-
1Conference
المؤلفون: Brandner, Marek, Knobloch, Petr
مصطلحات موضوعية: keyword:convection, keyword:diffusion, keyword:stabilization, keyword:finite element method, keyword:finite volume method, keyword:finite difference method, msc:65M06, msc:65M08, msc:65M12, msc:65M60, msc:65N06, msc:65N08, msc:65N12, msc:65N30, msc:76Rxx
وصف الملف: application/pdf
-
2Conference
المؤلفون: Faragó, István, Korotov, Sergey, Szabó, Tamás
مصطلحات موضوعية: keyword:elliptic problem, keyword:Neumann boundary condition, keyword:maximum/minimum principle, keyword:discrete maximum/minimum principle, msc:35B50, msc:65N06, msc:65N30, msc:65N50
وصف الملف: application/pdf
Relation: zbl:Zbl 06669917
-
3Academic Journal
المؤلفون: Fučík, Radek, Mikyška, Jiří
مصطلحات موضوعية: keyword:dynamic capillary pressure, keyword:two-phase flow in porous media, keyword:immiscible displacement in porous media, keyword:finite volume method, msc:35K55, msc:65N06, msc:65N08, msc:76S05
وصف الملف: application/pdf
Relation: mr:MR2985549; zbl:Zbl 1249.65215; reference:[1] Bastian, P.: Numerical Computation of Multiphase Flows in Porous Media.Habilitation Dissertation, Kiel University (1999).; reference:[2] Bear, J., Verruijt, A.: Modeling Groundwater Flow and Pollution.D. Reidel, Dordrecht (1990).; reference:[3] Brooks, R. H., Corey, A. T.: Hydraulic properties of porous media.Hydrology Paper 3 (1964).; reference:[4] Fučík, R., Mikyška, J., Beneš, M., Illangasekare, T. H.: An improved semi-analytical solution for verification of numerical models of two-phase flow in porous media.Vadose Zone Journal 6 93-104 (2007). 10.2136/vzj2006.0024; reference:[5] Fučík, R., Mikyška, J., Beneš, M., Illangasekare, T. H.: Semianalytical solution for two-phase flow in porous media with a discontinuity.Vadose Zone Journal 7 1001-1007 (2008). 10.2136/vzj2007.0155; reference:[6] Gray, W. G., Hassanizadeh, S. M.: Paradoxes and realities in unsaturated flow theory.Water Resources Research 27 1847-1854 (1991). 10.1029/91WR01259; reference:[7] Gray, W. G., Hassanizadeh, S. M.: Unsaturated flow theory including interfacial phenomena.Water Resources Research 27 1855-1863 (1991). 10.1029/91WR01260; reference:[8] Hassanizadeh, S. M., Gray, W. G.: Thermodynamic basis of capillary pressure in porous media.Water Resources Research 29 (1993), 3389-3406. 10.1029/93WR01495; reference:[9] Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems.Springer, Berlin (1997).; reference:[10] Helmig, R., Weiss, A., Wohlmuth, B. I.: Dynamic capillary effects in heterogeneous porous media.Comput. Geosci. 11 261-274 (2007). Zbl 1123.76065, MR 2344202, 10.1007/s10596-007-9050-1; reference:[11] Ippisch, O., Vogel, H.-J., Bastian, P.: Validity limits for the van Genuchten-Mualem model and implications for parameter estimation and numerical simulation.Advances in Water Resources 29 (2006), 1780-1789.; reference:[12] Mikyška, J., Illangasekare, M. Beneš,T. H.: Numerical investigation of non-aqueous phase liquid behavior at heterogeneous sand layers using voda multiphase flow code.Journal of Porous Media 12 (2009), 685-694. 10.1615/JPorMedia.v12.i7.60; reference:[13] Sakaki, T., Illangasekare, D. M. O'Carroll,T. H.: Direct Laboratory Quantification of Dynamic Coefficient of a Field Soil for Drainage and Wetting Cycles.American Geophysical Union, Fall Meeting 2007, abstract\# H53F-1486, 2007.; reference:[14] Stauffer, F.: Time dependence of the relations between capillary pressure, water content and conductivity during drainage of porous media.On Scale Effects in Porous Media, IAHR, Thessaloniki, Greece, 1978.; reference:[15] Genuchten, M. T. van: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.Soil Science Society of America Journal 44 (1980), 892-898. 10.2136/sssaj1980.03615995004400050002x
-
4Academic Journal
مصطلحات موضوعية: keyword:hyperbolic partial differential equation, keyword:Hamilton–Jacobi equation, keyword:finite difference method, keyword:semi-Lagrangian scheme, keyword:Shape-from-Shading, msc:35L60, msc:65D19, msc:65N06, msc:65N12, msc:68T45, msc:68U10
وصف الملف: application/pdf
Relation: mr:MR2663598; zbl:Zbl 1198.68266; reference:[1] Bornemann, F., Deuflhard, P.: Cascadic multigrid methods.In: Domain Decomposition Methods in Sciences and Engineering (R. Glowinski, J. Periaux, Z. Shi, and O. Widlund, eds.), John Wiley, New York 1997, pp. 205–212. MR 1943461; reference:[2] Breuß, M., Vogel, O., Weickert, J.: Efficient numerical techniques for perspective shape from shading.In: Proc. Algoritmy 2009, Podbanské 2009 (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševcovič, eds.), Slovak University of Technology, Bratislava 2009, pp. 11–20.; reference:[3] Camilli, F., Prados, E.: Shape-from-Shading with discontinuous image brightness.Appl. Numer. Math. 56 (2006), 9, 1225–1237. Zbl 1096.65059, MR 2244973, 10.1016/j.apnum.2006.03.007; reference:[4] Courteille, F., Crouzil, A., Durou, J.-D, Gurdjos, P.: Towards shape from shading under realistic photographic conditions.In: Proc. 17th Internat. Conf. Patt. Recog. (vol. II), Cambridge 2004, pp. 277–280.; reference:[5] Cristiani, E.: Fast Marching and Semi-Lagrangian Methods for Hamilton–Jacobi Equations with Applications.Ph.D. Thesis, Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di Roma “La Sapienza”, Rome 2007.; reference:[6] Cristiani, E., Falcone, M., Seghini, A.: Numerical solution of the perspective Shape-from-Shading problem.In: Proc. Control Systems: Theory, Numerics and Applications, Rome 2005. Proceedings of Science (CSTNA2005) 008, http://pos.sissa.it/; reference:[7] Cristiani, E., Falcone, M., Seghini, A.: Some remarks on perspective Shape-from-Shading models.In: Proc. 1st Internat. Conf. Scale Space and Variational Methods in Comput. Vis., Ischia 2007 (F. Sgallari, A. Murli, and N. Paragios, eds., Lecture Notes in Comput. Sci. 4485), Springer, Berlin 2008, pp. 276–287.; reference:[8] Durou, J.-D., Falcone, M., Sagona, M.: Numerical methods for Shape-from-Shading: A new survey with nenchmarks.Comp. Vis. and Image Underst. 109 (2008), 1, 22–43. 10.1016/j.cviu.2007.09.003; reference:[9] Falcone, M., Ferretti, R.: Semi–Lagrangian schemes for Hamilton–Jacobi equations, discrete representation formulae and Godunov methods.J. Comput. Phys. 175 (2002), 2, 559–575. Zbl 1007.65060, MR 1880118, 10.1006/jcph.2001.6954; reference:[10] Foley, J. D., Dam, A. van, Feiner, S. K., Hughes, J. F.: Computer Graphics: Principles and Practice.Addison–Wesley, Reading 1996.; reference:[11] Hoppe, R. H. W.: Multigrid methods for Hamilton–Jacobi–Bellman equations.Numer. Math. 49 (1986), 2-3, 239–254. MR 0848524, 10.1007/BF01389627; reference:[12] Horn, B. K. P.: Obtaining shape from shading information.In: The Psychology of Computer Vision (P. H. Winston, ed.), McGraw-Hill, New York 1975, Ch. 4, pp. 115–155. MR 0416135; reference:[13] Horn, B. K. P.: Robot Vision.MIT Press, Cambridge Mass. 1986.; reference:[14] Horn, B. K. P., Brooks, M. J.: Shape from Shading.Artificial Intelligence Series, MIT Press, Cambridge Mass.1989. Zbl 0629.65125, MR 1062877; reference:[15] Okatani, T., Deguchi, K.: Shape reconstruction from an endoscope image by Shape from Shading Technique for a point light source at the projection center.Comp. Vis. and Image Underst. 66 (1997), 2, 119–131. 10.1006/cviu.1997.0613; reference:[16] Prados, E., Faugeras, O.: “Perspective Shape from Shading” and viscosity solutions.In: Proc. 9th IEEE Internat. Conf. Comp. Vis. (vol. II), Nice 2003, pp. 826–831.; reference:[17] Prados, E., Faugeras, O.: Unifying approaches and removing unrealistic assumptions in Shape From Shading: Mathematics can help.In: Proc. 8th Eur. Conf. Comp. Vis. (vol. IV), Prague 2004, Lecture Notes in Comp. Sci.3024, pp. 141–154. Zbl 1098.68844; reference:[18] Prados, E., Camilli, F., Faugeras, O.: A unifying and rigorous shape from shading method adapted to realistic data and applications.J. Math. Imag. and Vis. 25 (2006), 3, 307–328. MR 2283609, 10.1007/s10851-006-6899-x; reference:[19] Prados, E., Camilli, F., Faugeras, O.: A viscosity solution method for shape-from-shading without image boundary data.M2AN Math. Model. Numer. Anal. 40 (2006), 2, 393–412. Zbl 1112.49025, MR 2241829, 10.1051/m2an:2006018; reference:[20] Rosenfeld, A.: Multiresolution Image Processing and Analysis.Springer, Berlin 1984. Zbl 0537.68086; reference:[21] Rouy, E., Tourin, A.: A Viscosity solutions approach to Shape-from-Shading.SIAM J. Numer. Anal. 29 (1992), 3, 867–884. Zbl 0754.65069, MR 1163361, 10.1137/0729053; reference:[22] Tankus, A., Sochen, N., Yeshurun, Y.: A new perspective [on] Shape-from-Shading.In: Proc. 9th IEEE Internat. Conf. Comp. Vis. (vol. II), Nice 2003, pp. 862–869.; reference:[23] Vogel, O., Breuß, M., Weickert, J.: A direct numerical approach to perspective Shape-from-Shading.In: Proc. Vision, Modeling, and Visualization Workshop 2007, Saarbrücken 2007 (H. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek, and J. Weickert, eds.), pp. 91–100.; reference:[24] Zhang, R., Tsai, P.-S., Cryer, J. E., Shah, M.: Shape from Shading: A survey.IEEE Trans. Patt. Anal. Mach. Intell. 21 (1999), 8, 690–706. 10.1109/34.784284; reference:[25] Zhao, H.: A fast sweeping method for eikonal equations.Math. Comp. 74 (2004), 250, 603–627. Zbl 1070.65113, MR 2114640, 10.1090/S0025-5718-04-01678-3
-
5
المؤلفون: Willems, Jörg
مصطلحات موضوعية: Hochskalieren, Partial Differential Equations, Effective Conductivity, Homogenisierung
, msc:35J25, msc:65N55, Partielle Differentialgleichung, Strömungsmechanik, Upscaling, msc:65N30, ddc:510, Wärmeleitfähigkeit, Numerische Mathematik, msc:65N06, Brinkman وصف الملف: application/pdf
-
6
المؤلفون: Willems, Jörg
مصطلحات موضوعية: Hochskalieren, Partial Differential Equations, Effective Conductivity, Homogenisierung
, msc:35J25, msc:65N55, Partielle Differentialgleichung, Strömungsmechanik, Upscaling, msc:65N30, ddc:510, Wärmeleitfähigkeit, Numerische Mathematik, msc:65N06, Brinkman وصف الملف: application/pdf
-
7
المؤلفون: Rutka, Vita
وصف الملف: application/pdf
-
8Academic Journal
المؤلفون: Práger, Milan
مصطلحات موضوعية: keyword:discrete Laplace operator, keyword:discrete boundary value problem, keyword:eigenvalues, keyword:eigenfunctions, msc:35J05, msc:35P10, msc:35R10, msc:65N06, msc:65N25
وصف الملف: application/pdf
Relation: mr:MR1828307; zbl:Zbl 1059.65101; reference:[1] M. Práger: Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle.Appl. Math. 43 (1998), 311–320. MR 1627985, 10.1023/A:1023269922178
-
9Academic Journal
المؤلفون: Vitásek, Emil
مصطلحات موضوعية: keyword:difference equation, keyword:sparse matrices, keyword:boundary value problems, msc:35J05, msc:39A10, msc:65F50, msc:65N06, msc:65N22, msc:65Q05
وصف الملف: application/pdf
Relation: mr:MR1800965; zbl:Zbl 1003.65118; reference:[1] J. Taufer: Lösung der Randwertprobleme von linearen Differentialgleichungen. Rozpravy ČSAV, Řada mat. a přír. věd, Vol. 83.Academia, Praha, 1973.; reference:[2] G. H. Meyer: Initial Value Methods for Boundary Value Problems: Theory and Application of Invariant Imbedding.Academic Press, New York, 1973. Zbl 0304.34018, MR 0488791; reference:[3] E. Vitásek: Approximate solution of ordinary differential equations.In: Survey of Applicable Mathematics (K. Rektorys and E. Vitásek, eds.), Kluwer Academic Publishers, Dordrecht, 1994, pp. 478–533.; reference:[4] E. Vitásek: Remark to the problem of transferring boundary conditions in two dimensions.In: Proceedings of the Prague Mathematical Conference 1996, Icaris, Praha, 1997, pp. 337–342. MR 1703984
-
10Academic Journal
المؤلفون: Roos, Hans-Görg, Stynes, Martin
مصطلحات موضوعية: keyword:numerical analysis, keyword:convection-diffusion problems, keyword:boundary layers, keyword:uniform convergence, msc:65N06, msc:65N12
وصف الملف: application/pdf
Relation: mr:MR1395686; zbl:Zbl 0870.65091; reference:[AS64] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions.National Bureau of Standards, 1964.; reference:[Ec73] Eckhaus, W.: Matched asymptotic expansions and singular perturbations.North-Holland, Amsterdam, 1973. Zbl 0255.34002, MR 0670800; reference:[Em73] Emel’janov, K.V.: A difference scheme for a three-dimensional elliptic equation with a small parameter multiplying the highest derivative.Boundary value problems for equations of mathematical physics, USSR Academy of Sciences, Ural Scientific Centre, 1973, pp. 30–42. (Russian); reference:[Gu93] Guo, W.: Uniformly convergent finite element methods for singularly perturbed parabolic problems.Ph.D. Dissertation, National University of Ireland, 1993.; reference:[HK90] Han, H., Kellogg, R.B.: Differentiability properties of solutions of the equation $-\epsilon ^2\Delta u+ru=f(x,y)$ in a square.SIAM J. Math. Anal., 21 (1990), 394–408. MR 1038899, 10.1137/0521022; reference:[La61] Lax, P.D.: On the stability of difference approximations to solutions of hyperbolic equations with variable coefficients.Comm. Pure Appl. Math. 14 (1961), 497–520. Zbl 0102.11701, MR 0145686, 10.1002/cpa.3160140324; reference:[Le76] Lelikova, E.F.: On the asymptotic solution of an elliptic equation of the second order with a small parameter effecting the highest derivative.Differential Equations 12 (1976), 1852–1865. (Russian) MR 0445100; reference:[Ro85] Roos, H.-G.: Necessary convergence conditions for upwind schemes in the two-dimensional case.Int. J. Numer. Meth. Eng. 21 (1985), 1459–1469. Zbl 0578.65098, MR 0799066, 10.1002/nme.1620210808; reference:[SK87] Shih, S.D., Kellogg, R.B.: Asymptotic analysis of a singular perturbation problem.SIAM J. Math. Anal., 18 (1987), 1467–1511. MR 0902346, 10.1137/0518107; reference:[Sh89] Shishkin, G.I.: Approximation of the solutions of singularly perturbed boundary-value problems with a parabolic boundary layer.U.S.S.R. Comput. Maths. Math. Physics 29 (1989), 1–10. Zbl 0709.65073, MR 1011021, 10.1016/0041-5553(89)90109-2; reference:[Si90] Shishkin, G.I.: Grid approximation of singularly perturbed boundary value problems with convective terms.Sov. J. Numer. Anal. Math. Modelling 5 (1990), 173–187. Zbl 0816.65051, MR 1122367, 10.1515/rnam.1990.5.2.173; reference:[Si92] Shishkin, G.I.: Methods of constructing grid approximations for singularly perturbed boundary value problems.Sov. J. Numer. Anal. Math. Modelling 7 (1992), 537–562. Zbl 0816.65072, MR 1202653; reference:[ST92] Stynes, M., Tobiska, L.: Necessary $L_2$-uniform conditions for difference schemes for two-dimensional convection-diffusion problems.Computers Math. Applic. 29 (1995), 45–53. MR 1321058, 10.1016/0898-1221(94)00237-F; reference:[Ys83] Yserentant, H.: Die maximale Konsistenzordnung von Differenzapproximationen nichtnegativer Art.Numer. Math. 42 (1983), 119–123. MR 0716478, 10.1007/BF01400922
-
11Academic Journal
المؤلفون: Douglas, Jim, Hensley, Jeffrey L., Roberts, Jean E.
مصطلحات موضوعية: keyword:noncoercive nonsymmetric problems, keyword:Helmholtz equation, keyword:finite difference, keyword:alternating-direction iteration method, keyword:time-stepping method, keyword:convergence, keyword:numerical examples, msc:35J05, msc:65F10, msc:65N06, msc:65N12
وصف الملف: application/pdf
Relation: mr:MR1228510; zbl:Zbl 0807.65106; reference:[1] Douglas J., Jr.: On the numerical integration of $u_{xx} + u_{yy} = u_t$ by implicit methods.J. Soc. Indust. Appl. Math. 3(1955), 42-65. MR 0071875; reference:[2] Douglas J., Jr.: Alternating direction methods for three space variables.Numerische Mathematik 4 (1962), 41-63. Zbl 0104.35001, MR 0136083, 10.1007/BF01386295; reference:[3] Douglas J., Jr., Dupont T.: Alternating-direction Galerkin methods on rectangles.Numerical Solution of Partial Differential Equations II (Burt Hubbard, ed.), Academic Press, New York, 1971, pp. 133-214. Zbl 0239.65088, MR 0273830; reference:[4] Douglas J., Jr., Gunn J. E.: A general formulation of alternating direction methods, I. Parabolic and hyperbolic problems.Numerische Mathematik 6 (1964), 428-453. Zbl 0141.33103, MR 0176622, 10.1007/BF01386093; reference:[5] Douglas J., Jr., Peaceman D. W.: Numerical solution of two dimensional heat flow problems.A.I.Ch.E. Jour 1 (1955), 505-512.; reference:[6] Douglas J., Jr., Rachford H. H., Jr.: On the numerical solution of heat conduction problems in two and three space variables.Trans. Amer. Math. Soc. 82 (1956), 421-439. Zbl 0070.35401, MR 0084194, 10.1090/S0002-9947-1956-0084194-4; reference:[7] Douglas J., Jr., Santos J. E., Sheen D., Bennethum L. S.: Frequency domain treatment of one-dimensional scalar waves.Mathematical Models and Methods in Applied Sciencis (1993), to appear. Zbl 0783.65070, MR 1212938; reference:[8] Peaceman D. W.: The numerical solution of parabolic elliptic differential equations.J. Soc. Ind. Appl. Math. 3 (1955), 28-41. MR 0071874, 10.1137/0103003; reference:[9] Pearcy C. M.: On convergence of alternating direction procedures.Numerische Mathematik 4 (1962), 172-176. Zbl 0112.34802, MR 0145677, 10.1007/BF01386310
-
12Conference
المؤلفون: Práger, Milan, Taufer, Jiří, Vitásek, Emil
وصف الملف: application/pdf
Relation: mr:MR351088; zbl:Zbl 0357.65048
-
13Conference
-
14Conference
-
15Academic Journal
المؤلفون: Dinh, Ta Van
مصطلحات موضوعية: keyword:error expansion, keyword:Dirichlet problem, keyword:selfadjoint, keyword:central difference scheme, keyword:finite difference method, msc:35J25, msc:65N06, msc:65N15
وصف الملف: application/pdf
Relation: mr:MR0879326; zbl:Zbl 0629.65109; reference:[1] Г. И. Марчук В. В. Шайдуров: Повышение точности решений разностных схем.Москва, Наука, 1979. Zbl 1225.01075; reference:[2] О. А. Ладыженская H. H. Уралъцева: Линейные и квазилинейные уравнения эллиптического типа.Москва, Наука, 1973. Zbl 1221.53041
-
16Academic Journal
المؤلفون: Humhal, Emil
وصف الملف: application/pdf
Relation: mr:MR0403253; zbl:Zbl 0335.35039; reference:[1] R. S. Varga: Matrix Iterative Analysis.Prentice Hall, Englewood Cliffs, New Jersey, 1962. MR 0158502; reference:[2] A. S. Householder: The Theory of Matrices in Numerical Analysis.Blaisdell Publishing Company, New York-Toronto- London, 1964. Zbl 0161.12101, MR 0175290
-
17Academic Journal