يعرض 1 - 20 نتائج من 64 نتيجة بحث عن '"msc:65N12"', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
    Conference
  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4022162; zbl:07144727; reference:[1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces.Pure and Applied Mathematics 140, Academic press, New York (2003). Zbl 1098.46001, MR 2424078, 10.1016/S0079-8169(03)80012-0; reference:[2] An, R., Li, Y.: Error analysis of first-order projection method for time-dependent magnetohydrodynamics equations.Appl. Numer. Math. 112 (2017), 167-181. Zbl 06657058, MR 3574248, 10.1016/j.apnum.2016.10.010; reference:[3] Armero, F., Simo, J. C.: Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations.Comput. Methods Appl. Mech. Eng. 131 (1996), 41-90. Zbl 0888.76042, MR 1393572, 10.1016/0045-7825(95)00931-0; reference:[4] Badia, S., Codina, R., Planas, R.: On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics.J. Comput. Phys. 234 (2013), 399-416. Zbl 1284.76248, MR 2999784, 10.1016/j.jcp.2012.09.031; reference:[5] Badia, S., Planas, R., Gutiérrez-Santacreu, J. V.: Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections.Int. J. Numer. Methods Eng. 93 (2013), 302-328. Zbl 1352.76122, MR 3008267, 10.1002/nme.4392; reference:[6] Blasco, J., Codina, R.: Error estimates for an operator-splitting method for incompressible flows.Appl. Numer. Math. 51 (2004), 1-17. Zbl 1126.76339, MR 2083322, 10.1016/j.apnum.2004.02.004; reference:[7] Blasco, J., Codina, R., Huerta, A.: A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm.Int. J. Numer. Methods Fluids 28 (1998), 1391-1419. Zbl 0935.76041, MR 1663560, 10.1002/(SICI)1097-0363(19981230)28:103.0.CO;2-5; reference:[8] Choi, H., Shen, J.: Efficient splitting schemes for magneto-hydrodynamic equations.Sci. China, Math. 59 (2016), 1495-1510. Zbl 1388.76224, MR 3528499, 10.1007/s11425-016-0280-5; reference:[9] Chorin, A. J.: Numerical solution of the Navier-Stokes equations.Math. Comput. 22 (1968), 745-762. Zbl 0198.50103, MR 0242392, 10.2307/2004575; reference:[10] Gerbeau, J.-F.: A stabilized finite element method for the incompressible magnetohydrodynamic equations.Numer. Math. 87 (2000), 83-111. Zbl 0988.76050, MR 1800155, 10.1007/s002110000193; reference:[11] Gerbeau, J.-F., Bris, C. Le, Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals.Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2006). Zbl 1107.76001, MR 2289481, 10.1093/acprof:oso/9780198566656.001.0001; reference:[12] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Series in Computational Mathematics 5, Springer, Berlin (1986). Zbl 0585.65077, MR 0851383, 10.1007/978-3-642-61623-5; reference:[13] Greif, C., Li, D., Schötzau, D., Wei, X.: A mixed finite element method with exactly \hbox{divergence-free} velocities for incompressible magnetohydrodynamics.Comput. Methods Appl. Mech. Eng. 199 (2010), 2840-2855. Zbl 1231.76146, MR 2740762, 10.1016/j.cma.2010.05.007; reference:[14] Guermond, J. L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows.Comput. Methods Appl. Mech. Eng. 195 (2006), 6011-6045. Zbl 1122.76072, MR 2250931, 10.1016/j.cma.2005.10.010; reference:[15] Guermond, J. L., Shen, J.: A new class of truly consistent splitting schemes for incompressible flows.J. Comput. Phys. 192 (2003), 262-276. Zbl 1032.76529, MR 2045709, 10.1016/j.jcp.2003.07.009; reference:[16] Guermond, J. L., Shen, J.: Velocity-correction projection methods for incompressible flows.SIAM J. Numer. Anal. 41 (2003), 112-134. Zbl 1130.76395, MR 1974494, 10.1137/S0036142901395400; reference:[17] Guermond, J. L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods.Math. Comput. 73 (2004), 1719-1737. Zbl 1093.76050, MR 2059733, 10.1090/S0025-5718-03-01621-1; reference:[18] Gunzburger, M. D., Meir, A. J., Peterson, J. S.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics.Math. Comput. 56 (1991), 523-563. Zbl 0731.76094, MR 1066834, 10.2307/2008394; reference:[19] Hecht, F.: New development in freefem++.J. Numer. Math. 20 (2012), 251-265. Zbl 1266.68090, MR 3043640, 10.1515/jnum-2012-0013; reference:[20] Jiang, Y.-L., Yang, Y.-B.: Semi-discrete Galerkin finite element method for the diffusive Peterlin viscoelastic model.Comput. Methods Appl. Math. 18 (2018), 275-296. Zbl 1391.76337, MR 3776046, 10.1515/cmam-2017-0021; reference:[21] Layton, W., Tran, H., Trenchea, C.: Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows.Numer. Methods Partial Differ. Equations 30 (2014), 1083-1102. Zbl 1364.76088, MR 3200267, 10.1002/num.21857; reference:[22] Linke, A., Neilan, M., Rebholz, L. G., Wilson, N. E.: A connection between coupled and penalty projection timestepping schemes with FE spatial discretization for the Navier-Stokes equations.J. Numer. Math. 25 (2017), 229-248. Zbl 06857557, MR 3767412, 10.1515/jnma-2016-1024; reference:[23] Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system.ESAIM, Math. Model. Numer. Anal. 42 (2008), 1065-1087. Zbl 1149.76029, MR 2473320, 10.1051/m2an:2008034; reference:[24] Qian, Y., Zhang, T.: The second order projection method in time for the time-dependent natural convection problem.Appl. Math., Praha 61 (2016), 299-315. Zbl 06587854, MR 3502113, 10.1007/s10492-016-0133-y; reference:[25] Ravindran, S. S.: An extrapolated second order backward difference time-stepping scheme for the magnetohydrodynamics system.Numer. Funct. Anal. Optim. 37 (2016), 990-1020. Zbl 1348.76189, MR 3532388, 10.1080/01630563.2016.1181651; reference:[26] Schmidt, P. G.: A Galerkin method for time-dependent MHD flow with nonideal boundaries.Commun. Appl. Anal. 3 (1999), 383-398. Zbl 0931.76099, MR 1696344; reference:[27] Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics.Numer. Math. 96 (2004), 771-800. Zbl 1098.76043, MR 2036365, 10.1007/s00211-003-0487-4; reference:[28] Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations.Commun. Pure Appl. Math. 36 (1983), 635-664. Zbl 0524.76099, MR 0716200, 10.1002/cpa.3160360506; reference:[29] Shen, J.: On error estimates of projection methods for Navier-Stokes equations: First-order schemes.SIAM J. Numer. Anal. 29 (1992), 57-77. Zbl 0741.76051, MR 1149084, 10.1137/0729004; reference:[30] Shen, J.: On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes.Math. Comput. 65 (1996), 1039-1065. Zbl 0855.76049, MR 1348047, 10.1090/S0025-5718-96-00750-8; reference:[31] Shen, J., Yang, X.: Error estimates for finite element approximations of consistent splitting schemes for incompressible flows.Discrete Contin. Dyn. Syst., Ser. B. 8 (2007), 663-676. Zbl 1220.76046, MR 2328729, 10.3934/dcdsb.2007.8.663; reference:[32] Simo, J. C., Armero, F.: Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations.Comput. Methods Appl. Mech. Eng. 111 (1994), 111-154. Zbl 0846.76075, MR 1259618, 10.1016/0045-7825(94)90042-6; reference:[33] Temam, R.: Une méthode d'approximation de la solution des équations de Navier-Stokes.Bull. Soc. Math. Fr. 96 (1968), 115-152 French. Zbl 0181.18903, MR 0237972, 10.24033/bsmf.1662; reference:[34] Trenchea, C.: Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows.Appl. Math. Lett. 27 (2014), 97-100. Zbl 1311.76096, MR 3111615, 10.1016/j.aml.2013.06.017; reference:[35] Yang, Y.-B., Jiang, Y.-L.: Numerical analysis and computation of a type of IMEX method for the time-dependent natural convection problem.Comput. Methods Appl. Math. 16 (2016), 321-344. Zbl 1336.65155, MR 3483620, 10.1515/cmam-2016-0006; reference:[36] Yang, Y.-B., Jiang, Y.-L.: Analysis of two decoupled time-stepping finite element methods for incompressible fluids with microstructure.Int. J. Comput. Math. 95 (2018), 686-709. Zbl 1387.65108, MR 3760370, 10.1080/00207160.2017.1294688; reference:[37] Yang, Y.-B., Jiang, Y.-L.: An explicitly uncoupled VMS stabilization finite element method for the time-dependent Darcy-Brinkman equations in double-diffusive convection.Numer. Algorithms 78 (2018), 569-597. Zbl 1402.65139, MR 3803360, 10.1007/s11075-017-0389-7; reference:[38] Yuksel, G., Ingram, R.: Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers.Int. J. Numer. Anal. Model 10 (2013), 74-98. Zbl 1266.76066, MR 3011862; reference:[39] Yuksel, G., Isik, O. R.: Numerical analysis of Backward-Euler discretization for simplified magnetohydrodynamic flows.Appl. Math. Modelling 39 (2015), 1889-1898 \99999DOI99999 10.1016/j.apm.2014.10.007 \goodbreak. MR 3325585, 10.1016/j.apm.2014.10.007

  3. 3
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3936969; zbl:Zbl 07088738; reference:[1] Babuška, I.: The finite element method with penalty.Math. Comput. 27 (1973), 221-228. Zbl 0299.65057, MR 0351118, 10.2307/2005611; reference:[2] Bodnár, T., Galdi, G. P., Nečasová, Š., (eds.): Fluid-Structure Interaction and Biomedical Applications.Advances in Mathematical Fluid Mechanics, Birkhäuser/Springer, Basel (2014). Zbl 1300.76003, MR 3223031, 10.1007/978-3-0348-0822-4; reference:[3] Braack, M., Mucha, P. B.: Directional do-nothing condition for the Navier-Stokes equations.J. Comput. Math. 32 (2014), 507-521. Zbl 1324.76015, MR 3258025, 10.4208/jcm.1405-4347; reference:[4] Curnier, A.: Computational Methods in Solid Mechanics.Solid Mechanics and Its Applications 29 Kluwer Academic Publishers Group, Dordrecht (1994). Zbl 0815.73003, MR 1311022, 10.1007/978-94-011-1112-6; reference:[5] Daily, D. J., Thomson, S. L.: Acoustically-coupled flow-induced vibration of a computational vocal fold model.Comput. Struct. 116 (2013), 50-58. 10.1016/j.compstruc.2012.10.022; reference:[6] Davis, T. A.: Direct Methods for Sparse Linear Systems.Fundamentals of Algorithms 2, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2006). Zbl 1119.65021, MR 2270673, 10.1137/1.9780898718881; reference:[7] Diez, N. G., Belfroid, S., Golliard, J., (eds.): Flow-Induced Vibration & Noise. Proceedings of 11th International Conference on Flow Induced Vibration & Noise.TNO, Delft, The Hague, The Netherlands (2016).; reference:[8] Dowell, E. H.: A Modern Course in Aeroelasticity.Solid Mechanics and Its Applications 217, Springer, Cham (2004). Zbl 1297.74001, MR 3306893, 10.1007/978-3-319-09453-3; reference:[9] Feistauer, M., Hasnedlová-Prokopová, J., Horáček, J., Kosík, A., Kučera, V.: DGFEM for dynamical systems describing interaction of compressible fluid and structures.J. Comput. Appl. Math. 254 (2013), 17-30. Zbl 1290.65089, MR 3061063, 10.1016/j.cam.2013.03.028; reference:[10] Feistauer, M., Sváček, P., Horáček, J.: Numerical simulation of fluid-structure interaction problems with applications to flow in vocal folds.Fluid-Structure Interaction and Biomedical Applications T. Bodnár et al. Advances in Mathematical Fluid Mechanics, Birkhäuser/Springer, Basel (2014), 321-393. Zbl 06482614, MR 3329021, 10.1007/978-3-0348-0822-4_5; reference:[11] Formaggia, L., Parolini, N., Pischedda, M., Riccobene, C.: Geometrical multi-scale modeling of liquid packaging system: an example of scientific cross-fertilization.19th European Conference on Mathematics for Industry 6 pages (2016). 10.15304/cc.2016.968; reference:[12] Gelhard, T., Lube, G., Olshanskii, M. A., Starcke, J.-H.: Stabilized finite element schemes with LBB-stable elements for incompressible flows.J. Comput. Appl. Math. 177 (2005), 243-267. Zbl 1063.76054, MR 2125317, 10.1016/j.cam.2004.09.017; reference:[13] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Series in Computational Mathematics 5, Springer, Cham (1986),\99999DOI99999 10.1007/978-3-642-61623-5 \goodbreak. Zbl 0585.65077, MR 0851383; reference:[14] Horáček, J., Radolf, V. V., Bula, V., Košina, J.: Experimental modelling of phonation using artificial models of human vocal folds and vocal tracts.V. Fuis Engineering Mechanics 2017 Brno University of Technology, Faculty of Mechanical Engineering (2017), 382-385.; reference:[15] Horáček, J., Šidlof, P., Švec, J. G.: Numerical simulation of self-oscillations of human vocal folds with Hertz model of impact forces.J. Fluids Struct. 20 (2005), 853-869. 10.1016/j.jfluidstructs.2005.05.003; reference:[16] Horáček, J., Švec, J. G.: Aeroelastic model of vocal-fold-shaped vibrating element for studying the phonation threshold.J. Fluids Struct. 16 (2002), 931-955. 10.1006/jfls.2002.0454; reference:[17] Horáček, J., Švec, J. G.: Instability boundaries of a vocal fold modelled as a flexibly supported rigid body vibrating in a channel conveying fluid.ASME 2002 International Mechanical Engineering Congress and Exposition American Society of Mechanical Engineers (2002), 1043-1054. 10.1115/imece2002-32199; reference:[18] Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method.Cambridge University Press, Cambridge (1987). Zbl 0628.65098, MR 0925005; reference:[19] Kaltenbacher, M., Zörner, S., Hüppe, A.: On the importance of strong fluid-solid coupling with application to human phonation.Prog. Comput. Fluid Dyn. 14 (2014), 2-13. Zbl 1400.76041, 10.1504/PCFD.2014.059195; reference:[20] Link, G., Kaltenbacher, M., Breuer, M., Döllinger, M.: A 2D finite-element scheme for fluid-solid-acoustic interactions and its application to human phonation.Comput. Methods Appl. Mech. Eng. 198 (2009), 3321-3334. Zbl 1230.74188, MR 2571347, 10.1016/j.cma.2009.06.009; reference:[21] Sadeghi, H., Kniesburges, S., Kaltenbacher, M., Schützenberger, A., Döllinger, M.: Computational models of laryngeal aerodynamics: Potentials and numerical costs.Journal of Voice (2018). 10.1016/j.jvoice.2018.01.001; reference:[22] Seo, J. H., Mittal, R.: A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries.J. Comput. Phys. 230 (2011), 1000-1019. Zbl 1391.76698, MR 2753346, 10.1016/j.jcp.2010.10.017; reference:[23] Šidlof, P., Kolář, J., Peukert, P.: Flow-induced vibration of a long flexible sheet in tangential flow.D. Šimurda, T. Bodnár Topical Problems of Fluid Mechanics 2018 Institute of Thermomechanics, The Czech Academy of Sciences, Praha (2018), 251-256. 10.14311/tpfm.2018.034; reference:[24] Slaughter, W. S.: The Linearized Theory of Elasticity.Birkhäuser, Boston (2002). Zbl 0999.74002, MR 1902598, 10.1007/978-1-4612-0093-2; reference:[25] Sváček, P., Horáček, J.: Numerical simulation of glottal flow in interaction with self oscillating vocal folds: comparison of finite element approximation with a simplified model.Commun. Comput. Phys. 12 (2012), 789-806. 10.4208/cicp.011010.280611s; reference:[26] Sváček, P., Horáček, J.: Finite element approximation of flow induced vibrations of human vocal folds model: effects of inflow boundary conditions and the length of subglottal and supraglottal channel on phonation onset.Appl. Math. Comput. 319 (2018), 178-194. MR 3717682, 10.1016/j.amc.2017.02.026; reference:[27] Takashi, N., Hughes, T. J. R.: An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body.Comput. Methods Appl. Mech. Eng. 95 (1992), 115-138. Zbl 0756.76047, 10.1016/0045-7825(92)90085-X; reference:[28] Valášek, J., Kaltenbacher, M., Sváček, P.: On the application of acoustic analogies in the numerical simulation of human phonation process.Flow, Turbul. Combust. (2018), 1-15. 10.1007/s10494-018-9900-z; reference:[29] Valášek, J., Sváček, P., Horáček, J.: Numerical solution of fluid-structure interaction represented by human vocal folds in airflow.EPJ Web of Conferences 114 (2016), Article No. 02130, 6 pages. 10.1051/epjconf/201611402130; reference:[30] Valášek, J., Sváček, P., Horáček, J.: On finite element approximation of flow induced vibration of elastic structure.Programs and Algorithms of Numerical Mathematics 18. Proceedings of the 18th Seminar (PANM), 2016 Institute of Mathematics, Czech Academy of Sciences, Praha (2017), 144-153. Zbl 06994472, MR 3791877, 10.21136/panm.2016.17; reference:[31] Venkatramani, J., Nair, V., Sujith, R. I., Gupta, S., Sarkar, S.: Multi-fractality in aeroelastic response as a precursor to flutter.J. Sound Vib. 386 (2017), 390-406. 10.1016/j.jsv.2016.10.004; reference:[32] Zorner, S.: Numerical Simulation Method for a Precise Calculation of the Human Phonation Under Realistic Conditions.Ph.D. Thesis, Technische Uuniversität Wien (2013).

  4. 4
    Academic Journal

    المؤلفون: Imoto, Yusuke

    وصف الملف: application/pdf

    Relation: mr:MR3913882; zbl:Zbl 07031675; reference:[1] Moussa, B. Ben: On the convergence of SPH method for scalar conservation laws with boundary conditions.Methods Appl. Anal. 13 (2006), 29-61. Zbl 1202.65121, MR 2275871, 10.4310/MAA.2006.v13.n1.a3; reference:[2] Moussa, B. Ben, Vila, J. P.: Convergence of SPH method for scalar nonlinear conservation laws.SIAM J. Numer. Anal. 37 (2000), 863-887. Zbl 0949.65095, MR 1740385, 10.1137/S0036142996307119; reference:[3] Cummins, S. J., Rudman, M.: An SPH projection method.J. Comput. Phys. 152 (1999), 584-607. Zbl 0954.76074, MR 1699711, 10.1006/jcph.1999.6246; reference:[4] Gingold, R. A., Monaghan, J. J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars.Mon. Not. R. Astron. Soc. 181 (1977), 375-389. Zbl 0421.76032, 10.1093/mnras/181.3.375; reference:[5] Imoto, Y.: Error estimates of generalized particle methods for the Poisson and heat equations.Ph.D. Thesis, Kyushu University Institutional Repository, Fukuoka (2016). 10.15017/1654668; reference:[6] Imoto, Y., Tagami, D.: A truncation error estimate of the interpolant of a particle method based on the Voronoi decomposition.JSIAM Lett. 8 (2016), 29-32. MR 3509656, 10.14495/jsiaml.8.29; reference:[7] Imoto, Y., Tagami, D.: Truncation error estimates of approximate differential operators of a particle method based on the Voronoi decomposition.JSIAM Lett. 9 (2017), 69-72. MR 3720058, 10.14495/jsiaml.9.69; reference:[8] Ishijima, K., Kimura, M.: Truncation error analysis of finite difference formulae in meshfree particle methods.Trans. Japan Soc. Ind. Appl. Math. 20 (2010), 165-182 Japanese. 10.11540/jsiamt.20.3_165; reference:[9] Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid.Nuclear Sci. Eng. 123 (1996), 421-434. 10.13182/nse96-a24205; reference:[10] Lucy, L. B.: A numerical approach to the testing of the fission hypothesis.Astronom. J. 82 (1977), 1013-1024. 10.1086/112164; reference:[11] Raviart, P.-A.: An analysis of particle methods.Numerical Methods in Fluid Dynamics F. Brezzi et al. Lecture Notes in Math. 1127, Springer, Berlin (1985), 243-324. Zbl 0598.76003, MR 0802214, 10.1007/BFb0074532; reference:[12] Shao, S., Lo, E. Y. M.: Incompressible SPH method for simulating Newtonian and nonNewtonian flows with a free surface.Adv. Water Resources 26 (2003), 787-800. 10.1016/s0309-1708(03)00030-7

  5. 5
    Report
  6. 6
    Report
  7. 7
    Conference

    المؤلفون: Verfürth, Barbara

    وصف الملف: application/pdf

    Relation: reference:[1] Abdulle, A., Henning, P.: Localized orthogonal decomposition method for the wave equation with a continuum of scales., Math. Comp., 86 (2017), pp. 549–587. MR 3584540, 10.1090/mcom/3114; reference:[2] Babuška, I. M., Sauter, S. A.: Is the pollution effect avoidable for the Helmholtz equation considering high wave numbers?., SIAM Rev., 42 (2000), pp. 451–484. MR 1786934; reference:[3] Jr., P. Ciarlet, Fliss, S., HASH(0x2ad2750), Stohrer, C.: On the approximation of electromagnetic fields by edge finite elements. Part 2: A heterogeneous multiscale method for Maxwell’s equations, Comput. Math. Appl., 73 (2017), pp. 1900–1919. MR 3634959, 10.1016/j.camwa.2017.02.043; reference:[4] Falk, R. S., Winther, R.: Local bounded cochain projections., Math. Comp., 83 (2014), pp. 2631–2656. MR 3246803, 10.1090/S0025-5718-2014-02827-5; reference:[5] Gallistl, D., Henning, P., HASH(0x2ad4f60), Verf\"urth, B.: Numerical homogenization of H(curl)-problems., arXiv:1706.02966 (2017), preprint. MR 3810505; reference:[6] Gallistl, D., Peterseim, D.: Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering., Comp. Appl. Mech. Eng., 295 (2015), pp. 1–17. MR 3388822, 10.1016/j.cma.2015.06.017; reference:[7] Hellman, F., P.Henning, HASH(0x2ad7fe0), M{\aa}lqvist, A.: Multiscale mixed finite elements., Discr. Contin. Dyn. Syst. Ser. S, 9 (2016), pp. 1269–1298. MR 3591945, 10.3934/dcdss.2016051; reference:[8] Henning, P., M{\aa}lqvist, A.: Localized orthogonal decomposition techniques for boundary value problems., SIAM J. Sci. Comput., 36 (2014), pp. A1609–A1634. MR 3240855, 10.1137/130933198; reference:[9] Henning, P., Ohlberger, M., HASH(0x2adb738), Verf\"urth, B.: A new Heterogeneous Multiscale Method for time-harmonic Maxwell’s equations., SIAM J. Numer. Anal., 54 (2016), pp. 3493–3522. MR 3578028, 10.1137/15M1039225; reference:[10] Henning, P., Ohlberger, M., HASH(0x2adc158), Verf\"urth, B.: Analysis of multiscale methods for time harmonic Maxwell’s equations., Pro. Appl. Math. Mech., 16 (2016), pp. 559–560. MR 3578028, 10.1002/pamm.201610268; reference:[11] Hiptmair, R.: Maxwell equations: continuous and discrete., in Computational Electromagnetism, A. Bermúdez de Castro and A. Valli, eds., Lecture Notes in Mathematics, Springer, Cham, 2015, pp. 1–58. MR 3382059; reference:[12] M{\aa}lqvist, A., Peterseim, D.: Localization of elliptic multiscale problems., Math. Comp., 83 (2014), pp. 2583–2603. MR 3246801, 10.1090/S0025-5718-2014-02868-8; reference:[13] Moiola, A.: Trefftz-Discontinuous Galerkin methods for time-harmonic wave problems., PhD thesis, ETH Z\"urich, 2011.; reference:[14] Monk, P.: Finite element methods for Maxwell’s equation., Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR 2059447; reference:[15] Ohlberger, M., Verf\"urth, B.: Localized Orthogonal Decomposition for two-scale Helmholtz-type problems., AIMS Mathematics, 2 (2017), pp. 458–478. 10.3934/Math.2017.2.458; reference:[16] Peterseim, D.: Eliminating the pollution effect by local subscale correction., Math. Comp., 86(2017), pp. 1005–1036. MR 3614010, 10.1090/mcom/3156; reference:[17] Wellander, N., Kristensson, G.: Homogenization of the Maxwell equations at fixed frequency., AIAM J. Appl. Math., 64 (2003), pp. 170–195. MR 2029130, 10.1137/S0036139902403366

  8. 8
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3833659; zbl:Zbl 06945731; reference:[1] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications.Advances in Numerical Mathematics, Teubner, Leipzig; Technische Univ., Chemnitz (1999). Zbl 0934.65121, MR 1716824; reference:[2] Apel, T., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method.Computing 47 (1992), 277-293. Zbl 0746.65077, MR 1155498, 10.1007/BF02320197; reference:[3] Atkinson, K. E.: An Introduction to Numerical Analysis.John Wiley & Sons, New York (1978). Zbl 0402.65001, MR 0504339; reference:[4] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021; reference:[5] Barnhill, R. E., Gregory, J. A.: Sard kernel theorems on triangular domains with application to finite element error bounds.Numer. Math. 25 (1976), 215-229. Zbl 0304.65076, MR 0458000, 10.1007/BF01399411; reference:[6] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions.Comput. Math. Appl. 55 (2008), 2227-2233. Zbl 1142.65443, MR 2413688, 10.1016/j.camwa.2007.11.010; reference:[7] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of ball conditions for simplicial finite elements in ${\mathbb R}^d$.Appl. Math. Lett. 22 (2009), 1210-1212. Zbl 1173.52301, MR 2532540, 10.1016/j.aml.2009.01.031; reference:[8] Brandts, J., Korotov, S., Křížek, M.: Generalization of the Zlámal condition for simplicial finite elements in $\Bbb R^d$.Appl. Math., Praha 56 (2011), 417-424. Zbl 1240.65327, MR 2833170, 10.1007/s10492-011-0024-1; reference:[9] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4, North-Holland Publishing, Amsterdam (1978). Zbl 0383.65058, MR 0520174; reference:[10] Edelsbrunner, H.: Triangulations and meshes in computational geometry.Acta Numerica 9 (2000), 133-213. Zbl 1004.65024, MR 1883628, 10.1017/s0962492900001331; reference:[11] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method.Numer. Math. 120 (2012), 79-88. Zbl 1255.65196, MR 2885598, 10.1007/s00211-011-0403-2; reference:[12] Hannukainen, A., Korotov, S., Křížek, M.: On Synge-type angle condition for $d$-simplices.Appl. Math., Praha 62 (2017), 1-13. Zbl 06738478, MR 3615475, 10.21136/AM.2017.0132-16; reference:[13] Hannukainen, A., Korotov, S., Vejchodský, T.: Discrete maximum principle for FE solutions of the diffusion-reaction problem on prismatic meshes.J. Comput. Appl. Math. 226 (2009), 275-287. Zbl 1170.65093, MR 2501643, 10.1016/j.cam.2008.08.029; reference:[14] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérés.Rev. Franc. Automat. Inform. Rech. Operat. 10 French (1976), 43-60. Zbl 0346.65052, MR 0455282, 10.1051/m2an/197610r100431; reference:[15] Kobayashi, K., Tsuchiya, T.: A priori error estimates for Lagrange interpolation on triangles.Appl. Math., Praha 60 (2015), 485-499. Zbl 1363.65015, MR 3396477, 10.1007/s10492-015-0108-4; reference:[16] Kobayashi, K., Tsuchiya, T.: On the circumradius condition for piecewise linear triangular elements.Japan J. Ind. Appl. Math. 32 (2015), 65-76. Zbl 1328.65052, MR 3318902, 10.1007/s13160-014-0161-5; reference:[17] Kobayashi, K., Tsuchiya, T.: Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation.Appl. Math., Praha 61 (2016), 121-133. Zbl 06562150, MR 3470770, 10.1007/s10492-016-0125-y; reference:[18] Korotov, S., Plaza, Á., Suárez, J. P.: Longest-edge $n$-section algorithms: properties and open problems.J. Comput. Appl. Math. 293 (2016), 139-146. Zbl 1329.65292, MR 3394208, 10.1016/j.cam.2015.03.046; reference:[19] Křížek, M.: On semiregular families of triangulations and linear interpolation.Appl. Math., Praha 36 (1991), 223-232. Zbl 0728.41003, MR 1109126; reference:[20] Křížek, M.: On the maximum angle condition for linear tetrahedral elements.SIAM J. Numer. Anal. 29 (1992), 513-520. Zbl 0755.41003, MR 1154279, 10.1137/0729031; reference:[21] Křížek, M., Neittaanmäki, P.: Mathematical and Numerical Modelling in Electrical Engineering Theory and Application.Kluwer Academic Publishers, Dordrecht (1996). Zbl 0859.65128, MR 1431889, 10.1007/978-94-015-8672-6; reference:[22] Křížek, M., Preiningerová, V.: Calculation of the 3d temperature field of synchronous and of induction machines by the finite element method.Elektrotechn. obzor 80 (1991), 78-84 Czech.; reference:[23] Kučera, V.: A note on necessary and sufficient conditions for convergence of the finite element method.Proc. Int. Conf. Applications of Mathematics, Praha Czech Academy of Sciences, Institute of Mathematics, Praha J. Brandts et al. (2015), 132-139. Zbl 1363.65189, MR 3700195; reference:[24] Kučera, V.: On necessary and sufficient conditions for finite element convergence.Available at https://arxiv.org/abs/1601.02942 (2016), 42 pages. MR 3700195; reference:[25] Kučera, V.: Several notes on the circumradius condition.Appl. Math., Praha 61 (2016), 287-298. Zbl 06587853, MR 3502112, 10.1007/s10492-016-0132-z; reference:[26] Mao, S., Shi, Z.: Error estimates of triangular finite elements under a weak angle condition.J. Comput. Appl. Math. 230 (2009), 329-331. Zbl 1168.65063, MR 2532314, 10.1016/j.cam.2008.11.008; reference:[27] Oswald, P.: Divergence of FEM: Babuška-Aziz triangulations revisited.Appl. Math., Praha 60 (2015), 473-484. Zbl 1363.65202, MR 3396476, 10.1007/s10492-015-0107-5; reference:[28] Synge, J. L.: The Hypercircle in Mathematical Physics. A Method for the Approximate Solution of Boundary Value Problems.Cambridge University Press, New York (1957). Zbl 0079.13802, MR 0097605; reference:[29] Ženíšek, A.: Convergence of the finite element method for boundary value problems of a system of elliptic equations.Apl. Mat. 14 Czech (1969), 355-376. Zbl 0188.22604, MR 0245978; reference:[30] Zlámal, M.: On the finite element method.Numer. Math. 12 (1968), 394-409. Zbl 0176.16001, MR 0243753, 10.1007/BF02161362

  9. 9
    Academic Journal

    المؤلفون: Tang, Yaozong, Li, Xiaolin

    وصف الملف: application/pdf

    Relation: mr:MR3722900; zbl:Zbl 06819517; reference:[1] Abbasbandy, S., Ghehsareh, H. Roohani, Hashim, I., Alsaedi, A.: A comparison study of meshfree techniques for solving the two-dimensional linear hyperbolic telegraph equation.Eng. Anal. Bound. Elem. 47 (2014), 10-20. Zbl 1297.65125, MR 3233886, 10.1016/j.enganabound.2014.04.006; reference:[2] Belytschko, T., Lu, Y. Y., Gu, L.: Element-free Galerkin methods.Int. J. Numer. Methods Eng. 37 (1994), 229-256. Zbl 0796.73077, MR 1256818, 10.1002/nme.1620370205; reference:[3] Berger, M. J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations.J. Comput. Phys. 53 (1984), 484-512. Zbl 0536.65071, MR 0739112, 10.1016/0021-9991(84)90073-1; reference:[4] Cheng, Y. M.: Meshless Methods.Science Press, Beijing (2015), Chinese.; reference:[5] Cheng, R.-J., Ge, H.-X.: Element-free Galerkin (EFG) method for a kind of two-dimensional linear hyperbolic equation.Chin. Phys. B. 18 (2009), 4059-4064. 10.1088/1674-1056/18/10/001; reference:[6] Dehghan, M., Ghesmati, A.: Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation.Eng. Anal. Bound. Elem. 34 (2010), 324-336. Zbl 1244.65147, MR 2585262, 10.1016/j.enganabound.2009.10.010; reference:[7] Dehghan, M., Ghesmati, A.: Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method.Eng. Anal. Bound. Elem. 34 (2010), 51-59. Zbl 1244.65137, MR 2559257, 10.1016/j.enganabound.2009.07.002; reference:[8] Dehghan, M., Salehi, R.: A method based on meshless approach for the numerical solution of the two-space dimensional hyperbolic telegraph equation.Math. Methods Appl. Sci. 35 (2012), 1220-1233. Zbl 1250.35015, MR 2945847, 10.1002/mma.2517; reference:[9] Dehghan, M., Shokri, A.: A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions.Numer. Methods Partial Differ. Equations 25 (2009), 494-506. Zbl 1159.65084, MR 2483780, 10.1002/num.20357; reference:[10] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19 American Mathematical Society, Providence (2010). Zbl 1194.35001, MR 2597943, 10.1090/gsm/019; reference:[11] Hu, X., Huang, P., Feng, X.: A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation.Appl. Math., Praha 61 (2016), 27-45. Zbl 06562145, MR 3455166, 10.1007/s10492-016-0120-3; reference:[12] Jiang, Z., Su, L., Jiang, T.: A meshfree method for numerical solution of nonhomogeneous time-dependent problems.Abstr. Appl. Anal. 2014 (2014), Article ID 978310, 11 pages. MR 3246371, 10.1155/2014/978310; reference:[13] Li, X.: Meshless Galerkin algorithms for boundary integral equations with moving least square approximations.Appl. Numer. Math. 61 (2011), 1237-1256. Zbl 1232.65160, MR 2851120, 10.1016/j.apnum.2011.08.003; reference:[14] Li, X.: Error estimates for the moving least-square approximation and the element-free Galerkin method in {$n$}-dimensional spaces.Appl. Numer. Math. 99 (2016), 77-97. Zbl 1329.65274, MR 3413894, 10.1016/j.apnum.2015.07.006; reference:[15] Li, X., Li, S.: On the stability of the moving least squares approximation and the element-free Galerkin method.Comput. Math. Appl. 72 (2016), 1515-1531. Zbl 1361.65090, MR 3545373, 10.1016/j.camwa.2016.06.047; reference:[16] Li, X., Li, S.: Analysis of the complex moving least squares approximation and the associated element-free Galerkin method.Appl. Math. Model. 47 (2017), 45-62. MR 3659439, 10.1016/j.apm.2017.03.019; reference:[17] Li, X., Wang, Q.: Analysis of the inherent instability of the interpolating moving least squares method when using improper polynomial bases.Eng. Anal. Bound. Elem. 73 (2016), 21-34. MR 3581428, 10.1016/j.enganabound.2016.08.012; reference:[18] Li, X., Zhang, S., Wang, Y., Chen, H.: Analysis and application of the element-free Galerkin method for nonlinear sine-Gordon and generalized sinh-Gordon equations.Comput. Math. Appl. 71 (2016), 1655-1678. MR 3481094, 10.1016/j.camwa.2016.03.007; reference:[19] Liu, G. R.: Meshfree Methods. Moving Beyond the Finite Element Method.CRC Press, Boca Raton (2010). Zbl 1205.74003, MR 2574356, 10.1201/9781420082104; reference:[20] Szekeres, B. J., Izsák, F.: Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems.Appl. Math., Praha 62 (2017), 15-36. Zbl 06738479, MR 3615476, 10.21136/AM.2017.0385-15; reference:[21] Tang, Y.-Z., Li, X.-L.: Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems.Chin. Phys. B. 26 (2017), 030203. 10.1088/1674-1056/26/3/030203; reference:[22] Thomas, J. W.: Numerical Partial Differential Equations: Finite Difference Methods.Texts in Applied Mathematics 22 Springer, New York (1995). Zbl 0831.65087, MR 1367964, 10.1007/978-1-4899-7278-1; reference:[23] Zhang, S., Li, X.: Boundary augmented Lagrangian method for the Signorini problem.Appl. Math., Praha 61 (2016), 215-231. Zbl 06562154, MR 3470774, 10.1007/s10492-016-0129-7

  10. 10
    Academic Journal

    المؤلفون: Oswald, Peter

    وصف الملف: application/pdf

    Relation: mr:MR3722898; zbl:Zbl 06819515; reference:[1] Acosta, G., Durán, R. G.: The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations.SIAM J. Numer. Anal. 37 (1999), 18-36. Zbl 0948.65115, MR 1721268, 10.1137/S0036142997331293; reference:[2] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021; reference:[3] Braess, D.: Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics.Cambridge University Press, Cambridge (2007). Zbl 1118.65117, MR 2322235, 10.1017/CBO9780511618635; reference:[4] Braess, D.: An a posteriori error estimate and a comparison theorem for the nonconforming $P_1$ element.Calcolo 46 (2009), 149-155. Zbl 1192.65142, MR 2520373, 10.1007/s10092-009-0003-z; reference:[5] Brenner, S. C.: Poincaré-Friedrichs inequalities for piecewise $H^1$ functions.SIAM J. Numer. Anal. 41 (2003), 306-324. Zbl 1045.65100, MR 1974504, 10.1137/S0036142902401311; reference:[6] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15, Springer, New York (2008). Zbl 0804.65101, MR 2373954, 10.1007/978-0-387-75934-0; reference:[7] Carstensen, C., Gedicke, J., Rim, D.: Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods.J. Comput. Math. 30 (2012), 337-353. Zbl 1274.65290, MR 2965987, 10.4208/jcm.1108-m3677; reference:[8] Carstensen, C., Peterseim, D., Schedensack, M.: Comparison results of finite element methods for the Poisson model problem.SIAM J. Numer. Anal. 50 (2012), 2803-2823. Zbl 1261.65115, MR 3022243, 10.1137/110845707; reference:[9] Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I.Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33-76. Zbl 0302.65087, MR 0343661, 10.1051/m2an/197307R300331; reference:[10] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method.Numer. Math. 120 (2012), 79-88. Zbl 1255.65196, MR 2885598, 10.1007/s00211-011-0403-2; reference:[11] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérés.Rev. Franc. Automat. Inform. Rech. Operat. 10, Analyse Numer. 10 (1976), 43-60. Zbl 0346.65052, MR 0455282, 10.1051/m2an/197610r100431; reference:[12] Kučera, V.: On necessary and sufficient conditions for finite element convergence.arXiv:1601.02942 (2016). MR 3700195; reference:[13] Marini, L. D.: An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method.SIAM J. Numer. Anal. 22 (1985), 493-496. Zbl 0573.65082, MR 0787572, 10.1137/0722029; reference:[14] Oswald, P.: Divergence of FEM: Babuška-Aziz triangulatiuons revisited.Appl. Math., Praha 60 (2015), 473-484. Zbl 1363.65202, MR 3396476, 10.1007/s10492-015-0107-5; reference:[15] Raviart, P.-A., Thomas, J. M.: A mixed finite element method for 2nd order elliptic problems.Mathematical Aspects of Finite Element Method I. Galligani, E. Magenes Proc. Conf., Rome, 1975, Lect. Notes Math. 606, Springer, New York (1977), 292-315. Zbl 0362.65089, MR 0483555, 10.1007/bfb0064470; reference:[16] Schwarz, H. A.: Sur une définition erroneé de l'aire d'une surface courbe.Gesammelte Mathematische Abhandlungen 2 Springer, Berlin (1890), 309-311, 369-370.; reference:[17] Vohralík, M.: On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the Sobolev space $H^1$.Numer. Funct. Anal. Optimization 26 (2005), 925-952. Zbl 1089.65124, MR 2192029, 10.1080/01630560500444533

  11. 11
    Academic Journal

    المؤلفون: Yang, Yun-Bo, Kong, Qiong-Xiang

    وصف الملف: application/pdf

    Relation: mr:MR3615479; zbl:Zbl 06738482; reference:[1] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15, Springer, New York (2008). Zbl 1135.65042, MR 2373954, 10.1007/978-0-387-75934-0; reference:[2] Erturk, E., Corke, T. C., Gökçöl, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers.Int. J. Numer. Methods Fluids 48 (2005), 747-774. Zbl 1071.76038, 10.1002/fld.953; reference:[3] Ervin, V. J., Layton, W. J., Maubach, J. M.: Adaptive defect-correction methods for viscous incompressible flow problems.SIAM J. Numer. Anal. 37 (2000), 1165-1185. Zbl 1049.76038, MR 1756420, 10.1137/S0036142997318164; reference:[4] Gartling, D. K.: A test problem for outflow boundary conditions---flow over a backward-facing step.Int. J. Numer. Methods Fluids 11 (1990), 953-967. 10.1002/fld.1650110704; reference:[5] Ghia, U., Ghia, K. N., Shin, C. T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method.J. Comput. Phys. 48 (1982), 387-411. Zbl 0511.76031, 10.1016/0021-9991(82)90058-4; reference:[6] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Series in Computational Mathematics 5, Springer, Berlin (1986). Zbl 0585.65077, MR 0851383, 10.1007/978-3-642-61623-5; reference:[7] Gresho, P. M., Lee, R. L., Chan, S. T., Sani, R. L.: Solution of the time-dependent incompressible Navier-Stokes and Boussinesq equations using the Galerkin finite element method.Approximation Methods for Navier-Stokes Problems, Proc. Symp. IUTAM, Paderborn 1979 Lect. Notes in Math. 771, Springer, Berlin (1980), 203-222. Zbl 0428.76026, MR 0565998, 10.1007/BFb0086908; reference:[8] Guermond, J.-L., Marra, A., Quartapelle, L.: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers.Comput. Methods Appl. Mech. Eng. 195 (2006), 5857-5876. Zbl 1121.76036, MR 2250923, 10.1016/j.cma.2005.08.016; reference:[9] Gunzburger, M. D.: Finite Element Methods for Viscous Incompressible Flows. A Guide to Theory, Practice, and Algorithms.Computer Science and Scientific Computing, Academic Press, Boston (1989). Zbl 0697.76031, MR 1017032; reference:[10] He, Y., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations.Comput. Methods Appl. Mech. Eng. 198 (2009), 1351-1359. Zbl 1227.76031, MR 2497612, 10.1016/j.cma.2008.12.001; reference:[11] He, Y., Wang, A., Mei, L.: Stabilized finite-element method for the stationary Navier-Stokes equations.J. Eng. Math. 51 (2005), 367-380. Zbl 1069.76031, MR 2146399, 10.1007/s10665-004-3718-5; reference:[12] Hecht, F.: New development in freefem++.J. Numer. Math. 20 (2012), 251-265. Zbl 1266.68090, MR 3043640, 10.1515/jnum-2012-0013; reference:[13] Huang, P., Feng, X., He, Y.: Two-level defect-correction Oseen iterative stabilized finite element methods for the stationary Navier-Stokes equations.Appl. Math. Modelling 37 (2013), 728-741. Zbl 1351.76060, MR 3002184, 10.1016/j.apm.2012.02.051; reference:[14] Huang, P., He, Y., Feng, X.: A new defect-correction method for the stationary Navier-Stokes equations based on local Gauss integration.Math. Methods Appl. Sci. 35 (2012), 1033-1046. Zbl 1246.76054, MR 2931209, 10.1002/mma.1618; reference:[15] Hughes, T. J. R., Mazzei, L., Jansen, K. E.: Large eddy simulation and the variational multiscale method.Comput. Vis. Sci. 3 (2000), 47-59. Zbl 0998.76040, 10.1007/s007910050051; reference:[16] John, V., Kaya, S.: A finite element variational multiscale method for the Navier-Stokes equations.SIAM J. Sci. Comput. 26 (2005), 1485-1503. Zbl 1073.76054, MR 2142582, 10.1137/030601533; reference:[17] Kaya, S., Rivière, B.: A two-grid stabilization method for solving the steady-state Navier-Stokes equations.Numer. Methods Partial Differ. Equations 22 (2006), 728-743. Zbl 1089.76034, MR 2212234, 10.1002/num.20120; reference:[18] Labovschii, A.: A defect correction method for the time-dependent Navier-Stokes equations.Numer. Methods Partial Differ. Equations 25 (2009), 1-25. Zbl 05490411, MR 2473678, 10.1002/num.20329; reference:[19] Layton, W.: A connection between subgrid scale eddy viscosity and mixed methods.Appl. Math. Comput. 133 (2002), 147-157. Zbl 1024.76026, MR 1923189, 10.1016/S0096-3003(01)00228-4; reference:[20] Layton, W., Lee, H. K., Peterson, J.: A defect-correction method for the incompressible Navier-Stokes equations.Appl. Math. Comput. 129 (2002), 1-19. Zbl 1074.76033, MR 1897318, 10.1016/S0096-3003(01)00026-1; reference:[21] Li, J., He, Y.: A stabilized finite element method based on two local Gauss integrations for the Stokes equations.J. Comput. Appl. Math. 214 (2008), 58-65. Zbl 1132.35436, MR 2391672, 10.1016/j.cam.2007.02.015; reference:[22] Li, Y., Mei, L., Li, Y., Zhao, K.: A two-level variational multiscale method for incompressible flows based on two local Gauss integrations.Numer. Methods Partial Differ. Equations 29 (2013), 1986-2003. Zbl 1277.76019, MR 3116554, 10.1002/num.21785; reference:[23] Liu, Q., Hou, Y.: A two-level defect-correction method for Navier-Stokes equations.Bull. Aust. Math. Soc. 81 (2010), 442-454. Zbl 05712510, MR 2639859, 10.1017/S0004972709000859; reference:[24] Melhem, H. G.: Finite element approximation to heat transfer through construction glass blocks.Mechanics Computing in 1990's and Beyond American Society of Civil Engineers (1991), 193-197.; reference:[25] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis.Studies in Mathematics and Its Applications 2, North-Holland, Amsterdam (1984). Zbl 0568.35002, MR 0769654; reference:[26] Wang, K., Wong, Y. S.: Error correction method for Navier-Stokes equations at high Reynolds numbers.J. Comput. Phys. 255 (2013), 245-265. Zbl 1349.76281, MR 3109787, 10.1016/j.jcp.2013.07.042; reference:[27] Wong, K. L., Baker, A. J.: A 3D incompressible Navier-Stokes velocity-vorticity weak form finite element algorithm.Int. J. Numer. Methods Fluids 38 (2002), 99-123. Zbl 1009.76059, 10.1002/fld.204; reference:[28] Zheng, H., Hou, Y., Shi, F., Song, L.: A finite element variational multiscale method for incompressible flows based on two local Gauss integrations.J. Comput. Phys. 228 (2009), 5961-5977. Zbl 1168.76028, MR 2542923, 10.1016/j.jcp.2009.05.006; reference:[29] Zienkiewicz, O. C., Taylor, R. L.: The Finite Element Method for Solid and Structural Mechanics.Elsevier/Butterworth Heinemann, Amsterdam (2005). Zbl 1084.74001, MR 3292651, 10.1016/B978-075066431-8.50166-1

  12. 12
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3615475; zbl:Zbl 06738478; reference:[1] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications.Advances in Numerical Mathematics, Teubner, Stuttgart (1999). Zbl 0934.65121, MR 1716824; reference:[2] Apel, T., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method.Computing 47 (1992), 277-293. Zbl 0746.65077, MR 1155498, 10.1007/BF02320197; reference:[3] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021; reference:[4] Barnhill, R. E., Gregory, J. A.: Sard kernel theorems on triangular domains with application to finite element error bounds.Numer. Math. 25 (1975), 215-229. Zbl 0304.65076, MR 0458000, 10.1007/BF01399411; reference:[5] Bartoš, P.: The sine theorem for simplexes in $E_n$.Cas. Mat. 93 (1968), 273-277 (In Czech). Zbl 0162.52302, MR 0248604; reference:[6] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions.Comput. Math. Appl. 55 (2008), 2227-2233. Zbl 1142.65443, MR 2413688, 10.1016/j.camwa.2007.11.010; reference:[7] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of ball conditions for simplicial finite elements in ${\mathbb R}^d$.Appl. Math. Lett. 22 (2009), 1210-1212. Zbl 1173.52301, MR 2532540, 10.1016/j.aml.2009.01.031; reference:[8] Brandts, J., Korotov, S., Křížek, M.: Generalization of the Zlámal condition for simplicial finite elements in $\mathbb R^d$.Appl. Math., Praha 56 (2011), 417-424. Zbl 1240.65327, MR 2833170, 10.1007/s10492-011-0024-1; reference:[9] Cheng, S.-W., Dey, T. K., Edelsbrunner, H., Facello, M. A., Teng, S.-H.: Sliver exudation.Proc. of the Fifteenth Annual Symposium on Computational Geometry, Miami Beach, 1999 ACM, New York (1999), 1-13. MR 1802189, 10.1145/304893.304894; reference:[10] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4, North-Holland Publishing, Amsterdam (1978). Zbl 0383.65058, MR 0520174; reference:[11] Edelsbrunner, H.: Triangulations and meshes in computational geometry.Acta Numerica (2000), 133-213. Zbl 1004.65024, MR 1883628, 10.1017/s0962492900001331; reference:[12] Eriksson, F.: The law of sines for tetrahedra and $n$-simplices.Geom. Dedicata 7 (1978), 71-80. Zbl 0375.50008, MR 0474009, 10.1007/BF00181352; reference:[13] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method.Numer. Math. 120 (2012), 79-88. Zbl 1255.65196, MR 2885598, 10.1007/s00211-011-0403-2; reference:[14] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérées.Rev. Franc. Automat. Inform. Rech. Operat. {\it 10}, Analyse numer., R-1 (1976), 43-60. Zbl 0346.65052, MR 0455282; reference:[15] Kobayashi, K., Tsuchiya, T.: A priori error estimates for Lagrange interpolation on triangles.Appl. Math., Praha 60 (2015), 485-499. Zbl 06486922, MR 3396477, 10.1007/s10492-015-0108-4; reference:[16] Kobayashi, K., Tsuchiya, T.: On the circumradius condition for piecewise linear triangular elements.Japan J. Ind. Appl. Math. 32 (2015), 65-76. Zbl 1328.65052, MR 3318902, 10.1007/s13160-014-0161-5; reference:[17] Kobayashi, K., Tsuchiya, T.: Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation.Appl. Math., Praha 61 (2016), 121-133. Zbl 06562150, MR 3470770, 10.1007/s10492-016-0125-y; reference:[18] Křížek, M.: On semiregular families of triangulations and linear interpolation.Appl. Math., Praha 36 (1991), 223-232. Zbl 0728.41003, MR 1109126; reference:[19] Křížek, M.: On the maximum angle condition for linear tetrahedral elements.SIAM J. Numer. Anal. 29 (1992), 513-520. Zbl 0755.41003, MR 1154279, 10.1137/0729031; reference:[20] Kučera, V.: A note on necessary and sufficient conditions for convergence of the finite element method.Proc. Conf. Appl. Math. 2015 (J. Brandts et al., eds.) Institute of Mathematics CAS, Prague (2015), 132-139. Zbl 1363.65189, MR 3700195; reference:[21] Kučera, V.: On necessary and sufficient conditions for finite element convergence.Available at arXiv:1601.02942 (2016). MR 3700195; reference:[22] Kučera, V.: Several notes on the circumradius condition.Appl. Math., Praha 61 (2016), 287-298. Zbl 06587853, MR 3502112, 10.1007/s10492-016-0132-z; reference:[23] Mao, S., Shi, Z.: Error estimates of triangular finite elements under a weak angle condition.J. Comput. Appl. Math. 230 (2009), 329-331. Zbl 1168.65063, MR 2532314, 10.1016/j.cam.2008.11.008; reference:[24] Oswald, P.: Divergence of FEM: Babuška-Aziz triangulations revisited.Appl. Math., Praha 60 (2015), 473-484. Zbl 06486921, MR 3396476, 10.1007/s10492-015-0107-5; reference:[25] Rektorys, K.: Survey of Applicable Mathematics. Vol. I.Mathematics and Its Applications 280, Kluwer Academic Publishers, Dordrecht (1994). Zbl 0805.00002, MR 1282494, 10.1007/978-94-015-8308-4; reference:[26] Strang, G., Fix, G. J.: An Analysis of the Finite Element Method.Prentice-Hall Series in Automatic Computation, Englewood Cliffs, New Jersey (1973). Zbl 356.65096, MR 0443377; reference:[27] Synge, J. L.: The Hypercircle in Mathematical Physics. A Method for the Approximate Solution of Boundary Value Problems.Cambridge University Press, Cambridge (1957). Zbl 0079.13802, MR 0097605; reference:[28] Ženíšek, A.: The convergence of the finite element method for boundary value problems of the system of elliptic equations.Apl. Mat. 14 (1969), 355-377 (In Czech). Zbl 0188.22604, MR 245978; reference:[29] Zlámal, M.: On the finite element method.Numer. Math. 12 (1968), 394-409. Zbl 0176.16001, MR 0243753, 10.1007/BF02161362

  13. 13
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3455166; zbl:Zbl 06562145; reference:[1] Adams, R. A.: Sobolev Spaces.Pure and Applied Mathematics 65 Academic Press, New York (1975). Zbl 0314.46030, MR 0450957; reference:[2] Bateman, H.: Some recent researches on motion of fluids.Mon. Weather Rev. 43 (1915), 163-170. 10.1175/1520-0493(1915)432.0.CO;2; reference:[3] Bressan, N., Quarteroni, A.: An implicit/explicit spectral method for Burgers' equation.Calcolo 23 (1986), 265-284. Zbl 0691.65081, MR 0897632, 10.1007/BF02576532; reference:[4] Cadwell, J., Wanless, P., Cook, A. E.: A finite element approach to Burgers' equation.Appl. Math. Modelling 5 (1981), 189-193. MR 0626869, 10.1016/0307-904X(81)90043-3; reference:[5] Chen, H., Jiang, Z.: A characteristics-mixed finite element method for Burgers' equation.J. Appl. Math. Comput. 15 (2004), 29-51. Zbl 1053.65083, MR 2043967, 10.1007/BF02935745; reference:[6] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). Zbl 0383.65058, MR 0520174; reference:[7] Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type.Proc. Camb. Philos. Soc. 43 (1947), 50-67 Reprint in Adv. Comput. Math. 6 (1996), 207-226. Zbl 0866.65054, MR 0019410, 10.1017/S0305004100023197; reference:[8] Duan, Y., Liu, R.: Lattice Boltzmann model for two-dimensional unsteady Burgers' equation.J. Comput. Appl. Math. 206 (2007), 432-439. Zbl 1115.76064, MR 2337455, 10.1016/j.cam.2006.08.002; reference:[9] Fletcher, C. A. J.: A comparison of finite element and finite difference solutions of the one- and two-dimensional Burgers' equations.J. Comput. Phys. 51 (1983), 159-188. Zbl 0525.65077, MR 0713944, 10.1016/0021-9991(83)90085-2; reference:[10] He, Y.: Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations.SIAM J. Numer. Anal. 41 (2003), 1263-1285. Zbl 1130.76365, MR 2034880, 10.1137/S0036142901385659; reference:[11] He, Y., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations.Comput. Methods Appl. Mech. Eng. 198 (2009), 1351-1359. Zbl 1227.76031, MR 2497612, 10.1016/j.cma.2008.12.001; reference:[12] He, Y., Sun, W.: Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations.SIAM J. Numer. Anal. 45 (2007), 837-869. Zbl 1145.35318, MR 2300299, 10.1137/050639910; reference:[13] He, Y., Sun, W.: Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations.Math. Comput. 76 (2007), 115-136. Zbl 1129.35004, MR 2261014, 10.1090/S0025-5718-06-01886-2; reference:[14] Hecht, F., Pironneau, O., Hyaric, A. Le, Ohtsuka, K.: FREEFEM++, version 2.3-3, 2008. Software available at http://www.freefem.org.; reference:[15] Heywood, J. G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization.SIAM J. Numer. Anal. 27 (1990), 353-384. Zbl 0694.76014, MR 1043610, 10.1137/0727022; reference:[16] Huang, P., Abduwali, A.: The modified local Crank-Nicolson method for one- and two-dimensional Burgers' equations.Comput. Math. Appl. 59 (2010), 2452-2463. Zbl 1193.65157, MR 2607949, 10.1016/j.camwa.2009.08.069; reference:[17] Johnston, H., Liu, J. G.: Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term.J. Comput. Phys. 199 (2004), 221-259. Zbl 1127.76343, MR 2081004, 10.1016/j.jcp.2004.02.009; reference:[18] Luo, Z., Liu, R.: Mixed finite element analysis and numerical simulation for Burgers equation.Math. Numer. Sin. 21 (1999), 257-268 Chinese. Zbl 0933.65117, MR 1762984; reference:[19] Pany, A. K., Nataraj, N., Singh, S.: A new mixed finite element method for Burgers' equation.J. Appl. Math. Comput. 23 (2007), 43-55. Zbl 1124.65095, MR 2282449, 10.1007/BF02831957; reference:[20] Shang, Y.: Initial-boundary value problems for a class of generalized KdV-Burgers equations.Math. Appl. 9 (1996), 166-171 Chinese. Zbl 0937.35164, MR 1405073; reference:[21] Shao, L., Feng, X., He, Y.: The local discontinuous Galerkin finite element method for Burger's equation.Math. Comput. Modelling 54 (2011), 2943-2954. Zbl 1235.65115, MR 2841837, 10.1016/j.mcm.2011.07.016; reference:[22] Shi, F., Yu, J., Li, K.: A new stabilized mixed finite-element method for Poisson equation based on two local Gauss integrations for linear element pair.Int. J. Comput. Math. 88 (2011), 2293-2305. Zbl 1241.65091, MR 2818083, 10.1080/00207160.2010.534466; reference:[23] Weng, Z., Feng, X., Huang, P.: A new mixed finite element method based on the Crank-Nicolson scheme for the parabolic problems.Appl. Math. Modelling 36 (2012), 5068-5079. Zbl 1252.65170, MR 2930402, 10.1016/j.apm.2011.12.044

  14. 14
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3556870; zbl:Zbl 06644036; reference:[1] Bramble, J. H., Pasciak, J. E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions.Math. Comput. 57 (1991), 23-45. Zbl 0727.65101, MR 1079008, 10.1090/S0025-5718-1991-1079008-4; reference:[2] Brezina, M., Vaněk, P., Vassilevski, P. S.: An improved convergence analysis of smoothed aggregation algebraic multigrid.Numer. Linear Algebra Appl. 19 (2012), 441-469. Zbl 1274.65315, MR 2911383, 10.1002/nla.775; reference:[3] Fraňková, P., Mandel, J., Vaněk, P.: Model analysis of BPX preconditioner based on smoothed aggregations.Appl. Math., Praha 60 (2015), 219-250. MR 3419960, 10.1007/s10492-015-0093-7; reference:[4] Vaněk, P.: Fast multigrid solver.Appl. Math., Praha 40 (1995), 1-20. Zbl 0824.65016, MR 1305645; reference:[5] Vaněk, P.: Acceleration of convergence of a two-level algorithm by smoothing transfer operator.Appl. Math., Praha 37 (1992), 265-274. MR 1180605; reference:[6] Vaněk, P., Brezina, M.: Nearly optimal convergence result for multigrid with aggressive coarsening and polynomial smoothing.Appl. Math., Praha 58 (2013), 369-388. Zbl 1289.65064, MR 3083519, 10.1007/s10492-013-0018-2; reference:[7] Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregations.Numer. Math. 88 (2001), 559-579. MR 1835471, 10.1007/s211-001-8015-y; reference:[8] Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured meshes.SIAM J. Sci Comput. 21 (1999), 900-923. MR 1755171, 10.1137/S1064827596297112; reference:[9] Vaněk, P., Mandel, J., Brezina, R.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems.Computing 56 (1996), 179-196. MR 1393006, 10.1007/BF02238511

  15. 15
    Conference
  16. 16
    Conference
  17. 17
    Conference
  18. 18
    Conference
  19. 19
    Academic Journal

    المؤلفون: Oswald, Peter

    وصف الملف: application/pdf

    Relation: mr:MR3396476; zbl:Zbl 06486921; reference:[1] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications.Advances in Numerical Mathematics Teubner, Leipzig; Technische Univ., Chemnitz (1999). Zbl 0934.65121, MR 1716824; reference:[2] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021; reference:[3] Bank, R. E., Yserentant, H.: A note on interpolation, best approximation, and the saturation property.Numer. Math. (2014), doi:10.1007/s00211-014-0687-0. MR 3383332, 10.1007/s00211-014-0687-0; reference:[4] Hannukainen, A., Juntunen, M., Huhtala, A.: Finite Element Methods I, course notes A.Mat-1.3650, Univ. Helsinki, 2015.; reference:[5] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method.Numer. Math. 120 (2012), 79-88. Zbl 1255.65196, MR 2885598, 10.1007/s00211-011-0403-2; reference:[6] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérés.Rev. Franc. Automat. Inform. Rech. Operat. {\it 10}, Analyse numer., R-1 (1976), 43-60. MR 0455282; reference:[7] Kobayashi, K., Tsuchiya, T.: A Babuška-Aziz type proof of the circumradius condition.Japan J. Ind. Appl. Math. 31 (2014), 193-210. Zbl 1295.65011, MR 3167084, 10.1007/s13160-013-0128-y; reference:[8] Křížek, M.: On semiregular families of triangulations and linear interpolation.Appl. Math., Praha 36 (1991), 223-232. Zbl 0728.41003, MR 1109126; reference:[9] Ludwig, L.: A discussion on the maximum angle condition/counterexample for the convergence of the FEM.Manuscript, TU Dresden, 2011.; reference:[10] Schwarz, H. A.: Sur une définition erroneé de l'aire d'une surface courbe.Gesammelte Mathematische Abhandlungen, vol. 2 Springer, Berlin (1890), 309-311, 369-370.

  20. 20
    Conference