOM.1982.1095452; reference:[3] Cheng, T., Zeng, W.: Invariant preserving transformations for the verification of place/transition systems.IEEE Trans. Systems, Man, Cybernet. Part A: Systems and Humans 28 (1998), 1, 114-121. 10.1109/3468.650328; reference:[4] Fiedler, M., Pták, V.: On matrices with non-positive off-diagonal elements and positive principal minors.Czechoslovak Math. J. 12 (1962), 382-400. Zbl 0131.24806, MR 0142565; reference:[5] Liu, G., Jiang, Ch.-J.: Incidence matrix based methods for computing repetitive vectors and siphons of Petri net.J. Inform. Sci. Engrg. 25 (2009), 121-136. MR 2509898; reference:[6] Hefferon, J.: Internet published textbook.2011. III: Laplaces Expansion, and Topic: Cramers Rule, http://joshua.smcvt.edu/linearalgebra/.; reference:[7] Liao, J. L., Wang, M., Yang, C.: A new method for structural analysis of Petri net models based on incidence matrix.J. Inform. Comput. Sci. 8 (2011), 6, 877-884.; reference:[8] Karp, R., Miller, R.: Parallel program schemata.J. Comput. Syst. Sci. 3 (1969), 147-195. Zbl 0369.68013, MR 0246720, 10.1016/S0022-0000(69)80011-5; reference:[9] Lien, Y. L.: Termination properties of generalized Petri nets.SIAM J. Comput. 5 (1976), 251-265. Zbl 0332.68037, MR 0419093, 10.1137/0205020; reference:[10] Murata, T.: Petri nets: Properties, analysis and applications.Proc. IEEE 77 (1989), 541-580.; reference:[11] Matcovschi, M., Mahulea, C., Pastravanu, O.: Exploring structural properties of Petri nets in MATLAB.Trans. Automat. Control Comput. Sci. XLVII(LI), (2001), 1 - 4, 15-26. Zbl 1240.68148; reference:[12] Xiong, P. Ch., Fan, Y. S., Zhou, M. Ch.: A Petri net approach to analysis and composition of web services.IEEE Trans. Systems, Man, Cybernet. Part A: Systems and Humans 40 (2010), 376-387. 10.1109/TSMCA.2009.2037018; reference:[13] Peterson, J.: Petri Net Theory and the Modelling of Systems.Prentice Hall, 1983. Zbl 0461.68059, MR 0610984; reference:[14] Rachid, B., Abdellah, E. M.: On the analysis of some structural properties of Petri nets.IEEE Trans. Systems, Man, Cybernet., Part A: Systems and Humans 35 (2005), 784-794. 10.1109/TSMCA.2005.851323; reference:[15] Takano, K., Taoka, S., Yamauchi, M., Watanabe, T.: Two efficient methods for computing Petri net invariants.In: Proc. IEEE Internat. Conf. on Systems, Man, Cybern. 2001, pp. 2717-2722.; reference:[16] Takano, K., Taoka, S., Yamauchi, M., Watanabe, T.: Experimental evaluation of two algorithms for computing Petri net invariants.IEICE Trans. Fundam. E84-A11 (2001), 2871-2880.; reference:[17] Wu, Y., Xie, L. Y., Li, J. D.: New method to identify minimal cut sets using the incidence matrix of Petri nets.China Mech. Engrg. 19 (2008), 1044-1047.; reference:[18] Yahia, C. A., Zerhouni, N.: Structure theory of choice-free Petri nets based on eigenvalues.J. Franklin Inst. 336 (1999), 833-849. Zbl 0973.93029, MR 1696381, 10.1016/S0016-0032(99)00008-3; reference:[19] Yahia, C. A., Zerhouni, N., Moudni, A. El, Ferney, M.: Some subclass of Petri nets and the analysis of their structural properties: A new approach.IEEE Trans. Systems, Man, Cybernet. Part A: Systems and Humans 29 (1999), 164-172. 10.1109/3468.747851; reference:[20] Yamauchi, M., Wakuda, M., Taoka, S., Watanabe, T.: A fast and space-saving algorithm for computing invariants of Petri nets.In: Proc. IEEE Internat. Conf. Systems, Man, Cybernet. 1999, pp. 866-871.; reference:[21] Zurawski, R.: Petri net models, functional abstractions, and reduction techniques: Applications to the design of automated manufacturing systems.IEEE Trans. Industr. Electron. 52 (2005), 595-609. 10.1109/TIE.2005.844225

  3. 3
    Academic Journal

    المؤلفون: Aybar, Aydin, İftar, Altuğ

    وصف الملف: application/pdf

    Relation: mr:MR3052877; reference:[1] Apaydin, H., Manay, A., Aybar, A., İftar, A.: A program for analysis and control of Petri nets.In: Proc. IEEE International Conference on Computational Cybernetics, Vienna 2004, pp. 309-314.; reference:[2] Aybar, A., İftar, A.: Overlapping decompositions and expansions of Petri nets.IEEE Trans. Automat. Control 47 (2002), 511-515. MR 1891337, 10.1109/9.989151; reference:[3] Aybar, A., İftar, A.: Decentralized supervisory controller design to avoid deadlock in Petri nets.Internat. J. Control 76 (2003), 1285-1295. Also see: A. Aybar and A. İftar: Corrections to decentralized supervisory controller design to avoid deadlock in Petri nets. Internat. J. Control 76 (2003), 1584. Zbl 1040.93047, MR 1992919, 10.1080/0020717031000149609; reference:[4] Aybar, A., İftar, A.: Supervisory controller design for timed Petri nets.In: Proc. IEEE International Conference on System of Systems Engineering, Los Angeles 2006, pp. 59-64.; reference:[5] Aybar, A., İftar, A.: Deadlock avoidance controller design for timed Petri nets using stretching.IEEE Systems J. 2 (2008), 178-188. 10.1109/JSYST.2008.923193; reference:[6] Aybar, A., İftar, A.: Decentralized structural controller design for large-scale discrete-event systems modelled by Petri nets.Kybernetika 45 (2009), 3-14. Zbl 1158.93307, MR 2489577; reference:[7] Aybar, A., İftar, A.: Representation of the state of timed-place Petri nets using stretching.In: Proc. 4th IFAC Workshop on Discrete-Event System Design, Playa de Gandia 2009, pp. 79-84.; reference:[8] Aybar, A., İftar, A.: Supervisory controller design to enforce some basic properties in timed-transition Petri nets using stretching.Nonlinear Analysis: Hybrid Systems 6 (2012), 712-729. Zbl 1235.93153, MR 2854909; reference:[9] Aybar, A., İftar, A., Apaydin-Özkan, H.: Centralized and decentralized supervisory controller design to enforce boundedness, liveness, and reversibility in Petri nets.Internat. J. Control 78 (2005), 537-553. Zbl 1085.93016, MR 2147642, 10.1080/00207170500036076; reference:[10] Bowden, F. D. J.: A brief survey and synthesis of the roles of time in Petri nets.Math. Comput. Modelling 31 (2000), 55-68. Zbl 1042.68613, MR 1768784, 10.1016/S0895-7177(00)00072-8; reference:[11] Cassandras, C. G., Lafortune, S.: Introduction to Discrete Event Systems.Kluwer Academic, Norwell 1999. Zbl 1165.93001, MR 1728175; reference:[12] Fanti, M. P., Maione, B., Turchiano, B.: Comparing digraph and Petri net approaches to deadlock avoidance in FMS.IEEE Trans. Systems, Man Cybernet. - Part B, 30 (2000), 783-798. 10.1109/3477.875452; reference:[13] Fanti, M. P., Zhou, M.: Deadlock control methods in automated manufacturing systems.IEEE Trans. Systems, Man, Cybernet. - Part A 34 (2004), 5-22. 10.1109/TSMCA.2003.820590; reference:[14] Freedman, P.: Time, Petri nets, and robotics.IEEE Trans. Robotics Automat. 7 (1991), 417-433. 10.1109/70.86074; reference:[15] Ghaffari, A., Rezg, N., Xie, X.: Maximally permissive and non blocking control of Petri nets using theory of regions.In: Proc. IEEE International Conference on Robotics and Automation, Washington, D. C. 2002, pp. 1895-1900.; reference:[16] Giua, A., Seatzu, C., Basile, F.: Observer-based state-feedback control of timed Petri nets with deadlock recovery.IEEE Trans. Automat. Control 49 (2004), 17-29. MR 2028539, 10.1109/TAC.2003.821419; reference:[17] Hadjicostis, C. N., Verghese, G. C.: Structured redundancy for fault tolerance in state-space models and Petri nets.Kybernetika 35 (1999), 39-55. MR 1705529; reference:[18] Li, Z. W., Zhou, M. C., Wu, N. Q.: A survey and comparison of Petri net-based deadlock prevention policies for flexible manufacturing systems.IEEE Trans. Systems, Man, Cybernet. - Part C 38 (2008), 173-188. 10.1109/TSMCC.2007.913920; reference:[19] Murata, T.: Petri nets: Properties, analysis and applications.Proc. IEEE 77 (1989), 541-580.; reference:[20] Pinchinat, S., Riedweg, S.: You can always compute maximally permissive controllers under partial observation when they exist.In: Proc. American Control Conference, Portland 2005, pp. 2287-2292.; reference:[21] Rivera-Rangel, I., Ramirez-Trevino, A., Aguirre-Salas, L. I., Leon, J. Ruiz: Geometrical characterization of observability in interpreted Petri nets.Kybernetika 41 (2005), 553-574. MR 2192423; reference:[22] Uzam, M., Zhou, M.: An iterative synthesis approach to Petri net-based deadlock prevention policy for flexible manufacturing systems.IEEE Trans. Systems, Man, Cybernet. - Part A 37 (2007), 362-371. 10.1109/TSMCA.2007.893484; reference:[23] Viswanadham, N., Narahari, Y., Johnson, T. L.: Deadlock prevention and deadlock avoidance in flexible manufacturing systems using Petri net models.IEEE Trans. Robotics Automat. 6 (1990), 713-723. 10.1109/70.63257; reference:[24] Wang, J.: Timed Petri Nets: Theory and Application.Kluwer Academic, Boston 1998. Zbl 0924.68147; reference:[25] Zhou, M., DiCesare, F.: Petri Net Synthesis for Discrete Event Control of Manufacturing Systems.Kluwer Academic Publishers, Norwell 1993. Zbl 0849.93002; reference:[26] Zuberek, W. M.: Timed Petri nets in modeling and analysis of cluster tools.IEEE Trans. Robotics Automat. 17 (2001), 562-575. 10.1109/70.964658

  4. 4
    Academic Journal

    المؤلفون: Sergeev, Sergeĭ

    وصف الملف: application/pdf

    Relation: mr:MR2850458; zbl:Zbl 1248.15023; reference:[1] Akian, M., Bapat, R., Gaubert, S.: Max-plus algebras.In: Handbook of Linear Algebra (L. Hogben, ed.), Discrete Math. Appl. 39, Chapter 25, Chapman and Hall 2006. 10.1201/9781420010572.ch25; reference:[2] Baccelli, F. L., Cohen, G., Olsder, G.-J., Quadrat, J.-P.: Synchronization and Linearity: An Algebra for Discrete Event Systems.Wiley 1992. Zbl 0824.93003, MR 1204266; reference:[3] Binding, P. A., Volkmer, H.: A generalized eigenvalue problem in the max algebra.Linear Algebra Appl. 422 (2007), 360–371. Zbl 1121.15011, MR 2305125; reference:[4] Brunovsky, P.: A classification of linear controllable systems.Kybernetika 6 (1970), 173–188. Zbl 0199.48202, MR 0284247; reference:[5] Burns, S. M.: Performance Analysis and Optimization of Asynchronous Circuits.PhD Thesis, California Institute of Technology 1991. MR 2686560; reference:[6] Butkovič, P.: Max-algebra: the linear algebra of combinatorics? Linear Algebra Appl.367 (2003), 313–335. MR 1976928; reference:[7] Butkovič, P.: Max-linear Systems: Theory and Algorithms.Springer 2010. Zbl 1202.15032, MR 2681232; reference:[8] Cochet-Terrasson, J., Cohen, G., Gaubert, S., Gettrick, M. M., Quadrat, J. P.: Numerical computation of spectral elements in max-plus algebra.In: Proc. IFAC Conference on Systems Structure and Control, IRCT, Nantes 1998, pp. 699–706.; reference:[9] Cuninghame-Green, R. A.: Minimax Algebra.Lecture Notes in Econom. and Math. Systems 166, Springer, Berlin 1979. Zbl 0399.90052, MR 0580321; reference:[10] Cuninghame-Green, R. A., Butkovič, P.: The equation $A\otimes x=B\otimes y$ over (max,+).Theoret. Comput. Sci. 293 (2003), 3–12. Zbl 1021.65022, MR 1957609, 10.1016/S0304-3975(02)00228-1; reference:[11] Cuninghame-Green, R. A., Butkovič, P.: Generalised eigenproblem in max algebra.In: Proc. 9th International Workshop WODES 2008, pp. 236–241.; reference:[12] Elsner, L., Driessche, P. van den: Modifying the power method in max algebra.Linear Algebra Appl. 332–334 (2001), 3–13. MR 1839423; reference:[13] Gantmacher, F. R.: The Theory of Matrices.Chelsea, 1959. Zbl 0085.01001; reference:[14] Gaubert, S., Sergeev, S.: The level set method for the two-sided eigenproblem.E-print http://arxiv.org/pdf/1006.5702.; reference:[15] Heidergott, B., Olsder, G.-J., Woude, J. van der: Max-plus at Work.Princeton Univ. Press, 2005.; reference:[16] McDonald, J. J., Olesky, D. D., Schneider, H., Tsatsomeros, M. J., Driessche, P. van den: Z-pencils.Electron. J. Linear Algebra 4 (1998), 32–38. MR 1643088; reference:[17] Mehrmann, V., Nabben, R., Virnik, E.: Generalization of Perron-Frobenius theory to matrix pencils.Linear Algebra Appl. 428 (2008), 20–38. MR 2372583

  5. 5
    Academic Journal

    المؤلفون: Aybar, Aydın, İftar, Altuğ

    وصف الملف: application/pdf

    Relation: mr:MR2489577; zbl:Zbl 1158.93307; reference:[1] B. Ataşlar and A. İftar: Decentralized routing controller design using overlapping decompositions.Internat. J. Control 72 (1999), 1175–1192. MR 1717872; reference:[2] A. Aybar and A. İftar: Decentralized supervisory controller design for discrete-event systems using overlapping decompositions and expansions.Dynamics of Continuous, Discrete and Impulse Systems (Series B) 11 (2004), 553–568. MR 2071227; reference:[3] A. Aybar and A. İftar: Overlapping decompositions and expansions of Petri nets.IEEE Trans. Automat. Control 47 (2002), 511–515. MR 1891337; reference:[4] A. Aybar and A. İftar: Decentralized controller design to enforce boundedness, liveness and reversibility in Petri nets.In: Proc. CD-ROM of the European Control Conference, Cambridge 2003.; reference:[5] A. Aybar and A. İftar: Decentralized supervisory controller design to avoid deadlock in Petri nets.Internat. J. Control 76 (2003), 1285–1295. Also see: A. Aybar and A. İftar: Corrections to decentralized supervisory controller design to avoid deadlock in Petri nets. Internat. J. Control 76 (2003), p. 1584. MR 1992919; reference:[6] A. Aybar, A. İftar, and H. Apaydın-Özkan: Centralized and decentralized supervisory controller design to enforce boundedness, liveness, and reversibility in Petri nets.Internat. J. Control 78 (2005), 537–553. MR 2147642; reference:[7] L. Bakule, J. Rodellar, and J. M. Rossell: Generalized selection of complementary matrices in the inclusion principle.IEEE Trans. Automat. Control 45 (2000), 1237–1243. MR 1778388; reference:[8] K. Barkaoui and I. B. Abdallah: Deadlock avoidance in FMS based on structural theory of Petri nets.In: Proc. 1995 IEEE Symposium on the Emerging Technology and Factory Automation, Paris 1995, pp. 499–510.; reference:[9] C. G. Cassandras and S. Lafortune: Introduction to Discrete Event Systems.Kluwer Academic Publishers, Norwell 1999. MR 1728175; reference:[10] R. Cordone, L. Ferrarini, and L. Piroddi: Some results on the computation of minimal siphons in Petri nets.In: Proc. IEEE Conference on Decision and Control, Maui 2003, pp. 3754–3759.; reference:[11] J. Esparza and M. Nielsen: Decidability Issues in Petri Nets.BRICS Report Series, RS-94-8, Department of Computer Science, University of Aarhus 1994.; reference:[12] M. P. Fanti, B. Maione, and B. Turchiano: Comparing digraph and Petri net approaches to deadlock avoidance in FMS.IEEE Trans. Systems, Man and Cybernetics, Part B 30 (2000), 783–798.; reference:[13] M. P. Fanti and M. Zhou: Deadlock control methods in automated manufacturing systems.IEEE Trans. Systems, Man, and Cybernetics, Part A 34 (2004), 5–22.; reference:[14] Y. Ho (ed.): Discrete Event Dynamic Systems: Analyzing Complexity and Performance in the Modern World.A Selected Reprint Volume. The Institute of Electrical and Electronics Engineers, New York 1992.; reference:[15] L. E. Holloway and B. H. Krogh: On closed-loop liveness of discrete-event systems under maximally permissive control.IEEE Trans. Automat. Control 37 (1992), 692–697. MR 1158617; reference:[16] A. İftar: Overlapping decentralized dynamic optimal control.Internat. J. Control 58 (1993), 187–209. MR 1222143; reference:[17] A. İftar: Decentralized estimation and control with overlapping input, state, and output decomposition.Automatica 29 (1993), 511–516. MR 1211311; reference:[18] A. İftar and Ü. Özgüner: Local LQG/LTR controller design for decentralized systems.IEEE Trans. Automat. Control 32 (1987), 926–930.; reference:[19] A. İftar and Ü. Özgüner: Contractible controller design and optimal control with state and input inclusion.Automatica 26 (1990), 593–597. MR 1056141; reference:[20] A. İftar and Ü. Özgüner: Overlapping decompositions, expansions, contractions, and stability of hybrid systems.IEEE Trans. Automat. Control 43 (1998), 1040–1055. MR 1636494; reference:[21] M. Ikeda and D. D. Šiljak: Overlapping decompositions, expansions, and contractions of dynamic systems.Large Scale Systems 1 (1980), 29–38. MR 0617153; reference:[22] M. Ikeda and D. D. Šiljak: Overlapping decentralized control with input, state, and output inclusion.Control Theory Adv. Technol. 2 (1986), 155–172.; reference:[23] M. Ikeda, D. D. Šiljak, and D. E. White: Decentralized control with overlapping information sets.J. Optim. Theory Appl. 34 (1981), 279–310. MR 0625231; reference:[24] M. V. Iordache and P. J. Antsaklis: Software Tools for the Supervisory Control of Petri Nets Based on Place Invariants.Tech. Rep. ISIS-2002-003, the ISIS Group at the University of Notre Dame, 2002.; reference:[25] M. V. Iordache and P. J. Antsaklis: Design of ${\cal T}$-liveness enforcing supervisors in Petri nets.IEEE Trans. Automat. Control 48 (2003), 1962–1974. MR 2017627; reference:[26] M. V. Iordache, J. O. Moody, and P. J. Antsaklis: A method for the synthesis of liveness enforcing supervisors in Petri nets.In: Proc. American Control Conference, Arligton 2001, pp. 4943–4948.; reference:[27] Z. W. Li and M. C. Zhou: Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems.IEEE Trans. Systems, Man and Cybernetics, Part A, 34 (2004), 38–51.; reference:[28] Y. Ohta, D. D. Šiljak, and T. Matsumoto: Decentralized control using quasi-block diagonal dominance of transfer function matrices.IEEE Trans. Automat. Control 31 (1986), 420–430. MR 0833851; reference:[29] J. Proth and X. Xie: Petri Nets: A Tool for Design and Management of Manufacturing Systems.Wiley, West Sussex 1996.; reference:[30] R. S. Sreenivas: On the existence of supervisory policies that enforce liveness in discrete-event dynamic systems modelled by controlled Petri nets.IEEE Trans. Automat. Control 42 (1997), 928–945. MR 1469834; reference:[31] M. Uzam and M. Zhou: An iterative synthesis approach to Petri net-based deadlock prevention policy for flexible manufacturing systems.IEEE Trans. Systems, Man, and Cybernetics, Part A, 37 (2007), 362–371.; reference:[32] A. R. Wang, Z. W. Li, and J. Y. Jia: A Petri nets based deadlock avoidance policy for flexible manufacturing systems.In: Proc. 30th Annual Conference of the IEEE Industrial Electronics Society, Busan 2004, pp. 1896–1901.; reference:[33] N. Viswanadham, Y. Narahari, and T. L. Johnson: Deadlock prevention and deadlock avoidance in flexible manufacturing systems using Petri net models.IEEE Trans. Robotics and Automation 6 (1990), 713–723.; reference:[34] M. Zhou and F. Di Cesare: Petri Net Synthesis for Discrete Event Control of Manufacturing Systems.Kluwer Academic Publishers, Norwell 1993.

  6. 6
    Academic Journal

    المؤلفون: Ahmane, Mourad, Truffet, Laurent

    وصف الملف: application/pdf

    Relation: mr:MR2362725; zbl:Zbl 1132.93029; reference:[1] Ahmane M., Ledoux, J., Truffet L.: Criteria for the comparison of discrete-time Markov chains.In: 13th Internat. Workshop on Matrices and Statistics in Celebration of I. Olkin’s 80th Birthday, Poland, August 18-21, 2004; reference:[2] Ahmane M., Ledoux, J., Truffet L.: Positive invariance of polyhedrons and comparison of Markov reward models with different state spaces.In: Proc. Positive Systems: Theory and Applications (POSTA’06), Grenoble 2006 (Lecture Notes in Control and Information Sciences 341), Springer–Verlag, Berlin, pp. 153–160 Zbl 1132.93333, MR 2250251; reference:[3] Ahmane M., Truffet L.: State feedback control via positive invariance for max-plus linear systems using $\Gamma $-algorithm.In: 11th IEEE Internat. Conference on Emerging Technologies and Factory Automation, ETFA’06, Prague 2006; reference:[4] Ahmane M., Truffet L.: Sufficient condition of max-plus ellipsoidal invariant set and computation of feedback control of discrete events systems.In: 3rd Internat. Conference on Informatics in Control, Automation and Robotics, ICINCO’06, Setubal 2006; reference:[5] Aubin J.-P.: Viability Theory.Birkhäuser, Basel 1991 MR 1134779; reference:[6] Baccelli F., Cohen G., Olsder G. J., Quadrat J.-P.: Synchronization and Linearity.Wiley, New York 1992 Zbl 0824.93003, MR 1204266; reference:[7] Bertsekas D. P., Rhodes I. B.: On the minimax reachability of target sets and target tubes.Automatica 7 (1971), 233–247 Zbl 0215.21801, MR 0322648; reference:[8] Blyth T. S., Janowitz M. F.: Residuation Theory.Pergamon Press, 1972 Zbl 0301.06001, MR 0396359; reference:[9] Braker J. G.: Max-algebra modelling and analysis of time-table dependent networks.In: Proc. 1st European Control Conference, Grenoble 1991, pp. 1831–1836; reference:[10] Butkovic P., Zimmermann K.: A strongly polynomial algorithm for solving two-wided linear systems in max-algebra.Discrete Appl. Math. 154 (2006), 437–446 MR 2203194; reference:[11] Cochet-Terrasson J., Gaubert, S., Gunawardena J.: A constructive fixed point theorem for min-max functions.Dynamics Stability Systems 14 (1999), 4, 407–433 Zbl 0958.47028, MR 1746112; reference:[12] Cohen G., Gaubert, S., Quadrat J.-P.: Duality and separation theorems in idempotent semimodules.Linear Algebra Appl. 379 (2004), 395–422 Zbl 1042.46004, MR 2039751; reference:[13] Costan A., Gaubert S., Goubault, E., Putot S.: A policy iteration algorithm for computing fixed points in static analysis of programs.In: CAV’05, Edinburgh 2005 (Lecture Notes in Computer Science 3576), Springer–Verlag, Berlin, pp. 462–475 Zbl 1081.68616; reference:[14] Cuninghame-Green R. A., Butkovic P.: The equation $A \otimes x= B \otimes y$ over $(\max ,+)$.Theoret. Comp. Sci. 293 (2003), 3–12 Zbl 1021.65022, MR 1957609; reference:[15] Vries R. de, Schutter, B. De, Moor B. De: On max-algebraic models for transportation networks.In: Proc. Internat. Workshop on Discrete Event Systems (WODES’98), Cagliari 1998, pp. 457–462; reference:[16] Farkas J.: Über der einfachen Ungleichungen.J. Reine Angew. Math. 124 (1902), 1–27; reference:[17] Gaubert S., Gunawardena J.: The duality theorem for min-max functions.Comptes Rendus Acad. Sci. 326 (1999), Série I, 43–48 MR 1649473; reference:[18] Gaubert S., Katz R.: Rational semimodules over the max-plus semiring and geometric approach of discrete event systems.Kybernetika 40 (2004), 2, 153–180 MR 2069176; reference:[19] Golan J. S.: The theory of semirings with applications in mathematics and theoretical computer science.Longman Sci. & Tech. 54 (1992) Zbl 0780.16036, MR 1163371; reference:[20] Haar A.: Über Lineare Ungleichungen.1918. Reprinted in: A. Haar, Gesammelte Arbeiten, Akademi Kiadó, Budapest 1959; reference:[21] Hennet J. C.: Une Extension du Lemme de Farkas et Son Application au Problème de Régulation Linéaire sous Contraintes.Comptes Rendus Acad. Sci. 308 (1989), Série I, pp. 415–419 MR 0992520; reference:[22] Hiriart-Urruty J.-B., Lemarechal C.: Fundamentals of Convex Analysis.Springer–Verlag, Berlin 2001 Zbl 0998.49001, MR 1865628; reference:[23] Katz R. D.: Max-plus (A,B)-invariant and control of discrete event systems.To appear in IEEE TAC, 2005, arXiv:math.OC/0503448; reference:[24] Klimann I.: A solution to the problem of (A,B)-invariance for series.Theoret. Comput. Sci. 293 (2003), 1, 115–139 Zbl 1025.68050, MR 1957615; reference:[25] Ledoux J., Truffet L.: Comparison and aggregation of max-plus linear systems.Linear Algebra. Appl. 378 (2004), 1, 245–272 Zbl 1052.15014, MR 2031795; reference:[26] Lhommeau M.: Etude de Systèmes à Evénements Discrets: 1.Synthèse de Correcteurs Robustes dans un Dioide d’Intervalles. 2. Synthèse de Correcteurs en Présence de Perturbations. PhD Thesis, Université d’Angers ISTIA 2003; reference:[27] Lhommeau M., Hardouin, L., Cottenceau B.: Optimal control for (Max,+)-linear systems in the presence of disturbances.In: Proc. Positive Systems: Theory and Applications (POSTA’03), Roma 2003 (Lecture Notes in Control and Information Sciences 294), Springer–Verlag, Berlin, pp. 47–54 Zbl 1059.93090, MR 2019300; reference:[28] Muller A., Stoyan D.: Comparison Methods for Stochastic Models and Risks.Wiley, New York 2002 MR 1889865; reference:[29] Dam A. A. ten, Nieuwenhuis J. W.: A linear programming algorithm for invariant polyhedral sets of discrete-time linear systems.Systems Control Lett. 25 (1995), 337–341 MR 1343218; reference:[30] Truffet L.: Monotone linear dynamical systems over dioids.In: Proc. Positive Systems: Theory and Applications (POSTA’03), Roma 2003 (Lecture Notes in Control and Information Sciences 294), Springer–Verlag, Berlin pp. 39–46 Zbl 1059.93093, MR 2019299; reference:[31] Truffet L.: Some ideas to compare Bellman chains.Kybernetika 39 (2003), 2, 155–163. (Special Issue on max-plus Algebra) MR 1996554; reference:[32] Truffet L.: Exploring positively invariant sets by linear systems over idempotent semirings.IMA J. Math. Control Inform. 21 (2004), 307–322 Zbl 1098.93025, MR 2076223; reference:[33] Truffet L.: New bounds for timed event graphs inspired by stochastic majorization results.Discrete Event Dyn. Systems 14 (2004), 355–380 Zbl 1073.93039, MR 2092597; reference:[34] Wagneur E.: Duality in the max-algebra.In: IFAC, Commande et Structures des Systèmes, Nantes 1998, pp. 707–711

  7. 7
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2192423; zbl:Zbl 1249.93126; reference:[1] Aguirre-Salas L., Begovich, O., Ramírez-Treviño A.: Observability in interpreted Petri nets using sequence invariants.In: Proc. 41th IEEE Conference on Decision and Control, Hawai 2002, pp. 3602–3607; reference:[2] Campos-Rodríguez R., Ramírez-Treviño, A., López-Mellado E.: Regulation control of partially observed discrete event systems.In: Proc. IEEE–SMC, The Hague 2004, pp. 1837–1842; reference:[3] Chen C. T.: Linear System Theory and Design.Harcourt Brace Jovanovich Inc., New York 1970; reference:[4] Cieslak R., Desclaux C., Fawaz, A., Varaiya P.: Supervisory control of discrete event processes with partial observation.IEEE Trans. Automat. Control 33 (1988), 249–260 10.1109/9.402; reference:[5] Desel J., Esparza J.: Free Choice Petri Nets.Cambridge University Press, Cambridge 1995 Zbl 0836.68074, MR 1469221; reference:[6] DiCesare F., Harhalakis G., Proth J. M., Silva, M., Vernadat F. B.: Practice of Petri Nets in Manufacturing.Chapman & Hall, London 1993; reference:[7] Giua A.: Petri net state estimators based on event observation.In: Proc. 36th IEEE Conference on Decision and Control, San Diego 1997, pp. 4086–4091; reference:[8] Giua A., Seatzu C.: Observability properties of Petri nets.In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 2676–2681; reference:[9] Hopcroft J. E., Ullman J. D.: Introduction to Automata Theory, Languages and Computation.Addison–Wesley, New York 1979 Zbl 0980.68066, MR 0645539; reference:[10] Ichikawa A., Hiraishi K.: Analysis and Control of Discrete Event Systems Represented by Petri Nets.(Lecture Notes in Control and Inform. Sciences 103.) Springer, Berlin 1989, pp. 115–134 MR 0947968, 10.1007/BFb0042308; reference:[11] Kumar R., Grag V. K., Marcus S. I.: On controllability and normality of discrete event dynamic systems.Systems Control Lett. 17 (1991), 157–168 MR 1125967, 10.1016/0167-6911(91)90061-I; reference:[12] Kumar R., Grag V. K., Marcus S. I.: On supervisory control of sequential behaviors.IEEE Trans. Automat. Control 37 (1992), 1978–1985 MR 1200617, 10.1109/9.182487; reference:[13] Kumar R., Shayman M. A.: Formulae relating controllability, observability and co-observability.Automatica 2 (1998), 211–215 Zbl 0911.93020, MR 1609815, 10.1016/S0005-1098(97)00164-7; reference:[14] Li Y., Wonham W. M.: Controllability and observability in the state-feedback control of discrete event systems.In: Proc. 27th IEEE Conference on Decision and Control, Austin 1988, pp. 203–207; reference:[15] Lin F., Wonham W. M.: Decentralized control and coordination of discrete-event systems with partial observation.IEEE Trans. Automat. Control 35 (1990), 1330–1337 Zbl 0723.93043, MR 1078145, 10.1109/9.61009; reference:[16] Meda M. E., Ramírez-Treviño, A., Malo A.: Identification in discrete event systems.IEEE Internat. Conference SMC, San Diego 1998, pp. 740–745; reference:[17] Murata T.: Petri nets: properties, analysis and applications.Proc. IEEE 77 (1989), 541–580; reference:[18] Özveren C. M., Willsky A. S.: Observability of discrete event dynamic systems.IEEE Trans. Automat. Control 35 (1990), 797–806 Zbl 0709.68030, MR 1058364, 10.1109/9.57018; reference:[19] Perko L.: Differential Equations and Dynamic Systems.(Texts in Applied Mathematics.) Springer, New York 1996 10.1007/978-1-4684-0249-0; reference:[20] Ramadge P. J.: Observability of discrete event systems.In: Proc. 25th IEEE Conference on Decision and Control, Athens 1986, pp. 1108–1112; reference:[21] Ramírez-Treviño A., Rivera-Rangel, I., López-Mellado E.: Observability of discrete event systems modeled by interpreted Petri nets.IEEE Trans. Robotics and Automation 19 (2003), 557–565 10.1109/TRA.2003.814503; reference:[22] Rivera-Rangel I., Aguirre-Salas L., Ramírez-Treviño, A., López-Mellado E.: Observer design for discrete event systems modeled by interpreted Petri nets.In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 2260–2265; reference:[23] Ushio T.: On the existence of finite-state supervisors under partial observations.IEEE Trans. Automat. Control 42 (1997), 1577–1581 Zbl 0891.93006, MR 1479096, 10.1109/9.649723; reference:[24] Wonham W. M.: Linear Multivariable Control.A Geometric Approach. Springer, New York 1985 Zbl 0609.93001, MR 0770574

  8. 8
    Academic Journal

    المؤلفون: Gaubert, Stéphane, Katz, Ricardo

    وصف الملف: application/pdf

    Relation: mr:MR2069176; zbl:Zbl 1249.93125; reference:[1] Baccelli F., Cohen G., Olsder, G., Quadrat J.: Synchronization and Linearity.Wiley, New York 1992 Zbl 0824.93003, MR 1204266; reference:[2] Berstel J.: Transductions and Context-Free Languages.Teubner, Stuttgart 1979 Zbl 0424.68040, MR 0549481; reference:[3] Berstel J., Reutenauer C.: Rational Series and their Languages.Springer, New York 1988 Zbl 0668.68005, MR 0971022; reference:[4] Bés A.: A survey of arithmetical definability: A tribute to Maurice Boffa.Soc. Math. Belgique 2002, pp. 1–54 MR 1900396; reference:[5] Butkovič P.: Strong regularity of matrices – a survey of results.Discrete Applied Mathematics 48 (1994), 45–68 Zbl 0804.06017, MR 1254755, 10.1016/0166-218X(92)00104-T; reference:[6] Butkovič P., Cuninghame-Green R.: The equation $A\otimes x=B\otimes y$ over $({\mathbb{R}}\cup \lbrace -\infty \rbrace ,\max ,+)$.Theor. Comp. Sci. 48 (2003), 1, 3–12 MR 1957609; reference:[7] Butkovič P., Hegedüs G.: An elimination method for finding all solutions of the system of linear equations over an extremal algebra.Ekonom.-Mat. obzor 20 (1984), 2, 203–215 Zbl 0545.90101, MR 0782401; reference:[8] Cochet-Terrasson J., Gaubert, S., Gunawardena J.: A constructive fixed point theorem for min-max functions: Dynamics and Stability of Systems 14 (1999), 4, 407–43. MR 1746112, 10.1080/026811199281967; reference:[9] Cohen G., Gaubert, S., Quadrat J.: Kernels, images and projections in dioids.In: 3rd Workshop on Discrete Event Systems (WODES’96), IEE Edinburgh, August 1996, pp. 151–158; reference:[10] Cohen G., Gaubert, S., Quadrat J.: Linear projectors in the max-plus algebra: In: Proc.IEEE Mediterranean Conference, Cyprus, 1997, CDROM; reference:[11] Cohen G., Gaubert, S., Quadrat J.: Max-plus algebra and system theory: where we are and where to go now.Annual Reviews in Control 23 (1999), 207–219 10.1016/S1367-5788(99)90091-3; reference:[12] Cohen G., Gaubert, S., Quadrat J.: Duality and separation theorem in idempotent semimodules.Linear Algebra and Appl. 279 (2004), 395–422. Also e-print arXiv:math.FA/0212294 MR 2039751, 10.1016/j.laa.2003.08.010; reference:[13] Cohen G., Moller P., Quadrat, J., Viot M.: Algebraic tools for the performance evaluation of discrete event systems: IEEE Proceedings: Special Issue on Discrete Event Systems 77 (1989), 1, 39–5.; reference:[14] Conway J.: Regular Algebra and Finite Machines.Chapman and Hall, London 1971 Zbl 0231.94041; reference:[15] Cuninghame-Green R.: Minimax Algebra.(Lecture Notes in Economics and Mathematical Systems 166.) Springer, Berlin 1976 Zbl 0739.90073, MR 0580321; reference:[16] Eilenberg S., Schützenberger M.: Rational sets in commutative monoids: J.Algebra 13 (1969), 1, 173–191 MR 0246985, 10.1016/0021-8693(69)90070-2; reference:[17] Gaubert S.: Théorie des systèmes linéaires dans les dioïdes.Thèse, École des Mines de Paris, July 1992; reference:[18] Gaubert S.: Rational series over dioids and discrete event systems.In: Proc. 11th Conference on Analysis and Optimization of Systems – Discrete Event Systems. (Lecture Notes in Control and Inform. Sciences 199.) Sophia Antipolis, June 1994. Springer, Berlin 1995; reference:[19] Gaubert S.: Performance evaluation of (max,+) automata.IEEE Trans. Automat. Control 40 (1995), 12, 2014–2025 Zbl 0855.93019, MR 1364950, 10.1109/9.478227; reference:[20] Gaubert S.: Exotic semirings: Examples and general results: Support de cours de la 26$^{\text{ième}}$ École de Printemps d’Informatique Théorique, Noirmoutier, 199.; reference:[21] Gaubert S., Gunawardena J.: The duality theorem for min-max functions: C.R. Acad. Sci. 326 (1998), 43–48 MR 1649473, 10.1016/S0764-4442(97)82710-3; reference:[22] Gaubert S., Katz R.: Reachability Problems for Products of Matrices in Semirings.Research Report 4944, INRIA, September 2003. Also e-print arXiv:math.OC/0310028. To appear in Internat. J. Algebra and Comput Zbl 1108.20057, MR 2241626; reference:[23] Gaubert S., Plus M.: Methods and applications of (max,+) linear algebra.In: 14th Symposium on Theoretical Aspects of Computer Science (STACS’97), Lübeck, March 1997 (R. Reischuk and M. Morvan, eds., Lecture Notes in Computer Science 1200), Springer, Berlin 1998, pp. 261–282 MR 1473780; reference:[24] Ginsburg S., Spanier E. H.: Semigroups, Presburger formulas, and languages.Pacific J. Math. 16 (1966), 2, 3–12 Zbl 0143.01602, MR 0191770, 10.2140/pjm.1966.16.285; reference:[25] Gunawardena J., ed.: Idempotency.(Publications of the Isaac Newton Institute.) Cambridge University Press, Cambridge 1998 Zbl 1144.68006, MR 1608370; reference:[26] Helbig S.: On Caratheodory’s and Kreĭn-Milman’s theorems in fully ordered groups.Comment. Math. Univ. Carolin. 29 (1988), 1, 157–167 Zbl 0652.06010, MR 0937558; reference:[27] Katz R.: Problemas de alcanzabilidad e invariancia en el álgebra max-plus.Ph.D. Thesis, University of Rosario, November 2003; reference:[28] Klimann I.: Langages, séries et contrôle de trajectoires.Thèse, Université Paris 7, 1999; reference:[29] Klimann I.: A solution to the problem of $(A,B)$-invariance for series: Theoret.Comput. Sci. 293 (2003), 1, 115–139 MR 1957615, 10.1016/S0304-3975(02)00234-7; reference:[30] Kolokoltsov V.: Linear additive and homogeneous operators.In: Idempotent Analysis (Advances in Soviet Mathematics 13), Amer. Math. Soc., Providence, RI 1992 Zbl 0925.47016, MR 1203786; reference:[31] Krob D.: The equality problem for rational series with multiplicities in the tropical semiring is undecidable.Internat. J. Algebra and Comput. 4 (1994), 3, 405–425 Zbl 0834.68058, MR 1297148, 10.1142/S0218196794000063; reference:[32] Krob D.: Some consequences of a Fatou property of the tropical semiring.J. Pure and Applied Algebra 93 (1994), 231–249 Zbl 0806.68083, MR 1275966, 10.1016/0022-4049(94)90090-6; reference:[33] Krob D., Rigny A. Bonnier: A complete system of identities for one letter rational expressions with multiplicities in the tropical semiring.J. Pure Appl. Algebra 134 (1994), 27–50 MR 1299364; reference:[34] Litvinov G., Maslov, V., Shpiz G.: Idempotent functional analysis: an algebraical approach.Math. Notes 69 (2001), 5, 696–729. Also e-print arXiv:math.FA/0009128 MR 1846814, 10.1023/A:1010266012029; reference:[35] Mairesse J.: A graphical approach of the spectral theory in the (max,+) algebra.IEEE Trans. Automat. Control 40 (1995), 1783–1789 Zbl 0845.93036, MR 1354519, 10.1109/9.467674; reference:[36] Moller P.: Théorie algébrique des Systèmes à Événements Discrets.Thèse, École des Mines de Paris, 1988; reference:[37] Oppen D. C.: A $2^{2^{2^{pn}}}$ upper bound on the complexity of Presburger arithmetic.J. Comput. System Sci. 16 (1978), 323–332 MR 0478750, 10.1016/0022-0000(78)90021-1; reference:[38] Pin J.-E.: Tropical semirings: In: Idempotency (J.Gunawardena, ed.), Cambridge University Press, Cambridge 1998, pp. 50–69 MR 1608374; reference:[39] Plus M.: Max-plus toolbox of scilab: Available from the contrib section of http:--www-rocq.inria.fr/scilab, 1998; reference:[40] Samborskiĭ S. N., Shpiz G. B.: Convex sets in the semimodule of bounded functions: In: Idempotent Analysis, pp.135–137. Amer. Math. Soc., Providence, RI 1992 MR 1203789; reference:[41] Schrijver A.: Theory of Linear and Integer Programming.Wiley, New York 1988 Zbl 0970.90052, MR 0874114; reference:[42] Simon I.: Limited subsets of the free monoid.In: 19th Annual Symposium on Foundations of Computer Science 1978, pp. 143–150 MR 0539835; reference:[43] Simon I.: The nondeterministic complexity of a finite automaton.In: Mots – Mélange offert à M. P. Schutzenberger (M. Lothaire, ed.), Hermes, Paris 1990, pp. 384–400 MR 1252678; reference:[44] Wagneur E.: Moduloids and pseudomodules.1. dimension theory. Discrete Math. 98 (1991), 57–73 Zbl 0757.06008, MR 1139597, 10.1016/0012-365X(91)90412-U; reference:[45] Walkup E., Borriello G.: A general linear max-plus solution technique.In: Idempotency (J. Gunawardena, ed.), Cambridge University Press, Cambridge 1998, pp. 406–415 Zbl 0898.68035, MR 1608375; reference:[46] Wonham W.: Linear Multivariable Control: A Geometric Approach.Third edition. Springer, Berlin 1985 Zbl 0609.93001, MR 0770574; reference:[47] Zimmermann K.: A general separation theorem in extremal algebras.Ekonom.-Mat. obzor 13 (1977), 2, 179–201 Zbl 0365.90127, MR 0453607

  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1996558; zbl:Zbl 1249.93123; reference:[1] Burbanks A. D., Nussbaum R. D., Sparrow C. T.: Extension of order-preserving maps on a cone.Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 35–59 Zbl 1048.47040, MR 1960046; reference:[2] Burbanks A. D., Sparrow C. T.: All Monotone Homogeneous Functions (on the Positive Cone) Admit Continuous Extension.Technical Report No. 1999-13, Statistical Laboratory, University of Cambridge 1999; reference:[3] Crandall M. G., Tartar L.: Some relations between nonexpansive and order preserving mappings.Proc. Amer. Math. Soc. 78 (1980), 385–390 Zbl 0449.47059, MR 0553381, 10.1090/S0002-9939-1980-0553381-X; reference:[4] Gaubert S., Gunawardena J.: A Nonlinear Hierarchy for Discrete Event Systems.Technical Report No. HPL-BRIMS-98-20, BRIMS, Hewlett–Packard Laboratories, Bristol 1998; reference:[5] Gunawardena J., Keane M.: On the Existence of Cycle Times for Some Nonexpansive Maps.Technical Report No. HPL-BRIMS-95-003, BRIMS, Hewlett–Packard Laboratories, Bristol 1995; reference:[6] Nussbaum R. D.: Eigenvectors of Nonlinear Positive Operators and the Linear Krein–Rutman Theorem (Lecture Notes in Mathematics 886).Springer Verlag, Berlin 1981, pp. 309–331 MR 0643014; reference:[7] Nussbaum R. D.: Finsler structures for the part-metric and Hilbert’s projective metric, and applications to ordinary differential equations.Differential and Integral Equations 7 (1994), 1649–1707 Zbl 0844.58010, MR 1269677; reference:[8] Riesz F., Sz.-Nagy B.: Functional Analysis.Frederick Ungar Publishing Company, New York 1955 Zbl 0732.47001, MR 0071727; reference:[9] Thompson A. C.: On certain contraction mappings in a partially ordered vector space.Proc. Amer. Math. Soc. 14 (1963), 438–443 Zbl 0147.34903, MR 0149237

  10. 10
    Academic Journal

    المؤلفون: Gulinsky, Oleg V.

    وصف الملف: application/pdf

    Relation: mr:MR1996560; zbl:Zbl 1249.93156; reference:[1] Bourbaki N.: Intégration, Chap.6. Hermann, Paris 1959 Zbl 0213.07501, MR 0124722; reference:[2] Breyer V., Gulinsky O.: Large deviations on infinite dimentional spaces (in Russian).Preprint of MIPT, Moscow 1996; reference:[3] Bryc W.: Large deviations by the asymptotic value method.In: Diffusion Processes and Related Problems in Analysis (M. Pinski, ed.), Birkhäuser, Boston 1990, pp. 447–472 Zbl 0724.60032, MR 1110177; reference:[4] Choquet G.: Theory of capacities.Ann. Inst. Fourier 5 (1955), 131–295 MR 0080760, 10.5802/aif.53; reference:[5] Davies E. B., Simon B.: Ultracontractivity and the heat kernal for Schrödinger operators and Dirichlet laplacians.J. Funct. Anal. 59 (1984), 335–395 MR 0766493, 10.1016/0022-1236(84)90076-4; reference:[6] Kolokoltsov V. N., Maslov V. P.: The general form of the endomorphisms in the space of continuous functions with values in a numerical semiring with the operation $\oplus =\max $.Soviet Math. Dokl. 36 (1988), 1, 55–59 MR 0902683; reference:[7] Minlos R. A., Verbeure, A., Zagrebnov V.: A quantum crystal model in the light-mass limit: Gibbs state.Rev. Math. Phys. 12 (2000), 981–1032 MR 1782692, 10.1142/S0129055X00000381; reference:[9] Puhalskii A.: Large deviations of semimartingales via convergence of the predictable characteristics.Stochastics 49 (1994), 27–85 Zbl 0827.60017, MR 1784438; reference:[10] Puhalskii A.: The method of stochastic exponentials for large deviations.Stochastic Process. Appl. 54 (1994), 45–70 MR 1302694

  11. 11
    Academic Journal

    المؤلفون: Klimann, Ines

    وصف الملف: application/pdf

    Relation: mr:MR1996556; zbl:Zbl 1249.93043; reference:[1] Berstel J.: Transductions and Context–Free Languages.Teubner, Stuttgart 1979 Zbl 0424.68040, MR 0549481; reference:[2] Berstel J., Reutenauer C.: Les séries rationnelles et leurs langages.Masson, Paris 1984. English translation: Rational Series and Their Languages, Springer–Verlag, Berlin 1988 Zbl 0573.68037, MR 0971022; reference:[3] Blyth T. S., Janowitz M. F.: Residuation Theory.Pergamon Press, Oxford 1972 Zbl 0301.06001, MR 0396359; reference:[4] Eilenberg S.: Automata, Languages and Machines, vol.A. Academic Press, New York 1974 Zbl 0359.94067, MR 0530382; reference:[5] Gunawardena J.: An introduction to idempotency, in idempotency.Chapter 1 (J. Gunawardena, ed.), Cambridge University Press, Cambridge 1998 MR 1608370; reference:[6] Klimann I.: New types of automata to solve fixed point problems.Theoret. Comput. Sci. 259 (2001), 1–2, 183–197 Zbl 0973.68122, MR 1832790, 10.1016/S0304-3975(99)00335-7; reference:[7] Klimann I.: A solution to the problem of $(A,B)$-invariance for series.Theoret. Comput. Sci. 293 (2003), 1, 115–139 Zbl 1025.68050, MR 1957615, 10.1016/S0304-3975(02)00234-7; reference:[8] Kobayashi N.: The closure under division and a characterization of the recognizable ${\mathcal Z}$-subsets.RAIRO Inform. Théor. Appl. 30 (1996), 3, 209–230 MR 1415829; reference:[9] Pin J.-E., Sakarovitch J.: Une application de la représentation matricielle des transductions.Theoret. Comp. Sci. 35 (1985), 271–293 Zbl 0563.68064, MR 0785156, 10.1016/0304-3975(85)90019-2; reference:[10] Salomaa A., Soittola M.: Automata–Theoretical Aspects of Formal Power Series.Springer–Verlag, Berlin 1978 MR 0483721

  12. 12
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1996553; reference:[1] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity.Wiley, New York 1992 Zbl 0824.93003, MR 1204266; reference:[2] Cohen G., Moller P., Quadrat J. P., Viot M.: Algebraic tools for the performance evaluation of discrete event systems.IEEE Proceedings: Special Issue on Discrete Event Systems 77 (1989), 1; reference:[3] Cottenceau B.: Contribution à la commande de systèmes événements discrets: synthèse de correcteurs pour les graphes d’événements temporisés dans les dioïdes.Ph. D. Thesis. ISTIA – Université d’Angers, 1999; reference:[4] Coninghame–Green R. A.: Minimax Algebra (Lecture Notes in Economics and Mathematical Systems 166).Springer, Berlin 1979 MR 0580321; reference:[5] Ferrier J. L., Lahaye S., Hardouin, L., Boimond J. L.: MAISTer: a user-fiendly software package for performance analysis and decision, based on $(\max ,+)$.In: Proceddings of the SMS’2000, IEEE Conference on Systems Man and Cybernetics, Nashville 2000; reference:[6] Kamen E. W.: Fundamentals of linear time-varying systems.In: The Control Handbook (W. S. Levine, ed.), IEEE Press and CRC Press, 1996; reference:[7] Lahaye S.: Contribution à l’étude des systèmes linéaires non stationnaires dans l’algèbre des dioïdes.Ph. D. Thesis. ISTIA – Université d’Angers, 2000; reference:[8] Lahaye S., Boimond J. L., Hardouin L.: Analysis of periodic discrete event systems in $(\max ,+)$ algebra.In: Proceedings of WODES’2000, Ghent 2000 Zbl 1034.93040; reference:[9] synchronization, Max-Plus. A linear system for systems subject to, In, saturation constraints.: Proceedings of the First European Conference, Grenoble 199.; reference:[10] Menguy E., Boimond J. L., Hardouin, L., Ferrier J. L.: Just in time control of linear systems and diod: cases of an updata of reference input and unctrollable input.IEEE Trans. Automat. Control 45 (2000), 11, 2155–2159 MR 1798460, 10.1109/9.887652; reference:[11] Murata T.: Petri nets: Properties, analysis and applications.IEEE Proceedings: Special Issue on Discrete Event Systems 77 (1989), 541–580

  13. 13
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1996555; zbl:Zbl 1249.93041; reference:[1] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity: An Algebra for Discrete Event Systems.Wiley, New York 1992 Zbl 0824.93003, MR 1204266; reference:[2] Blyth T. S., Janowitz M. F.: Residuation Theory.Pergamon Press, Oxford 1972 Zbl 0301.06001, MR 0396359; reference:[3] Cohen G., Moller P., Quadrat J. P., Viot M.: Linear system theory for discrete-event systems.In: Proc. 23rd IEEE Conference on Decision and Control, Las Vegas 1984; reference:[4] Cohen G., Moller P., Quadrat J. P., Viot M.: Algebraic tools for the performance evaluation of discrete event systems.IEEE Proceedings: Special Issue on Discrete Event Systems 77 (1989), 1, 39–58; reference:[5] Commault C.: Feedback stabilization of some event graph models.IEEE Trans. Automat. Control 43 (1998), 10, 1419–1423 Zbl 0956.93041, MR 1646723, 10.1109/9.720498; reference:[6] Cottenceau B.: Contribution à la commande de systèmes à événements discrets: synthèse de correcteurs pour les graphes d’événements temporisés dans les dioïdes.Ph.D. Thesis (in French). ISTIA, Université d’Angers 1999; reference:[7] Cottenceau B., Hardouin L., Boimond J. L., Ferrier J. L.: Synthesis of greatest linear feedback for timed event graphs in dioid.IEEE Trans. Automat. Control 44 (1999), 6, 1258–1262 Zbl 0962.93031, MR 1689147, 10.1109/9.769386; reference:[8] Gaubert S.: Théorie des systèmes linéaires dans les dioïdes.Ph.D. Thesis (in French). Ecole des Mines de Paris, Paris 1992; reference:[9] Gaubert S.: Resource optimization and $(\min ,+)$ spectral theory.IEEE Trans. Automat. Control 40 (1992), 11, 1931–1934 MR 1358012, 10.1109/9.471219; reference:[10] series, Software tools for manipulating periodic: http:--www.istia.univ-angers.fr/$\tilde{}$hardouin/outils.html; reference:[11] Plus, Max: Second order theory of min-linear systems and its application to discrete event systems.In: Proc. 30th IEEE Conference on Decision and Control, Brighton 1991

  14. 14
    Academic Journal

    المؤلفون: Truffet, Laurent

    وصف الملف: application/pdf

    Relation: mr:MR1996554; zbl:Zbl 1249.93159; reference:[1] Baccelli F., Cohen G., Olsder G. J., Quadrat J.-P.: Synchronization and Linearity.Wiley, New York 1992 Zbl 0824.93003, MR 1204266; reference:[2] Bertsekas D. P.: Dynamic Programming.Prentice–Hall, Englewood Cliffs, NJ 1987 MR 0896902; reference:[3] Moral P. Del, Doisy M.: On the applications of Maslov optimization theory.Russian Math. Notes 69 (2001), 2, 232–244 MR 1830225, 10.1023/A:1002828503858; reference:[4] Keilson J., Kester A.: Monotone matrices and monotone Markov processes.Stochastic Process. Appl. 5 (1977), 231–241 Zbl 0367.60078, MR 0458596, 10.1016/0304-4149(77)90033-3; reference:[5] Kijima M.: Markov Processes for Stochastic Modeling.Chapman–Hall, London 1997 Zbl 0866.60056, MR 1429618; reference:[6] Quadrat J. P., WG, Max-Plus: Min-Plus linearity and statistical mechanics.Markov Processes and Related Fields 3 (1997), 4, 565–597 MR 1607091

  15. 15
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1996552; zbl:Zbl 1249.93040; reference:[1] Baccelli F. L., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity, An Algebra for Discrete Event Systems.Wiley, Chichester 1992 Zbl 0824.93003, MR 1204266; reference:[2] Cechlárová K.: A note on unsolvable systems of max-min (fuzzy) equations.Linear Algebra Appl. 310 (2000), 123–128 Zbl 0971.15002, MR 1753171; reference:[3] Cechlárová K., Diko P.: Resolving infeasibility in extremal algebras.Linear Algebra Appl. 290 (1999), 267–273 Zbl 0932.15009, MR 1672997; reference:[4] A.Cuninghame-Green R.: Minimax Algebra (Lecture Notes in Economics and Mathematical Systems 166).Springer, Berlin 1979 MR 0580321; reference:[5] Cuninghame-Green R. A., Cechlárová K.: Residuation in fuzzy algebra and some applications.Fuzzy Sets and Systems 71 (1995), 227–239 Zbl 0845.04007, MR 1329610; reference:[6] Schutter B. De: Max-Algebraic System Theory for Discrete Event Systems.Thesis. Katholieke Universiteit Leuven, Belgium 1996

  16. 16
    Academic Journal

    المؤلفون: Butkovič, Peter

    وصف الملف: application/pdf

    Relation: mr:MR1996551; zbl:Zbl 1249.90213; reference:[1] Ahuja R. K., Magnanti, T., Orlin J. B.: Network Flows: Theory, Algorithms and Applications.Prentice Hall, Englewood Cliffs, N.J. 1993 Zbl 1201.90001, MR 1205775; reference:[2] Baccelli F. L., Cohen G., Olsder G.-J., Quadrat J.-P.: Synchronization and Linearity.Wiley, Chichester 1992 Zbl 0824.93003, MR 1204266; reference:[3] Butkovič P., Murfitt L.: Calculating essential terms of a characteristic maxpolynomial.Central European Journal of Operations Research 8 (2000), 237–246 Zbl 0982.90042, MR 1799201; reference:[4] Cuninghame–Green R. A.: Minimax Algebra (Lecture Notes in Economics and Mathematical Systems 166).Springer, Berlin 1979 MR 0580321; reference:[5] Cuninghame–Green R. A.: The characteristic maxpolynomial of a matrix.J. Math. Anal. Appl. 95 (1983), 110-116 Zbl 0526.90098, MR 0710423, 10.1016/0022-247X(83)90139-7; reference:[6] Klinz B.: Private communication (2002.; reference:[7] (Ed.) J. van Leeuwen: Handbook of Theoretical Computer Science – Vol.A: Algorithms and Complexity. Elsevier, Amsterdam and MIT Press, Cambridge, MA 1990 Zbl 0714.68001, MR 1127166; reference:[8] Murfitt L.: Discrete-Event Dynamic Systems in Max-Algebra: Realisation and Related Combinatorial Problems.Thesis. The University of Birmingham, 2000; reference:[9] Zimmermann U.: Linear and Combinatorial Optimization in Ordered Algebraic Structures (Annals of Discrete Mathematics 10).North Holland, Amsterdam 1981 MR 0609751

  17. 17
    Academic Journal

    المؤلفون: Cuninghame-Green, Ray A.

    وصف الملف: application/pdf

    Relation: mr:MR1996550; zbl:Zbl 1249.93124; reference:[1] Baccelli F. L., Cohen G., Olsder G.-J., Quadrat J.-P.: Synchronization and Linearity, An Algebra for Discrete Event Systems.Wiley, Chichester 1992 Zbl 0824.93003, MR 1204266; reference:[2] Cuninghame-Green R. A.: Minimax Algebra (Lecture Notes in Economics and Mathematical Systems 166).Springer–Verlag, Berlin 1979 MR 0580321; reference:[3] Cuninghame-Green R. A., Meijer P. F. J.: An algebra for piecewise-linear minimax problems.Discrete Appl. Math. 2 (1980), 267–294 Zbl 0448.90070, MR 0600179, 10.1016/0166-218X(80)90025-6; reference:[4] Cuninghame-Green R. A.: Minimax algebra and applications.In: Advances in Imaging and Electron Physics 90 (P. W. Hawkes, ed.), Academic Press, New York 1995 Zbl 0739.90073; reference:[5] Cuninghame-Green R. A.: Maxpolynomial equations.Fuzzy Sets and Systems 75 (1995), 179–187 Zbl 0857.90134, MR 1358220, 10.1016/0165-0114(95)00012-A; reference:[6] Gaubert S., Gunawardena J.: The duality theorem for min-max functions.C. R. Acad. Sci. Paris 326 (1998), 43–48 Zbl 0933.49017, MR 1649473, 10.1016/S0764-4442(97)82710-3; reference:[7] Manber U.: Introduction to Algorithms.Addison–Wesley, New York 1989 Zbl 0825.68397, MR 1091251

  18. 18
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1883381; zbl:Zbl 1068.93039; reference:[1] Baccelli F.L., Cohen G., Olsder G.J., Quadrat J.-P.: Synchronization and Linearity, An Algebra for Discrete Event Systems.Wiley, Chichester, 1992. Zbl 0824.93003, MR 1204266; reference:[2] Blyth T.S., Janowitz M.: Residuation Theory.Pergamon, Oxford, 1972. Zbl 0301.06001, MR 0396359; reference:[3] Cuninghame-Green R.A., Butkovic P.: The Equation $A øtimes x = B øtimes y$ over $(\{ - \infty \} \cup {\Bbb R}, \max,+)$.Theoretical Computer Science, Special Issue on $(\max,+)$ Algebra, to appear. MR 1957609; reference:[4] Cuninghame-Green R.A., Cechlarova K.: Residuation in fuzzy algebra and some applications.Fuzzy Sets and Systems 71 227-239 (1995). Zbl 0845.04007, MR 1329610; reference:[5] Cuninghame-Green R.A.: Minimax Algebra.Lecture Notes in Economics and Mathematical Systems No. 166, Springer-Verlag, Berlin, 1979. Zbl 0739.90073, MR 0580321; reference:[6] Walkup E.A., Borriello G.: A General Linear Max-Plus Solution Technique.in Idempotency (ed. J. Gunawardena), Cambridge, 1998. Zbl 0898.68035; reference:[7] Zimmermann U.: Linear and Combinatorial Optimization in Ordered Algebraic Structures.North Holland, Amsterdam, 1981. Zbl 0466.90045, MR 0609751

  19. 19
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1705529; zbl:Zbl 1274.93190; reference:[1] Abraham J. A.: Fault tolerance techniques for highly parallel signal processing architectures.Proceedings of SPIE 614 (1986), 49–65; reference:[2] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity.Wiley, New York 1992 Zbl 0824.93003, MR 1204266; reference:[3] Beckmann P. E.: Fault–Tolerant Computation Using Algebraic Homomorphisms.Ph.D. Thesis. EECS Department, Massachusetts Institute of Technology, Cambridge, MA 1992 MR 2716392; reference:[4] Beckmann P. E., Musicus B. R.: A group–theoretic framework for fault–tolerant computation.In: IEEE Internat. Conf. on Acoustics, Speech, and Signal Processing, 1992, pp. 557–560; reference:[5] Beckmann P. E., Musicus B. R.: Fast fault–tolerant digital convolution using a polynomial residue number system.IEEE Trans. Signal Process. 41 (1993), 2300–2313 Zbl 0800.94083, 10.1109/78.224241; reference:[6] Brewer J. W., Bunce J. W., Vleck F. S. Van: Linear Systems Over Commutative Rings.(Lecture Notes in Pure and Applied Mathematics 104.) Marcel Dekker, Inc., New York 1986 MR 0839186; reference:[7] Cassandras C. G.: Discrete Event Systems.Aksen Associates, Boston 1993 Zbl 1225.93077, MR 2173259; reference:[8] Cassandras C. G., Lafortune S., Olsder G. J.: Trends in Control: A European Perspective.Springer–Verlag, London 1995 MR 1448442; reference:[9] Chatterjee A.: Concurrent error detection in linear analog and switched–capacitor state variable systems using continuous checksums.In: Internat. Test Conference 1991, pp. 582–591; reference:[10] Chatterjee A., d’Abreu M.: The design of fault–tolerant linear digital state variable systems: theory and techniques.IEEE Trans. Comput. 42 (1993), 794–808 10.1109/12.237720; reference:[11] Fedorov V. Y., Chukanov V. O.: Analysis of the fault tolerance of complex systems by extensions of Petri nets.Automat. Remote Control 53 (1992), 2, 271–280 Zbl 0796.93001; reference:[12] Gaubert S., Giua A.: Deterministic weak–and–marked Petri net languages are regular.IEEE Trans. Automat. Control AC-41 (1996), 12, 1802–1803 Zbl 0867.93009, MR 1421414, 10.1109/9.545718; reference:[13] Ginzburg A.: Algebraic Theory of Automata: Academic Press, New York 196. MR 0242679; reference:[14] Giua A., DiCesare F.: Decidability and closure properties of weak Petri net languages in supervisory control.IEEE Trans. Automat. Control AC-40 (1995), 5, 906–910 MR 1328088, 10.1109/9.384227; reference:[15] Hadjicostis C. N.: Fault–Tolerant Computation in Semigroups and Semirings.M. Engr. Thesis. EECS Department, Massachusetts Institute of Technology, Cambridge, MA 1995; reference:[16] Hadjicostis C. N., Verghese G. C.: Fault–tolerant computation in semigroups and semirings.In: Internat. Conf. on Digital Signal Processing, Vol. 2, Cyprus, 1995, pp. 779–784; reference:[17] Hadjicostis C. N., Verghese G. C.: Fault–tolerant computation in groups and semigroups, submitte.; reference:[18] Huang K.-H., Abraham J. A.: Algorithm–based fault tolerance for matrix operations.IEEE Trans. Comput. 33 (1984), 518–528 Zbl 0557.68027, 10.1109/TC.1984.1676475; reference:[19] Ikeda M., Šiljak D. D.: An inclusion principle for dynamic systems.IEEE Trans. Automat. Control AC-29 (1984), 3, 244–249 Zbl 0553.93004, MR 0739610, 10.1109/TAC.1984.1103486; reference:[20] Jou J.-Y., Abraham J. A.: Fault–tolerant matrix arithmetic and signal processing on highly concurrent parallel structures.Proc. IEEE 74 (1986), 732–741; reference:[21] Jou J.-Y., Abraham J. A.: Fault–tolerant FFT networks.IEEE Trans. Comput. 37 (1988), 548–561 10.1109/12.4606; reference:[22] Kailath T.: Linear Systems.Prentice–Hall, Englewood Cliffs, NJ 1980 Zbl 0870.93013, MR 0569473; reference:[23] Luenberger D. G.: Introduction to Dynamic Systems: Theory, Models, & Applications.Wiley, New York 1979 Zbl 0458.93001; reference:[24] Moody J. O., Antsaklis P. J.: Supervisory control using computationally efficient linear techniques: a tutorial introduction.In: 5th IEEE Mediterranean Conf. on Control and Systems, Cyprus 1997; reference:[25] Murata T.: Petri nets: properties, analysis and applications.Proc. IEEE 77 (1989), 541–580; reference:[26] Nair V. S. S., Abraham J. A.: Real–number codes for fault–tolerant matrix operations on processor arrays.IEEE Trans. Comput. 39 (1990), 426–435 10.1109/12.54836; reference:[27] Norton J. P.: Structural zeros in the modal matrix and its inverse.IEEE Trans. Automat. Control AC-25 (1980), 980–981 Zbl 0459.93028, MR 0595238, 10.1109/TAC.1980.1102468; reference:[28] Oppenheim A. V., Schafer R. W.: Discrete–Time Signal Processing.Prentice Hall, Englewood Cliffs, NJ 1989 Zbl 0676.42001; reference:[29] Rao T. R. N.: Error Coding for Arithmetic Processors.Academic Press, New York 1974 Zbl 0301.94006, MR 0398649; reference:[30] Reutenauer C.: The Mathematics of Petri Nets.Prentice Hall, New York 1990 Zbl 0694.68007, MR 1074575; reference:[31] Roberts R. A., Mullis C. T.: Digital Signal Processing.Addison–Wesley, Reading, MA 1987 Zbl 0689.94001; reference:[32] Sahraoui A., Atabakhche H., Courvoisier M., Valette R.: Joining Petri nets and knowledge–based systems for monitoring purposes.In: IEEE Internat. Conf. Robotics Automation, Raleigh, NC 1987, pp. 1160–1165; reference:[33] Sifakis J.: Realization of fault–tolerant systems by coding Petri nets.J. Design Automation and Fault–Tolerant Computing 3 (1979), 2, 93–107 MR 0542534; reference:[34] Silva M., Velilla S.: Error detection and correction on Petri net models of discrete events control systems.In: Proceedings of the ISCAS 1985, pp. 921–924; reference:[35] Neumann J. von: Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components.Princeton University Press, Princeton, NJ 1956 MR 0077479; reference:[36] Wicker S. B.: Error Control Systems.Prentice Hall, Englewood Cliffs, NJ 1995 Zbl 0847.94001; reference:[37] Yamalidou K., Moody J., Lemmon M., Antsaklis P.: Feedback control of Petri net based on place invariants.Automatica 32 (1996), 1, 15–28 MR 1365601, 10.1016/0005-1098(95)00103-4

  20. 20
    Academic Journal

    المؤلفون: Prou, Jean-Michel, Wagneur, Edouard

    وصف الملف: application/pdf

    Relation: mr:MR1705527; zbl:Zbl 1274.93036; reference:[1] G: Birkhoff: Lattice Theory.A.M.S. Coll. Pub. Vol. XXV, Providence 1967 MR 0227053; reference:[2] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity.Wiley, Chichester 1992 Zbl 0824.93003, MR 1204266; reference:[3] Cunninghame–Green R. A.: Minimax Algebra.(Lecture Notes in Economics and Mathematical Systems 83.) Springer–Verlag, Berlin 1979 MR 0580321; reference:[4] Gaubert S.: Théorie des Systèmes linéaires dans les Dioïdes.Thèse. Ecole Nationale Supérieure des Mines de Paris 1992; reference:[5] Gazarik M. J., Kamen E. W.: Reachability and observability of linear system over Max–Plus.In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997, revised version: Kybernetika 35 (1999), 2–12 MR 1705526; reference:[6] Gondran M., Minoux M.: Valeurs propres et vecteurs propres dans les dioïdes et leur interprétation en théorie des graphes.EDF Bull. Direction Études Rech. Sér. C Math. Inform. 2 (1977), 25–41; reference:[8] Prou J.-M.: Thèse.Ecole Centrale de Nantes 1997; reference:[9] Wagneur E.: Moduloïds and Pseudomodules.1. Dimension Theory. Discrete Math. 98 (1991), 57–73 Zbl 0757.06008, MR 1139597, 10.1016/0012-365X(91)90412-U