-
1Academic Journal
المؤلفون: Haslinger, J., Mäkinen, R. A. E.
مصطلحات موضوعية: keyword:shape optimization, keyword:sensitivity analysis, keyword:stress-strain relations, keyword:contact, msc:49J20, msc:49K20, msc:49Q10, msc:73C50, msc:73T05, msc:73k40, msc:74P99
وصف الملف: application/pdf
Relation: mr:MR1441629; zbl:Zbl 0902.49024; reference:[1] D. Begis and R. Glowinski: Application de la méthode des éléments finis à l’approximation d’un problème de domaine optimal.Appl. Math. & Optim. 2 (1975), 130–169. MR 0443372, 10.1007/BF01447854; reference:[2] D. Chenais: On the existence of a solution in a domain identification problem.J. Math. Anal. Appl. 52 (1975), 189–289. Zbl 0317.49005, MR 0385666, 10.1016/0022-247X(75)90091-8; reference:[3] J. Haslinger and A. Klarbring: On almost constant contact stress distributions by shape optimization.Struct. Optimiz. 5 (1993), 213–216. 10.1007/BF01743581; reference:[4] J. Haslinger and R. Mäkinen: Shape optimization of elasto-plastic bodies under plane strains: sensitivity analysis and numerical implementation.Struct. Optimiz. 4 (1992), 133–141. 10.1007/BF01742734; reference:[5] J. Haslinger and P. Neittaanmäki: Finite Element Approximation for Optimal Shape, Material and Topology Design.Chichester: John Wiley & Sons, 1996. MR 1419500; reference:[6] J. Haslinger, P. Neittaanmäki and T. Tiihonen: Shape optimization of an elastic body in contact based on penalization of the state.Apl. Mat. 31 (1986), 54–77. MR 0836802; reference:[7] I. Hlaváček: Inequalities of Korn’s type uniform with respect to a class of domains.Apl. Mat. 34 (1989), 105–112. MR 0990298; reference:[8] : The NAG Fortran Library, Mark 16.(1993), Oxford: The Numerical Algorithms Group Limited.; reference:[9] J. Nečas, and I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: an Introduction.Amsterdam: Elsevier, 1981. MR 0600655; reference:[10] J. Nečas and I. Hlaváček: Solution of Signorini’s contact problem in the deformation theory of plasticity by secant modules method.Apl. Mat. 28 (1983), 199–214. MR 0701739; reference:[11] I. Hlaváček, J. Haslinger, J. Nečas and J. Lovíšek: Solution of Variational Inequalities in Mechanics.Applied Mathematical Sciences 66, Springer-Verlag, 1988. MR 0952855; reference:[12] J. Sokołowski and J.-P. Zolesio: Introduction to Shape Optimization: Shape Sensitivity Analysis.Berlin: Springer Verlag, 1992. MR 1215733; reference:[13] K. Washizu: Variational Methods in Elasticity and Plasticity (second edition).Oxford: Pergamon Press, 1974. MR 0391680
-
2Academic Journal
المؤلفون: Hlaváček, Ivan
مصطلحات موضوعية: keyword:Reissner-Mindlin plate model, keyword:mixed-interpolated elements, keyword:weight minimization, keyword:penalty method, msc:49A22, msc:49J20, msc:65N30, msc:73k40, msc:74P99
وصف الملف: application/pdf
Relation: mr:MR1373476; zbl:Zbl 0857.49003; reference:[1] Hlaváček, I.: Reissner-Mindlin model for plates of variable thickness. Solution by mixed-interpolated elements.Appl. Math. 41 (1996), 57–78. MR 1365139; reference:[2] Hlaváček, I.: Weight minimization of an elastic plate with a unilateral inner obstacle by a mixed finite element method.Appl. Math. 39 (1994), 375–394. MR 1288150; reference:[3] Brezzi, F. – Fortin, M.: Mixed and Hybrid Finite Element Methods.Springer-Verlag, New York, Berlin, 1991. MR 1115205; reference:[4] Brezzi, F. – Fortin, M. – Stenberg, R.: Error analysis of mixed-interpolated elements for Reissner-Mindlin plates.Math. Models and Meth. in Appl. Sci. 1 (1991), 125–151. MR 1115287, 10.1142/S0218202591000083; reference:[5] Ciarlet, P.G.: Basic error estimates for elliptic problems. Handbook of Numer. Analysis, ed. by P. G. Ciarlet and J. L. Lions.vol. II, North-Holland, Amsterdam, 1991, pp. 17–352. MR 1115237
-
3Academic Journal
المؤلفون: Salač, Petr
مصطلحات موضوعية: keyword:shape optimization, keyword:axisymmetric elliptic problems, keyword:elasticity, msc:73C99, msc:73K10, msc:73k40, msc:74B99, msc:74K20, msc:74P99
وصف الملف: application/pdf
Relation: mr:MR1331921; zbl:Zbl 0839.73036; reference:[1] D. Begis, R. Glowinski: Application de la méthode des éléments finis à l’approximation d’un problème de domaine optimal. Méthodes de résolution des problèmes approchés.Applied Mathematics. Optimization 2 (1975), 130–169. MR 0443372; reference:[2] P.G. Ciarlet: The finite element method for elliptic problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174; reference:[3] I. Hlaváček: Optimization of the shape of axisymmetric shells.Apl. Mat. 28 (1983), 269–294. MR 0710176; reference:[4] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies, An Introduction.Elsevier, Amsterdam, 1981. MR 0600655; reference:[5] J. Chleboun: Optimal design of an elastic beam on an elastic basis.Apl. Mat. 31 (1986), 118–140. Zbl 0606.73108, MR 0837473; reference:[6] K. Rektorys: Variational methods in mathematics, science and engineering.D. Reidel Publishing Company, Dordrecht-Holland/Boston U.S.A., 1977. MR 0487653; reference:[7] A. Kufner: Weighted Sobolev spaces.John Wiley & Sons, New York, 1985. Zbl 0579.35021, MR 0802206; reference:[8] H. Triebel: Interpolation theory, function spaces, differential operators.VEB Deutscher Verlag der Wissenschaften, Berlin, 1975. MR 0500580; reference:[9] V. Jarník: Differential calculus II.Academia, Praha, 1976. (Czech); reference:[10] S. Fučík, J. Milota: Mathematical analysis II, Differential calculus of functions of several variables.UK, Praha, 1975. (Czech)
-
4Academic Journal
المؤلفون: Myslinski, Andrzej
مصطلحات موضوعية: msc:35J45, msc:35J60, msc:49K20, msc:49Q10, msc:73K10, msc:73k40, msc:74K20, msc:74P99
وصف الملف: application/pdf
Relation: mr:MR1231872; zbl:Zbl 0787.73049; reference:[1] R. A. Adams: Sobolev Spaces.Academic Press, New York 1975. Zbl 0314.46030, MR 0450957; reference:[2] N. V. Banichuk: Problems and Methods of Optimal Structural Design.Plenum Press, New York 1983. MR 0715778; reference:[3] M. S. Berger: On von Kármán's equations and the buckling of a thin elastic plate. I. The clamped plate.Comm. Pure Appl. Math. 20 (1967), 687-719. Zbl 0162.56405, MR 0221808; reference:[4] D. Begis, R. Glowinski: Application de la metode des elements finis a ľapproximation ďun probleme de domaine optimal.Appl. Math. Optim. 2 (1975), 130-169. MR 0443372; reference:[5] I. Bock I. Hlaváček, I. Lovíšek: On the optimal control problem governed by the equation of von Kármán.Apl. mat. 30 (1985), 375-392. MR 0806834; reference:[6] F. Brezzi: Finite element approximation of the von Kármán equations.RAIRO Numer. Anal. 12 (1978), 303-312. MR 0519014; reference:[7] J. Cea: Opimisation.Theorie et Algorithmes. Dunod, Paгis 1971. MR 0298892; reference:[8] D. Chenais: On the existence of a solution in a domain identification problem.J. Math. Anal. Appl. 52 (1975), 189-219. Zbl 0317.49005, MR 0385666; reference:[9] D. Chenais: Optimal design of midsurface of shells: differentiability proof and sensitivity computation.Appl. Math. Optim. 16 (1987), 93-133. Zbl 0626.73097, MR 0894807; reference:[10] D. Chenais, B. Rousselet: Dependence of the buckling load of a nonshallow arch with respect to the shape of its midcurve.RAIRO Modél. Math. Anal. Numér. 24 (1990), 3, 307-341. Zbl 0708.73033, MR 1055303; reference:[11] Ph. Ciarlet, P. Rabier: Les equations de von Kármán.(Lecture Notes in Mathematics 826.) Springer-Verlag, Berlin 1980. Zbl 0433.73019, MR 0595326; reference:[12] M. C. Delfour, J. P. Zolesio: Velocity method and Lagrangian formulation for the computation of the shape hessian.SIAM J. Control Optim. 29 (1991), 6, 1414-1442. Zbl 0747.49007, MR 1132189; reference:[13] N. Fujii: Necessary conditions for a domain optimization problem in elliptic boundaгy value problems.SIAM J. Contгol Optim. 24 (1986), 346-360. MR 0838044; reference:[14] E. J. Haug K. K. Choi, V. Komkov: Design Sensitivity Analysis of Structural Systems.Academic Press, New York 1986. MR 0860040; reference:[15] J. Haslinger, P. Neittaanmäki: Finite Element Approximation for Optimal Shape Design.Theoгy and Applications. J. Wiley, New York 1988. MR 0982710; reference:[16] T. Masano, N. Fujii: Second order necessary conditions for domain optimization problems in elastic structures.J. Optim. Theory Appl. 72 (1992), 2, 355-401. MR 1143202; reference:[17] K. Maurin: Functional Analysis.(in Polish). Polish Scientific Publisher, Warsaw 1978.; reference:[18] S. G. Michlin: Variational Methods of Mathematical Physics.(in Russian). Mir, Moscow 1970.; reference:[19] A. Myslinski: Finite element approximation of a shape optimization problem for von Kármán system.Numer. Funct. Anal. Optim. 10 (1989), 7 &: 8, 691-717. Zbl 0667.73069, MR 1019489; reference:[20] A. Myslinski: Mixed variational approach for shape optimization in contact problem with prescribed friction.In: Numerical Methods in Free Boundary Problems (P. Neittaanmäki ed.), Birkhäuser, Basel 1991, pp. 286-296. Zbl 0756.73063, MR 1118872; reference:[21] A. Myslinski: Minimax shape optimization problem for von Kármán system.In: Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, eds., Lecture Notes in Control and Information Sciences 144), Springer-Verlag, Beгlin 1990, pp. 164-173. MR 1070730; reference:[22] A. Myslinski, J. Sokolowski: Nondifferentiable optimization pгoblems for elliptic systems.SIAM J. Control Optim. 23 (1985), 632-648. MR 0791892; reference:[23] O. Pironneau: Optimal Shape Design for Elliptic Systems.(Springer Series in Computational Physics.) Springer-Verlag, New York 1984. Zbl 0534.49001, MR 0725856; reference:[24] J. Sokolowski, J. P. Zolesio: Introduction to Shape Optimization.Shape Sensitivity Analysis. Springer-Verlag, Berlin 1992. Zbl 0761.73003, MR 1215733; reference:[25] J. Sokolowski, J. P. Zolesio: Shape sensitivity analysis of contact, problems with prescribed friction.Nonlinear Theory, Methods, & Applications 12 (1988), 1399-1411. MR 0972408
-
5Academic Journal
المؤلفون: Sokołowski, Jan
وصف الملف: application/pdf
Relation: mr:MR1231873; zbl:Zbl 0789.73052; reference:[1] M. P. Bendsøe N. Olhoff, J. Sokolowski: Sensitivity analysis of problems of elasticity with unilateral constraints.J. Struct. Mech. 13 (1985), 201-222. MR 0802916; reference:[2] M. P. Bendsøe, J. Sokolowski: Design sensitivity analysis of elastic-plastic analysis problem.Mech. Structures Mach. 16(1988), 81-102. MR 0968603; reference:[3] M. P. Bendsøe, J. Sokolowski: Sensitivity analysis and optimal design of elastic plates with unilateral point supports.Mech. Structures Mach. 15 (1987), 383-393. MR 0957853; reference:[4] G. Duvaut, J. L. Lions: Inequalities in Mechanics and Physics.(Grundlehren der mathematischen Wissenschaften 219.) Springer-Verlag, Berlin 1976. Zbl 0331.35002, MR 0521262; reference:[5] A. Haraux: How to differentiate the projection on a convex set in Hilbert space.Some applications to variational inequalities. J. Math. Soc. Japan 29 (1977), 615-631. Zbl 0387.46022, MR 0481060; reference:[6] E. J. Haug, J. Cea (eds.): Optimization of Distributed Parameter Structures.Sijthoff and Noordhoff, Alpen aan den Rijn, The Netherlands 1981. Zbl 0511.00034; reference:[7] I. Hlaváček I. Bock, J. Lovíšek: Optimal control of a variational inequality with applications to structural analysis. Part III. Optimal design of an elastic plate.Appl. Math. Optim. IS (1985), 117-136. MR 0794174; reference:[8] A. M. Khludnev, J. Sokolowski: .book in preparation. Zbl 1067.74056; reference:[9] F. Mignot: Controle dans les inequations variationelles elliptiques.J. Funct. Anal. 22 (1976), 25-39. Zbl 0364.49003, MR 0423155; reference:[10] A. Myslinski, J. Sokolowski: Nondifferentiable optimization problems for elliptic systems.SIAM J. Control Optim. 23 (1985), 632-648. Zbl 0571.49010, MR 0791892; reference:[11] M. Rao, J. Sokolowski: Sensitivity analysis of Kirchhoff plate with obstacle.Rapport de Recherche No. 771 (1988), INRIA, Rocquencourt, France.; reference:[12] M. Rao, J. Sokolowski: Shape sensitivity analysis of state constrained optimal control problems for distributed parameter systems.(Lecture Notes in Control and Information Sciences 114.) Springer-Verlag, Berlin 1989, pp. 236-245. Zbl 0702.49015, MR 0987982; reference:[13] M. Rao, J. Sokolowski: Differential stability of solutions to parametric optimization problems.Math. Methods Appl. Sci. 14 (1991), 281-294. Zbl 0749.90077, MR 1106167; reference:[14] M. Rao, J. Sokolowski: Sensitivity analysis of unilateral problems in $H_0^2(\Omega)$ and applications.Numer. Funct. Anal. Optim. 14 (1993), 1-2, 125-143. MR 1210466; reference:[15] M. Rao, J. Sokolowski: Sensitivity analysis of unilateral problems in $H_0^2(\Omega)$ and applications.In: Emerging Applications in Free Boundary Problems (J.M. Chadam and II. Rasmussen, eds., Pitman Research Notes Math. Ser., No. 280), Longman 1993.; reference:[16] J. Sokolowski: Sensitivity analysis of control constrained optimal control problems for distributed parameter systems.SIAM J. Control Optim. 25 (1987), 1542-1556. Zbl 0647.49019, MR 0912455; reference:[17] J. Sokolowski: Shape sensitivity analysis of boundary optimal control problems for parabolic systems.SIAM J. Control Optim. 26 (1988), 763-787. Zbl 0663.49012, MR 0948646; reference:[18] J. Sokolowski: Sensitivity analysis of shape estimation problems.In the volume dedicated to Jean Cea, to appear in special issue of Mechanics of Structures and Machines.; reference:[19] J. Sokolowski, J. P. Zolesio: Introduction to Shape Optimization. Shape sensitivity analysis.(Springer Series in Computational Mathematics 16.) Springer-Verlag, New York 1992. Zbl 0761.73003, MR 1215733
-
6Academic Journal
المؤلفون: Hlaváček, Ivan, Křížek, Michal
مصطلحات موضوعية: keyword:existence, keyword:masonry dam, keyword:hydrostatic pressure, keyword:penalty method, keyword:convergence, keyword:shape optimization, keyword:weight minimization, keyword:finite elements, msc:49Q10, msc:65K10, msc:65N30, msc:73C99, msc:73V20, msc:73k40, msc:74P10, msc:74P99, msc:74S05, msc:74S30
وصف الملف: application/pdf
Relation: mr:MR1157456; zbl:Zbl 0767.73047; reference:[1] G. Anzellotti: A class of non-coercive functionals and masonry-like materials.Ann. Inst. H. Poincaré 2 (1985), 261-307. MR 0801581, 10.1016/S0294-1449(16)30398-5; reference:[2] S. Bennati A. M. Genai C. Padovani: Trapezoidal gravity dams in pure compression.CNUCE - C.N.R., Internal Rep. C88-22, May 1988.; reference:[3] S. Bennati M. Lucchesi: The minimal section of a triangular masonry dam.Мессаniса J. Ital. Assoc. Theoret. Appl. Mech. 23 (1988), 221-225.; reference:[4] R. A. Brockman: Geometric sensitivity analysis with isoparametric finite elements.Comm. Appl. Numer. Methods 3 (1987), 495-499. Zbl 0623.73081, MR 0937760, 10.1002/cnm.1630030609; reference:[5] M. Giaquinta G. Giusti: Researches on the equilibrium of masonry structures.Arch. Rational Mech. Anal. 88 (1985), 359-392. MR 0781597, 10.1007/BF00250872; reference:[6] I. Hlaváček: Optimization of the shape of axisymmetric shells.Apl. Mat. 28 (1983), 269-294. MR 0710176; reference:[7] I. Hlaváček: Inequalities of Korn's type, uniform with respect to a class of domains.Apl. Mat. 34 (1989), 105-112. Zbl 0673.49003, MR 0990298; reference:[8] I. Hlaváček R. Mäkinen: On the numerical solution of axisymmetric domain optimization problems.Appl. Math. 36 (1991), 284-304. MR 1113952; reference:[9] J. Nečas I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies. An Introduction.Elsevier, Amsterdam, 1981. MR 0600655; reference:[10] O. Pironneau: Optimal Shape Design for Elliptic Systems.Springer-Verlag, New York, 1983. MR 0725856
-
7Academic Journal
المؤلفون: Hlaváček, Ivan, Křížek, Michal
مصطلحات موضوعية: keyword:curved trapezoids, keyword:penalty method, keyword:hydrostatic pressure, keyword:cubic Hermite splines, keyword:piecewise linear finite elements, keyword:existence, keyword:convergence, keyword:shape optimization, keyword:weight minimization, keyword:finite elements, msc:65K10, msc:65N30, msc:73C99, msc:73V25, msc:73k40, msc:74P10, msc:74P99, msc:74S05, msc:74S30
وصف الملف: application/pdf
Relation: mr:MR1180607; zbl:Zbl 0767.73048; reference:[1] I. Hlaváček M. Křížek: Weight minimization of elastic bodies weakly supporting tension I.Appl. Math. 37(1992), 201-240. MR 1157456; reference:[2] S. B. Stečkin J. N. Subbotin: Splajny v vyčisliteľnoj matematike.Nauka, Moskva, 1976. MR 0455278; reference:[3] I. Hlaváček: Optimization of the shape of axisymmetric shells.Apl. Mat. 28 (1983), 269-294. MR 0710176; reference:[4] I. Hlaváček: Inequalities of Korn's type, uniform with respect to a class of domains.Apl. Mat. 34 (1989), 105-112. Zbl 0673.49003, MR 0990298
-
8Academic Journal
المؤلفون: Bock, Igor, Lovíšek, Ján
مصطلحات موضوعية: keyword:optimal control, keyword:pseudoparabolic variational inequality, keyword:convex set, keyword:penalization, keyword:viscoelastic plate, keyword:thickness, keyword:obstacle, keyword:elliptic operators, msc:47H19, msc:49A29, msc:49A34, msc:49J40, msc:73F15, msc:73K10, msc:73V25, msc:73k40, msc:74Hxx
وصف الملف: application/pdf
Relation: mr:MR1152158; zbl:Zbl 0772.49008; reference:[1] V. Barbu: Optimal control of variational inequalities.Pitman, Boston, 1984. Zbl 0574.49005, MR 0742624; reference:[2] V. Barbu T. Precupanu: Convexity and optimization.Sitjhoff-Noordhoff, Amsterdam, 1978.; reference:[3] I. Bock J. Lovíšek: Optimal control of a viscoelastic plate bending.Mathematische Nachrichten 125 (1968), 135-151. MR 0847355, 10.1002/mana.19861250109; reference:[4] I. Bock J. Lovíšek: Optimal control problems for variational inequalities with controls in coefficients and in unilateral constraints.Aplikace matematiky 32 no. 4 (1987), 301-314. MR 0897834; reference:[5] H. Brézis: Problémes unilatéraux.Journal de Math. Pures. et Appl. 51 (1972), 1-168. MR 0428137; reference:[6] H. Brézis: Operateurs maximaux monotones et semigroupes.North Holland, Amsterdam, 1973.; reference:[7] H. Brézis: Analyse fonctionelle.Masson, Paris, 1982.; reference:[8] J. Brilla: Linear viscoelastic plate bending analysis.Proc. XI-th Congress of applied mechanics, München, 1964.; reference:[9] E. Di Benedetto R.E.Showalter: A pseudoparabolic variational inequality and Stefan problem.Nonlinear analysis 6 (1982), 279-291. MR 0654319, 10.1016/0362-546X(82)90095-5; reference:[10] H. Gajewski K. Gröner K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie, Berlin, 1974. MR 0636412; reference:[11] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities.Academic Press, New York, 1980. MR 0567696; reference:[12] K. L. Kuttler, Jr.: Degenerate variational inequalities of evolution.Nonlinear analysis 8 (1984), 837-850. Zbl 0549.49004, MR 0753762, 10.1016/0362-546X(84)90106-8; reference:[13] J. L. Lions: Quelques méthodes de résolution des problémes aux limites non linéaires.Dunod, Paris, 1969. Zbl 0189.40603, MR 0259693; reference:[14] U. Mosco: Convergence of convex sets of solutions of variational inequalities.Advances of Math. 3 (1969), 510-585. MR 0298508, 10.1016/0001-8708(69)90009-7; reference:[15] O. R. Ržanicyn: Teoria polzučesti.Strojizdat, Moskva, 1968.; reference:[16] L. W. White: Control problems governed by pseudoparabolic partial differential equations.Trans. Amer. Math. Soc. 250 (1979), 235-246. MR 0530053, 10.1090/S0002-9947-1979-0530053-5; reference:[17] L. W. White: Controlability properties of pseudoparabolic boundary value problems.SIAM J. of Control and Optim. 18 no. 5 (1980), 534-539. MR 0586169, 10.1137/0318039
-
9Academic Journal
المؤلفون: Hlaváček, Ivan
مصطلحات موضوعية: keyword:domain optimization, keyword:control of variational inequalities, keyword:Hencky's law of elasto-plasticity, msc:65K10, msc:65N30, msc:73E99, msc:73V25, msc:73k40, msc:74B99, msc:74C99, msc:74P10, msc:74S30
وصف الملف: application/pdf
Relation: mr:MR1134923; zbl:Zbl 0756.73094; reference:[1] G. Duvaut J. L. Lions: Les inéquations en mécanique et en physique.Paris, Dunod 1972. MR 0464857; reference:[2] R. Falk B. Mercier: Error estimates for elasto-plastic problems.R.A.I.R.O. Anal. Numér. 11 (1977), 135-144. MR 0449119; reference:[3] I. Hlaváček: Shape optimization of elasto-plastic bodies obeying Hencky's law.Apl. Mat. 31 (1986), 486-499. Zbl 0616.73081, MR 0870484; reference:[4] I. Hlaváček: Domain optimization of axisymmetric elliptic boundary value problems by finite elements.Apl. Mat. 33 (1988), 213-244. MR 0944785; reference:[5] I. Hlaváček: Shape optimization of elastic axisymmetric bodies.Apl. Mat. 34 (1989), 225- -245. MR 0996898; reference:[6] I. Hlaváček M. Křížek: Dual finite element analysis of 3D-axisymmetric elliptic problems.Numer. Anal. Part. Diff. Eqs. (To appear.); reference:[7] I. Hlaváček R. Mäkinen: On the numerical solution of axisymmetric domain optimization problems.Appl. Math. 36 (1991), 284-304. MR 1113952; reference:[8] B. Mercier G. Raugel: Resolution d'un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en $\theta$.R.A.I.R.O. Anal. numér. 16 (1982), 405-461. MR 0684832; reference:[9] O. Pironneau: Optimal Shape Design for Elliptic Systems.Springer-Verlag, New York 1983. MR 0725856
-
10Academic Journal
المؤلفون: Pištora, Vladislav
مصطلحات موضوعية: keyword:domain optimization, keyword:time-dependent variational inequality, keyword:elasto-plasiicily, keyword:finite elements, keyword:uniqueness, keyword:state problem, keyword:optimal design, keyword:piecewise linear approximations of the unknown boundary, keyword:hardening parameter, keyword:backward differences in time, keyword:convergence, msc:49J40, msc:65K10, msc:65N30, msc:73E05, msc:73E99, msc:73V25, msc:73k40, msc:74P10, msc:74P99, msc:74S05, msc:74S30
وصف الملف: application/pdf
Relation: mr:MR1072608; zbl:Zbl 0717.73054; reference:[1] D. Begis R. Glowinski: Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal.Appl. Math. Optim. 2 (1975), 130-169. MR 0443372, 10.1007/BF01447854; reference:[2] J. Céa: Optimization: Théorie et algorithmes.Dunod, Paris, 1971; (in Russian, Mir, Moskva, 1973). MR 0298892; reference:[3] P. G. Ciarlet: The finite element method for elliptic problems.North Holland Publ. Соmр., Amsterdam, 1978; (in Russian, Mir, Moskva, 1980). Zbl 0383.65058, MR 0608971; reference:[4] I. Hlaváček: A finite element solution for plasticity with strain-hardening.RAIRO Annal. Numér. 14 (1980), 347-368. MR 0596540; reference:[5] I. Hlaváček: Optimization of the domain in elliptic problems by the dual finite element method.Apl. Mat. 30 (1985), 50-72. MR 0779332; reference:[6] I. Hlaváček: Shape optimization of an elastic-perfectly plastic body.Apl. Mat. 32 (1987), 381-400. MR 0909545; reference:[7] C. Johnson: Existence theorems for plasticity problems.J. Math. Pures Appl. 55 (1976), 431-444. Zbl 0351.73049, MR 0438867; reference:[8] C. Johnson: A mixed finite element method for plasticity with hardening.SIAM J. Numer. Anal. 14 (1977), 575-583. MR 0489265, 10.1137/0714037; reference:[9] C. Johnson: On plasticity with hardening.J. Math. Anal. Appl. 62 (1978), 325-336. Zbl 0373.73049, MR 0489198, 10.1016/0022-247X(78)90129-4; reference:[10] A. Kufner O. John S. Fučík: Function spaces.Academia, Praha, 1977. MR 0482102; reference:[11] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Praha, 1967. MR 0227584; reference:[12] I. Hlaváček: Shape optimization of elasto-plastic bodies obeying Hencky's law.Apl. Mat. 31 (1986), 486-499. Zbl 0616.73081, MR 0870484; reference:[13] I. Hlaváček J. Haslinger J. Nečas J. Lovíšek: Solution of Variational Inequalities in Mechanics.Springer-Verlag, New York, 1988. MR 0952855
-
11Academic Journal
المؤلفون: Hlaváček, Ivan
مصطلحات موضوعية: keyword:shape of the meridian curve, keyword:class of Lipschitz functions, keyword:axisymmetric mixed boundary value problems, keyword:four different cost functionals, keyword:approximate piecewise linear solutions, keyword:finite element technique, keyword:convergence, keyword:existence, keyword:appropriate weighted Sobolev spaces, keyword:axisymmetric elliptic problems, keyword:body of revolution, keyword:elastic equilibrium, msc:49A22, msc:49A36, msc:49J20, msc:65N30, msc:65N99, msc:73k40, msc:74P99, msc:74S30, msc:93B40
وصف الملف: application/pdf
Relation: mr:MR0996898; zbl:Zbl 0691.73037
-
12Academic Journal
المؤلفون: Hlaváček, Ivan
مصطلحات موضوعية: keyword:domain optimization, keyword:shape optimization, keyword:Korn’s inequality, msc:35J55, msc:49A22, msc:49J20, msc:73C99, msc:73k40, msc:74B99
وصف الملف: application/pdf
Relation: mr:MR0990301; zbl:Zbl 0673.49004; reference:[1] J. Haslinger P. Neittaanmäki T. Tiihonen: Shape optimization of an elastic body in contact based on penalization of the state.Apl. Mat. 31 (1986), 54-77. MR 0836802; reference:[2] I. Hlaváček: Inequalities of Korn's type, uniform with respect to a class of domains.Apl. Mat. Zbl 0673.49003; reference:[3] I. Hlaváček: Domain optimization in axisymmetric elliptic boundary value problems by finite elements.Apl. Mat. 33 (1988), 213-244. MR 0944785; reference:[4] J. Nečas I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Elsevier, Amsterdam 1981. MR 0600655; reference:[5] I. Hlaváček J. Nečas: On inequalities of Korn's type.Arch. Rational Mech. Anal. 36 (1970), 305-334. MR 0252844, 10.1007/BF00249518; reference:[6] J. A. Nitsche: On Korn's second inequality.R.A.I.R.O. Anal. numér., 15 (1981), 237-248. Zbl 0467.35019, MR 0631678, 10.1051/m2an/1981150302371; reference:[7] T. Tiihonen: On Korn's inequality and shape optimization.Preprint 61, Univ. of Jyväskylä, Dept. of Math., April 1987. MR 0893392
-
13Academic Journal
المؤلفون: Lovíšek, Ján
مصطلحات موضوعية: keyword:optimal control problem, keyword:elliptic, linear symmetric operator, keyword:unique solution of stationary variational inequalities, keyword:convex set, keyword:principle of virtual power, keyword:unilateral constraints, keyword:bending, keyword:cylindrical shell, keyword:thickness function, keyword:obstacle, msc:49A27, msc:49A29, msc:49A34, msc:49J27, msc:49J40, msc:49J99, msc:73k40, msc:74G30, msc:74H25, msc:74K15, msc:74P99
وصف الملف: application/pdf
Relation: mr:MR0982340; zbl:Zbl 0678.73059; reference:[1] R. A. Adams: Sobolev Spaces.Academic Press, New York, San Francisco, London 1975, Zbl 0314.46030, MR 0450957; reference:[2] H. Attouch: Convergence des solution d'inéquations variationnelles avec obstacle.Proceedings of the International Meeting on Recent Methods in Nonlinear analysis. (Rome, May 1978) ed. by E. De Giorgi - E. Magenes - U. Mosco.; reference:[3] V. Barbu: Optimal control of variational inequalities.Pitman Advanced Publishing Program, Boston. London, Melbourne 1984. Zbl 0574.49005, MR 0742624; reference:[4] I. Boccardo C. Dolcetta: Stabilita delle soluzioni di disequazioni variazionali ellittiche e paraboliche quasi-lineari.Ann. Universeta Ferrara, 24 (1978), 99-111.; reference:[5] J. Céa: Optimisation, Théorie et Algorithmes.Dunod Paris, 1971. MR 0298892; reference:[6] G. Duvaut J. L. Lions: Inequalities in mechanics and physics.Berlin, Springer Verlag 1975. MR 0521262; reference:[7] R. Glowinski: Numerical Methods for Nonlinear Variational Problems.Springer Verlag 1984. Zbl 0536.65054, MR 0737005; reference:[8] I. Hlaváček I. Bock J. Lovíšek: Optimal Control of a Variational Inequality with Applications to Structural Analysis.II. Local Optimization of the Stress in a Beam. III. Optimal Design of an Elastic Plate. Appl. Math. Optimization 13: 117-136/1985. MR 0794174, 10.1007/BF01442202; reference:[9] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities and their applications.Academic Press, 1980. MR 0567696; reference:[10] V. G. Litvinov: Optimal control of elliptic boundary value problems with applications to mechanics.Moskva "Nauka" 1987, (in Russian).; reference:[11] M. Bernadou J. M. Boisserie: The finite element method in thin shell. Theory: Application to arch Dam simulations.Birkhäuser Boston 1982. MR 0663553; reference:[12] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: An introduction.Elsevier Scientific Publishing Company, Amsterdam 1981. MR 0600655; reference:[13] U. Mosco: Convergence of convex sets of solutions of variational inequalities.Advances of Math. 3 (1969), 510-585. MR 0298508, 10.1016/0001-8708(69)90009-7; reference:[14] K. Ohtake J. T. Oden N. Kikuchi: Analysis of certain unilateral problems in von Karman plate theory by a penalty method - PART 1. A variational principle with penalty.Computer Methods in Applied Mechanics and Engineering 24 (1980), 117-213, North Holland Publishing Company.; reference:[15] P. D. Panagiotopoulos: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy functions.Birkhäuser-Verlag, Boston-Basel-Stutgart, 1985. Zbl 0579.73014, MR 0896909
-
14Academic Journal
المؤلفون: Bock, Igor, Lovíšek, Ján
مصطلحات موضوعية: keyword:optimal control, keyword:variational inequalities, keyword:optimal design, keyword:elasto-plastic beam, keyword:elastic plate, keyword:obstacle, keyword:convex set, keyword:thickness-function, msc:49A27, msc:49A29, msc:49A34, msc:49J27, msc:49J40, msc:49J99, msc:73k40, msc:74K10, msc:74K20, msc:74S30
وصف الملف: application/pdf
Relation: mr:MR0897834; zbl:Zbl 0638.49003; reference:[1] I. Bock J. Lovíšek: An optimal control problem for an elliptic variational inequality.Math Slovaca 33, 1983, No. 1, 23-28. MR 0689273; reference:[2] M. Chipot: Variational inequalities and flow in porous media.Springer Verlag 1984. Zbl 0544.76095, MR 0747637; reference:[3] I. Hlaváček I. Bock J. Lovíšek: Optimal control of a variational inequality with applications to structural analysis. I. Optimal design of a beam with unilateral supports.Appl. Math. Optimization 11, 1984, 111-143. MR 0743922, 10.1007/BF01442173; reference:[4] I. Hlaváček I. Bock J. Lovíšek: Optimal control of a variational inequality with applications to structural analysis. II. Local optimization of the stress in a beam. III. Optimal design of an elastic plate.Appl. Math. Optimization 13, 1985, 117-136. MR 0794174, 10.1007/BF01442202; reference:[5] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities and their applications.Academic Press 1980. MR 0567696; reference:[6] A. Langenbach: Monotone Potentialoperatoren in Theorie und Anwendung.VEB Deutsche Verlag der Wissenschaften, Berlin 1976. Zbl 0387.47037, MR 0495530; reference:[7] J. L. Lions: Quelques méthodes de résolution děs problèmes aux limites non linéaires.Dunod, Paris 1969. Zbl 0189.40603, MR 0259693; reference:[8] U. Mosco: Convergence of convex sets and of solutions of variational inequalities.Advances of Math. 3, 1969,510-585. Zbl 0192.49101, MR 0298508; reference:[9] F. Murat: L'injection du cone positif de $H^{-1}$ dans $W^{-1,2}$ est compact pour tout q < 2.J. Math. Pures Appl. 60, 1981, 309-321. MR 0633007
-
15Academic Journal
المؤلفون: Hlaváček, Ivan
مصطلحات موضوعية: keyword:optimal design, keyword:shape optimization, keyword:two dimensional elasto-plastic bodies, keyword:Hencky’s law, keyword:minimum of cost functional, keyword:convergence, keyword:existence of an optimal boundary, keyword:variational inequality, msc:49A27, msc:49J40, msc:65K10, msc:65N30, msc:73E99, msc:73k40, msc:74P99, msc:74S05, msc:74S30
وصف الملف: application/pdf
Relation: mr:MR0870484; zbl:Zbl 0616.73081; reference:[1] D. Bégis R. Glowinski: Application de la méthode des élements finis à l'approximation d'un problème de domaine optimal.Appl. Math. & Optimization, Vol. 2, 1975, 130-169. MR 0443372, 10.1007/BF01447854; reference:[2] G. Duvaut J. L. Lions: Les inéquations en mécanique et en physique.Paris, Dunod 1972. MR 0464857; reference:[3] R. Falk B. Mercier: Estimation d'erreur en élasto-plasticité.C.R. Acad. Sc. Paris, 282, A, (1976), 645-648. MR 0426575; reference:[4] R. Falk B. Mercier: Error estimates for elasto-plastic problems.R.A.I.R.O. Anal. Numer., 11 (1977), 135-144. MR 0449119; reference:[5] I. Hlaváček: A finite element analysis for elasto-plastic bodies obeying Hencky's law.Appl. Mat. 26 (1981), 449-461. Zbl 0467.73096, MR 0634282; reference:[6] B. Mercier: Sur la théorie et l'analyse numérique de problèmes de plasticité.Thesis, Université Paris VI, 1977. MR 0502686; reference:[7] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Praha 1967. MR 0227584
-
16Academic Journal
المؤلفون: Chleboun, Jan
مصطلحات موضوعية: keyword:optimal design, keyword:concentrated forces and moments, keyword:continuous load, keyword:cost functional, keyword:$H^2$-norm of the deflection curve, keyword:$L^2$-norm of the normal stress, keyword:primary and dual formulations, keyword:elastic beam, keyword:elastic foundation, keyword:existence, keyword:convergence, msc:73k40, msc:74B05, msc:74K10, msc:74P99
وصف الملف: application/pdf
Relation: mr:MR0837473; zbl:Zbl 0606.73108; reference:[1] M. S. Bazaraa C. M. Shetty: Nonlinear Programming, Theory and Algorithms.(Russian translation - Mir, Moskva 1982.) MR 0671086; reference:[2] D. Begis R. Glowinski: Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Méthodes de résolution des problèmes approchés.Applied Mathematics & Optimization, 2 (1975), 130-169. MR 0443372, 10.1007/BF01447854; reference:[3] R. Courant D. Hilbert: Methoden der matematischen Physik I.Springer-Verlag 1968, 3. Auflage. MR 0344038; reference:[4] S. Fučík J. Milota: Mathematical Analysis II.(Czech - University mimeographed texts.) SPN Praha 1975.; reference:[5] I. Hlaváček: Optimization of the shape of axisymmetric shells.Aplikace matematiky, 28 (1983), 269-294. MR 0710176; reference:[6] I. Hlaváček I. Bock J. Lovíšek: Optimal control of a variational inequality with applications to structural analysis. Optimal design of a beam with unilateral supports.Applied Mathematics & Optimization, 1984, 111-143. MR 0743922, 10.1007/BF01442173; reference:[7] J. Chleboun: Optimal Design of an Elastic Beam on an Elastic Basis.Thesis (Czech). MFF UK Praha, 1984.; reference:[8] J. Nečas I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Elsevier, Amsterdam, 1981. MR 0600655; reference:[9] S. Timoshenko: Strength of Materials, Part II.D. Van Nostrand Company, Inc. New York 1945. (Czech translation, Technicko-vědecké nakladatelství, Praha 1951.)
-
17Academic Journal
المؤلفون: Haslinger, Jaroslav, Neittaanmäki, Pekka, Tiihonen, Timo
مصطلحات موضوعية: keyword:frictionless plane contact, keyword:linear-elastic sheet, keyword:rigid foundation, keyword:shape optimization, keyword:contact boundary curve, keyword:minimization of the total potential energy, keyword:family of penalized state problems, keyword:existence, keyword:convergence, keyword:nonlinear programming problem, keyword:box constraints, keyword:linear inequality constraints, keyword:linear equality constraint, msc:49J40, msc:49M30, msc:73T05, msc:73k40, msc:74A55, msc:74M15, msc:74P99, msc:74S05
وصف الملف: application/pdf
Relation: mr:MR0836802; zbl:Zbl 0594.73109; reference:[1] D. Begis R. Glowinski: Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal.Appl. Math. Optim., 2, (1975), 130-169. MR 0443372, 10.1007/BF01447854; reference:[2] M. P. Bendsoe N. Olhoff J. Sokolowski: Sensitivity analysis of problems of elasticity with unilateral constraints.MAT-report 1984-10, Matematisk institut, Danmarks Tekniske Hojskole, 1984. MR 0802916; reference:[3] R. L. Benedict J. E. Taylor: Optimal design for elastic bodies in contact.in [13], 1553-1569.; reference:[4] R. L. Benedict J. Sokolowski J. P. Zolesio: Shape optimization for contact problems.In: Proceedings of 11th IFIP Conference on System Modelling and Optimization (P. Thoft-Cristensen ed.), Springer Verlag, Berlin, LN in Contr. and Inform. Sci. 59, 1984, 790-799. MR 0769714; reference:[5] R. H. Gallagher O. C. Zienkiewicz ed.: Optimum Structural Design II.John Wiley & Sons, New York, 1983. MR 0718335; reference:[6] P. E. Gill W. Murray M. H. Wright: Practical Optimization.Academic Press, London, 1981. MR 0634376; reference:[7] R. Glowinski: Numerical Methods for Nonlinear Variational Problems.Springer Series in Computational Physics, Springer-Verlag, New York, 1984. Zbl 0536.65054, MR 0737005; reference:[8] J. Haslinger P. Neittaanmäki: Penalty method in design optimization of systems governed by mixed Dirichlet - Signorini boundary value problem.Ann. Fac. Sci. Tolouse, Vol. V, 1983, 199-216. MR 0747190, 10.5802/afst.594; reference:[9] J. Haslinger P. Neittaanmäki: On optimal shape design of systems governed by mixed Dirichlet - Signorini boundary value problem.Math. Meth. Appl. Sci. 9, (1985) (to appear). MR 0845923; reference:[10] J. Haslinger P. Neittaanmäki: On the existence of optimal shape in contact problems.Numer. Funct. Anal. and Optimiz., 7 (2&3), 107-124, 1984-85. MR 0767377; reference:[11] J. Haslinger P. Neittaanmäki T. Tiihonen: On optimal shape of an elastic body on a rigid foundation.in: Proceedings of MAFELAP V, (J. R. Whitcman ed.) Academic Press.; reference:[12] E. J. Haug J. S. Arora: Applied optimal design, mechanical and structural systems.Wiley - Interscience Publ., New York, 1979.; reference:[13] E. J. Haug J. Cea ed.: Optimization of Distributed Parameter Structures.Nato Advanced Study Institutes Series, Series E, Alphen aan den Rijn: Sijthoff & Noordhoff, 1981.; reference:[14] E. J. Haug B. Rousselet: Design sensitivity analysis of eigenvalue variations.in [13], 1371 to 1396. MR 0690999; reference:[15] I. Hlaváček I. Bock J. Lovíšek: Optimal control of variational inequalities with applications to structural analysis.Part I, Optimal design of a beam with unilateral supports. Part II, Local optimization of the stress of a beam. Part III, Optimal design of an elastic plate, Appl. Math. Optimiz.; reference:[16] I. Hlaváček J. Haslinger J. Nečas J. Lovíšek: Numerical solution of variational inequalities.(in Slovak), ALFA, SNTL, 1982, English translation, (to appear). MR 0755152; reference:[17] I. Hlaváček J. Nečas: Optimization of the domain in elliptic unilateral boundary value problems by finite element method.R.A.I.R.O., Num. Anal., 16 (1982), 351-373. MR 0684830; reference:[18] V. Komkov, ed.: Sensitivity of Functionals with Applications to Engineering Sciences.Lecture Notes in Mathematics, 1086, Springer Verlag, Berlin 1984. Zbl 0539.00022, MR 0791769; reference:[19] P. Neittaanmäki T. Tiihonen: Sensitivity analysis for a class of shape design problems.Ber. Univ. Jyväskylä Math. Inst., (to appear). MR 0793016; reference:[20] O. Pironneau: Optimal shape design for elliptic systems.Springer Series in Comput. Physics, Springer Verlag, New York, 1984. Zbl 0534.49001, MR 0725856; reference:[21] J. Sokolowski: Sensitivity analysis of a class of variational inequalities.in [13], 1600-1605. MR 0691007; reference:[22] J. Sokolowski J. P. Zolesio: Shape sensitivity analysis for variational inequalities.in: Proceedings of 10th IFIP Conference, (P. Thoft-Christensen, ed.). Springer-Verlag, Berlin, LN in Contr. and Inform. Sci., 38, 1982, 399-407. MR 1215733; reference:[23] J. Р. Zolesio: The material derivative (or speed) method for shape optimization.in [13], 1089-1151. Zbl 0517.73097, MR 0690991; reference:[24] J. A. Nitsche: On Korn's inequality.R.A.I.R.O. Analyse numérique/Numerical analysis, vol. 15, No 3, 1981, 237-248. MR 0631678
-
18Academic Journal
المؤلفون: Hlaváček, Ivan
مصطلحات موضوعية: keyword:computer aided design, keyword:existence of optimal control, keyword:axisymmetric thin elastic shells, keyword:constant thickness, keyword:meridian curves of middle surfaces taken for designe variable, keyword:given volume, keyword:own weight loading, keyword:hydrostatic pressure of liquid, keyword:external or internal pressure, keyword:cost functional is second invariant of stress deviator, keyword:Banach space, keyword:existence of solution, keyword:convergence, msc:49H05, msc:73K15, msc:73k40, msc:74K15, msc:74P99, msc:74S05, msc:90C48, msc:90C90
وصف الملف: application/pdf
Relation: mr:MR0710176; zbl:Zbl 0529.73078; reference:[1] O. C. Zienkiewicz: The finite element method in Engineering Science.Mc Graw Hill, London 1971. Zbl 0237.73071, MR 0315970; reference:[2] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies.Elsevier, Amsterdam 1981.; reference:[3] J. M. Boisserie R. Glowinski: Optimization of the thickness law for thin axisymmetric shells.Computers & Structures, 8 (1978), 331 - 343. 10.1016/0045-7949(78)90176-1; reference:[4] J. H. Ahlberg E. N. Nilson J. L. Walsh: The theory of splines and their applications.Academic Press, New York 1967. (Russian translation - Mir, Moskva 1972.) MR 0239327; reference:[5] Š. B. Stečkin, Ju. N. Subbotin: Splines in numerical mathematics.(Russian). Nauka, Moskva 1976. MR 0455278; reference:[6] J. Céa: Optimisation, théorie et algorithmes.Dunod, Paris 1971. MR 0298892