يعرض 1 - 11 نتائج من 11 نتيجة بحث عن '"msc:65K15"', وقت الاستعلام: 0.51s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Yin, Lulu, Liu, Hongwei, Yang, Jun

    وصف الملف: application/pdf

    Relation: mr:MR4409307; zbl:Zbl 07547196; reference:[1] Bauschke, H. H., Combettes, P. L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces.CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011). Zbl 1218.47001, MR 2798533, 10.1007/978-1-4419-9467-7; reference:[2] Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Nonlinear Programming Techniques for Equilibria.EURO Advanced Tutorials on Operational Research. Springer, Cham (2019). Zbl 06954058, MR 3838394, 10.1007/978-3-030-00205-3; reference:[3] Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems.Math. Stud. 63 (1994), 123-145. Zbl 0888.49007, MR 1292380; reference:[4] Daniele, P., Giannessi, F., (eds.), A. Maugeri: Equilibrium Problems and Variational Models.Nonconvex Optimization and Its Applications 68. Kluwer, Dordrecht (2003). Zbl 1030.00031, MR 2042582, 10.1007/978-1-4613-0239-1; reference:[5] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. 1.Springer Series in Operations Research. Springer, New York (2003). Zbl 1062.90001, MR 1955648, 10.1007/b97543; reference:[6] Fan, K.: A minimax inequality and applications.Inequalities. III Academic Press, New York (1972), 103-113. Zbl 0302.49019, MR 0341029; reference:[7] am, S. D. Fl\accent23, Antipin, A. S.: Equilibrium programming using proximal-like algorithms.Math. Program. 78 (1997), 29-41. Zbl 0890.90150, MR 1454787, 10.1007/BF02614504; reference:[8] Hieu, D. V.: Halpern subgradient extragradient method extended to equilibrium problems.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111 (2017), 823-840. Zbl 1378.65136, MR 3661152, 10.1007/s13398-016-0328-9; reference:[9] Hieu, D. V.: Convergence analysis of a new algorithm for strongly pseudomontone equilibrium problems.Numer. Algorithms 77 (2018), 983-1001. Zbl 06860399, MR 3779075, 10.1007/s11075-017-0350-9; reference:[10] Hieu, D. V.: The convergence rate of a golden ratio algorithm for equilibrium problems.Available at https://arxiv.org/abs/1810.03564 (2018), 11 pages.; reference:[11] Hieu, D. V.: New inertial algorithm for a class of equilibrium problems.Numer Algorithms 80 (2019), 1413-1436. Zbl 07042055, MR 3927239, 10.1007/s11075-018-0532-0; reference:[12] Hieu, D. V., Cho, Y. J., Xiao, Y.-b.: Modified extragradient algorithms for solving equilibrium problems.Optimization 67 (2018), 2003-2029. Zbl 1416.90050, MR 3885897, 10.1080/02331934.2018.1505886; reference:[13] Hieu, D. V., Cho, Y. J., Xiao, Y.-b., Kumam, P.: Relaxed extragradient algorithm for solving pseudomonotone variational inequalities in Hilbert spaces.Optimization 69 (2020), 2279-2304. Zbl 1459.65096, MR 4156869, 10.1080/02331934.2019.1683554; reference:[14] Hieu, D. V., Cho, Y. J., Xiao, Y.-b., Kumam, P.: Modified extragradient method for pseudomonotone variational inequalities in infinite dimensional Hilbert spaces.Vietnam J. Math. 49 (2021), 1165-1183. Zbl 7425500, MR 4319545, 10.1007/s10013-020-00447-7; reference:[15] Hieu, D. V., Strodiot, J. J., Muu, L. D.: Modified golden ratio algorithms for solving equilibrium problems.Available at https://arxiv.org/abs/1907.04013 (2019), 14 pages.; reference:[16] Hieu, D. V., Strodiot, J. J., Muu, L. D.: An explicit extragradient algorithm for solving variational inequalities.J. Optim. Theory Appl. 185 (2020), 476-503. Zbl 07198926, MR 4096353, 10.1007/s10957-020-01661-6; reference:[17] Hieu, D. V., Thong, D. V.: New extragradient-like algorithms for strongly pseudomonotone variational inequalities.J. Glob. Optim. 70 (2018), 385-399. Zbl 1384.65041, MR 3761263, 10.1007/s10898-017-0564-3; reference:[18] Kim, D. S., Vuong, P. T., Khanh, P. D.: Qualitative properties of strongly pseudomonotone variational inequalities.Optim. Lett. 10 (2016), 1669-1679. Zbl 1392.90115, MR 3556951, 10.1007/s11590-015-0960-x; reference:[19] Konnov, I. V.: Combined Relaxation Methods for Variational Inequalities.Lecture Notes in Economics and Mathematical Systems 495. Springer, Berlin (2001). Zbl 0982.49009, MR 1795730, 10.1007/978-3-642-56886-2; reference:[20] Konnov, I. V.: Equilibrium Models and Variational Inequalities.Mathematics in Science and Engineering 210. Elsevier, Amsterdam (2007). Zbl 1140.91056, MR 2503647, 10.1016/s0076-5392(07)x8001-9; reference:[21] Korpelevich, G. M.: An extragradient method for finding saddle points and other problems.Ehkon. Mat. Metody Russian 12 (1976), 747-756. Zbl 0342.90044, MR 0451121; reference:[22] Malitsky, Y.: Golden ratio algorithms for variational inequalities.Math. Program. 184 (2020), 383-410. Zbl 07263698, MR 4037890, 10.1007/s10107-019-01416-w; reference:[23] Martinet, B.: Régularisation d'inéquations variationnelles par approximations successives.Rev. Franç. Inform. Rech. Opér. French 4 (1970), 154-158. Zbl 0215.21103, MR 298899, 10.1051/m2an/197004R301541; reference:[24] Muu, L. D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria.Nonlinear Anal., Theory Methods Appl. 18 (1992), 1159-1166. Zbl 0773.90092, MR 1171603, 10.1016/0362-546X(92)90159-C; reference:[25] Muu, L. D., Quy, N. V.: On existence and solution methods for strongly pseudomonotone equilibrium problems.Vietnam J. Math. 43 (2015), 229-238. Zbl 1317.47058, MR 3349814, 10.1007/s10013-014-0115-x; reference:[26] Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables.Computer Science and Applied Mathematics. Academic Press, New York (1970). Zbl 0241.65046, MR 0273810, 10.1016/c2013-0-11263-9; reference:[27] Rockafellar, R. T.: Monotone operators and the proximal point algorithm.SIAM J. Control Optim. 14 (1976), 877-898. Zbl 0358.90053, MR 0410483, 10.1137/0314056; reference:[28] Tran, D. Q., Dung, M. L., Nguyen, V. H.: Extragradient algorithms extended to equilibrium problems.Optimization 57 (2008), 749-776. Zbl 1152.90564, MR 2473940, 10.1080/02331930601122876; reference:[29] Vinh, N. T.: Golden ratio algorithms for solving equilibrium problems in Hilbert spaces.Available at https://arxiv.org/abs/1804.01829 (2018), 25 pages.; reference:[30] Yang, J., Liu, H.: A self-adaptive method for pseudomonotone equilibrium problems andvariational inequalities.Comput. Optim. Appl. 75 (2020), 423-440. Zbl 1432.49013, MR 4064596, 10.1007/s10589-019-00156-z

  2. 2
    Academic Journal

    المؤلفون: Tang, Jingyong, Chen, Yuefen

    وصف الملف: application/pdf

    Relation: mr:MR4396685; zbl:Zbl 07511502; reference:[1] Alizadeh, F., Goldfarb, D.: Second-order cone programming.Math. Program. 95 (2003), 3-51. Zbl 1153.90522, MR 1971381, 10.1007/s10107-002-0339-5; reference:[2] Alzalg, B.: The Jordan algebraic structure of the circular cone.Oper. Matrices 11 (2017), 1-21. Zbl 1404.17046, MR 3602626, 10.7153/oam-11-01; reference:[3] Bai, Y., Gao, X., Wang, G.: Primal-dual interior-point algorithms for convex quadratic circular cone optimization.Numer. Algebra Control Optim. 5 (2015), 211-231. Zbl 1317.90193, MR 3365253, 10.3934/naco.2015.5.211; reference:[4] Bai, Y., Ma, P., Zhang, J.: A polynomial-time interior-point method for circular cone programming based on kernel functions.J. Ind. Manag. Optim. 12 (2016), 739-756. Zbl 1327.90192, MR 3413849, 10.3934/jimo.2016.12.739; reference:[5] Burke, J., Xu, S.: A non-interior predictor-corrector path following algorithm for the monotone linear complementarity problem.Math. Program. 87 (2000), 113-130. Zbl 1081.90603, MR 1734661, 10.1007/s101079900111; reference:[6] Chen, J.-S., Pan, S.: A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs.Pac. J. Optim. 8 (2012), 33-74. Zbl 1286.90148, MR 2919670; reference:[7] Chen, J.-S., Sun, D., Sun, J.: The $SC^1$ property of the squared norm of the SOC Fischer-Burmeister function.Oper. Res. Lett. 36 (2008), 385-392. Zbl 1152.90621, MR 2424468, 10.1016/j.orl.2007.08.005; reference:[8] Chen, L., Ma, C.: A modified smoothing and regularized Newton method for monotone second-order cone complementarity problems.Comput. Math. Appl. 61 (2011), 1407-1418. Zbl 1217.65127, MR 2773413, 10.1016/j.camwa.2011.01.009; reference:[9] Chen, X. D., Sun, D., Sun, J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems.Comput. Optim. Appl. 25 (2003), 39-56. Zbl 1038.90084, MR 1996662, 10.1023/A:1022996819381; reference:[10] Chi, X., Liu, S.: A non-interior continuation method for second-order cone programming.Optimization 58 (2009), 965-979. Zbl 1177.90318, MR 2572781, 10.1080/02331930701763421; reference:[11] Chi, X., Liu, S.: A one-step smoothing Newton method for second-order cone programming.J. Comput. Appl. Math. 223 (2009), 114-123. Zbl 1155.65045, MR 2463105, 10.1016/j.cam.2007.12.023; reference:[12] Chi, X., Tao, J., Zhu, Z., Duan, F.: A regularized inexact smoothing Newton method for circular cone complementarity problem.Pac. J. Optim. 13 (2017), 197-218. Zbl 1386.65155, MR 3711669; reference:[13] Chi, X., Wan, Z., Zhu, Z., Yuan, L.: A nonmonotone smoothing Newton method for circular cone programming.Optimization 65 (2016), 2227-2250. Zbl 1351.90149, MR 3564914, 10.1080/02331934.2016.1217861; reference:[14] Chi, X., Wei, H., Wan, Z., Zhu, Z.: Smoothing Newton algorithm for the circular cone programming with a nonmonotone line search.Acta Math. Sci., Ser. B, Engl. Ed. 37 (2017), 1262-1280. Zbl 1399.90207, MR 3683894, 10.1016/S0252-9602(17)30072-3; reference:[15] Facchinei, F., Kanzow, C.: Beyond monotonicity in regularization methods for nonlinear complementarity problems.SIAM J. Control Optim. 37 (1999), 1150-1161. Zbl 0997.90085, MR 1691935, 10.1137/S0363012997322935; reference:[16] Fang, L., Feng, Z.: A smoothing Newton-type method for second-order cone programming problems based on a new smoothing Fischer-Burmeister function.Comput. Appl. Math. 30 (2011), 569-588. Zbl 1401.90152, MR 2863924, 10.1590/S1807-03022011000300005; reference:[17] Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems.SIAM J. Optim. 12 (2001), 436-460. Zbl 0995.90094, MR 1885570, 10.1137/S1052623400380365; reference:[18] Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems.SIAM J. Optim. 15 (2005), 593-615. Zbl 1114.90139, MR 2144183, 10.1137/S1052623403421516; reference:[19] Huang, Z.-H., Ni, T.: Smoothing algorithms for complementarity problems over symmetric cones.Comput. Optim. Appl. 45 (2010), 557-579. Zbl 1198.90373, MR 2600896, 10.1007/s10589-008-9180-y; reference:[20] Jin, P., Ling, C., Shen, H.: A smoothing Levenberg-Marquardt algorithm for semi-infinite programming.Comput. Optim. Appl. 60 (2015), 675-695. Zbl 1318.49062, MR 3320940, 10.1007/s10589-014-9698-0; reference:[21] Ke, Y.-F., Ma, C.-F., Zhang, H.: The relaxation modulus-based matrix splitting iteration methods for circular cone nonlinear complementarity problems.Comput. Appl. Math. 37 (2018), 6795-6820. Zbl 1413.90287, MR 3885844, 10.1007/s40314-018-0687-2; reference:[22] Kheirfam, B., Wang, G.: An infeasible full NT-step interior point method for circular optimization.Numer. Algebra Control Optim. 7 (2017), 171-184. Zbl 1365.90271, MR 3665011, 10.3934/naco.2017011; reference:[23] Liu, W., Wang, C.: A smoothing Levenberg-Marquardt method for generalized semi-infinite programming.Comput. Appl. Math. 32 (2013), 89-105. Zbl 1291.90272, MR 3101279, 10.1007/s40314-013-0013-y; reference:[24] Lobo, M. S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming.Linear Algebra Appl. 284 (1998), 193-228. Zbl 0946.90050, MR 1655138, 10.1016/S0024-3795(98)10032-0; reference:[25] Ma, P., Bai, Y., Chen, J.-S.: A self-concordant interior point algorithm for nonsymmetric circular cone programming.J. Nonlinear Convex Anal. 17 (2016), 225-241. Zbl 1354.90095, MR 3472994; reference:[26] Miao, X.-H., Guo, S., Qi, N., Chen, J.-S.: Constructions of complementarity functions and merit functions for circular cone complementarity problem.Comput. Optim. Appl. 63 (2016), 495-522. Zbl 1360.90250, MR 3457449, 10.1007/s10589-015-9781-1; reference:[27] Miao, X.-H., Yang, J., Hu, S.: A generalized Newton method for absolute value equations associated with circular cones.Appl. Math. Comput. 269 (2015), 155-168. Zbl 1410.65124, MR 3396768, 10.1016/j.amc.2015.07.064; reference:[28] Palais, R. S., Terng, C.-L.: Critical Point Theory and Submanifold Geometry.Lecture Notes in Mathematics 1353. Springer, Berlin (1988). Zbl 0658.49001, MR 0972503, 10.1007/BFb0087442; reference:[29] Pirhaji, M., Zangiabadi, M., Mansouri, H.: A path following interior-point method for linear complementarity problems over circular cones.Japan J. Ind. Appl. Math. 35 (2018), 1103-1121. Zbl 06990734, MR 3868787, 10.1007/s13160-018-0317-9; reference:[30] Qi, L., Sun, J.: A nonsmooth version of Newton's method.Math. Program. 58 (1993), 353-367. Zbl 0780.90090, MR 1216791, 10.1007/BF01581275; reference:[31] Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities.Math. Program. 87 (2000), 1-35. Zbl 0989.90124, MR 1734657, 10.1007/s101079900127; reference:[32] Sun, D., Sun, J.: Strong semismoothness of Fischer-Burmeister SDC and SOC complementarity functions.Math. Program. 103 (2005), 575-581. Zbl 1099.90062, MR 2166550, 10.1007/s10107-005-0577-4; reference:[33] Tang, J., Dong, L., Zhou, J., Sun, L.: A smoothing-type algorithm for the second-order cone complementarity problem with a new nonmonotone line search.Optimization 64 (2015), 1935-1955. Zbl 1337.90071, MR 3361160, 10.1080/02331934.2014.906595; reference:[34] Tang, J., He, G., Dong, L., Fang, L., Zhou, J.: A smoothing Newton method for the second-order cone complementarity problem.Appl. Math., Praha 58 (2013), 223-247. Zbl 1274.90268, MR 3034823, 10.1007/s10492-013-0011-9; reference:[35] Yoshise, A.: Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones.SIAM J. Optim. 17 (2006), 1129-1153. Zbl 1136.90039, MR 2274506, 10.1137/04061427X; reference:[36] Zhang, J., Chen, J.: A smoothing Levenberg-Marquardt type method for LCP.J. Comput. Math. 22 (2004), 735-752. Zbl 1068.65084, MR 2080440; reference:[37] Zhou, J., Chen, J.-S.: Properties of circular cone and spectral factorization associated with circular cone.J. Nonlinear Convex Anal. 14 (2013), 807-816. Zbl 1294.49007, MR 3131148; reference:[38] Zhou, J., Chen, J.-S., Hung, H.-F.: Circular cone convexity and some inequalities associated with circular cones.J. Inequal. Appl. 2013 (2013), Article ID 571, 17 pages. Zbl 1297.26025, MR 3212998, 10.1186/1029-242X-2013-571; reference:[39] Zhou, J., Chen, J.-S., Mordukhovich, B. S.: Variational analysis of circular cone programs.Optimization 64 (2015), 113-147. Zbl 1338.90396, MR 3293544, 10.1080/02331934.2014.951043; reference:[40] Zhou, J., Tang, J., Chen, J.-S.: Parabolic second-order directional differentiability in the Hadamard sense of the vector-valued functions associated with circular cones.J. Optim. Theory Appl. 172 (2017), 802-823. Zbl 1362.90345, MR 3610222, 10.1007/s10957-016-0935-9

  3. 3
    Academic Journal

    المؤلفون: Jolaoso, L.O., Abass, H.A., Mewomo, O.T.

    وصف الملف: application/pdf

    Relation: mr:MR3994324; zbl:Zbl 07138661; reference:[1] Abass, H.A., Ogbuisi, F.U., Mewomo, O.T.: Common solution of split equilibrium problem and fixed point problem with no prior knowledge of operator norm.U.P.B. Sci. Bull., Series A 80 (1) (2018), 175–190. MR 3785191; reference:[2] Alvarez, F., Attouch, H.: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping.Set-Valued Anal. 9 (2001), 3–11. MR 1845931, 10.1023/A:1011253113155; reference:[3] Beck, A., Teboull, M.: Gradient-based algorithms with applications to signal-recovery problems.Convex optimization in signal processing and communications (Palomar, D., Elder, Y., eds.), Cambridge Univ. Press, Cambridge, 2010, pp. 42–88. MR 2767564; reference:[4] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problem.SIAM J. Imaging Sci. 2 (1) (2009), 183–202. MR 2486527, 10.1137/080716542; reference:[5] Bot, R.I., Csetnek, E.R.: An inerial Tseng’s type proximal point algorithm for nonsmooth and nonconvex optimization problem.J. Optim. Theory Appl. 171 (2016), 600–616. MR 3557440, 10.1007/s10957-015-0730-z; reference:[6] Bot, R.I., Csetnek, E.R., Laszlo, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions.EJCO 4 (2016), 3–25. MR 3500980; reference:[7] Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction.Inverse Problems 20 (2004), 103–120. MR 2044608, 10.1088/0266-5611/20/1/006; reference:[8] Cai, G., Shehu, Y.: An iterative algorithm for fixed point problem and convex minimization problem with applications.Fixed Point Theory and Appl. 2015 123 (2015), 18 pp. MR 3303116; reference:[9] Ceng, L.-C., Ansari, Q.H., Ya, J.-C.: Some iterative methods for finding fixed points and for solving constrained convex minimization problems.Nonlinear Anal. 74 (2011), 5286–5302. MR 2819274, 10.1016/j.na.2011.05.005; reference:[10] Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space.Numer. Algorithms 8 (2–4) (1994), 221–239. Zbl 0828.65065, MR 1309222, 10.1007/BF02142692; reference:[11] Chambolle, A., Dossal, C.: On the convergence of the iterates of the fast iterative shrinkage thresholding algorithm.J. Optim. Theory Appl. 166 (2015), 968–982. MR 3375610, 10.1007/s10957-015-0746-4; reference:[12] Chan, R.H., Ma, S., Jang, J.F.: Inertial proximal ADMM for linearly constrained separable convex optimization.SIAM J. Imaging Sci. 8 (4) (2015), 2239–2267. MR 3404682, 10.1137/15100463X; reference:[13] Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators.Optimization 53 (2004), 475–504. MR 2115266, 10.1080/02331930412331327157; reference:[14] Combettes, P.L., Pesquet, J.-C.: Proximal Splitting Methods in Signal Processing.Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp. 185–212. MR 2858838; reference:[15] Fichera, G.: Problemi elastostatic con vincoli unilaterli: II Problema di signorini con ambigue condizioni al contorno.Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 7 (1963/1964), 91–140. MR 0178631; reference:[16] Geobel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory.Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. MR 1074005; reference:[17] Guo, Y., Cui, W.: Strong convergence and bounded perturbation resilence of a modified proximal gradient algorithm.J. Ineq. Appl. 2018 (2018). MR 3797139, 10.1186/s13660-018-1695-x; reference:[18] Izuchukwu, C., Ugwunnadi, G.C., Mewomo, O.T., Khan, A.R., Abbas, M.: Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces.Numer. Algorithms (2018), https://doi.org/10.1007/s11075-018-0633-9. MR 4027651, 10.1007/s11075-018-0633-9; reference:[19] Jolaoso, L.O., Ogbuisi, F.U., Mewomo, O.T.: An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces.Adv. Pure Appl. Math. 9 (3) (2018), 167–183. MR 3819533, 10.1515/apam-2017-0037; reference:[20] Jolaoso, L.O., Oyewole, K.O., Okeke, C.C., Mewomo, O.T.: A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space.Demonstratio Math. 51 (2018), 211–232. MR 3856588, 10.1515/dema-2018-0015; reference:[21] Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A strong convergence theorem for solving variational inequalities using an inertial viscosity subgradient extragradient algorithm with self adaptive stepsize.Demonstratio Math. 52 (1) (2019), 183–203. MR 3938331; reference:[22] Lions, J.L., Stampacchia, G.: Variational inequalities.Comm. Pure Appl. Math. 20 (1967), 493–519. Zbl 0152.34601, MR 0216344, 10.1002/cpa.3160200302; reference:[23] Lorenz, D., Pock, T.: An inertial forward-backward algorithm for monotone inclusions.J. Math. Imaging Vision 51 (2) (2015), 311–325. MR 3314536, 10.1007/s10851-014-0523-2; reference:[24] Maingé, P.E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces.J. Math. Anal. Appl. 325 (2007), 469–479. MR 2273538, 10.1016/j.jmaa.2005.12.066; reference:[25] Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization.Set-Valued Anal. 16 (2008), 899–912. MR 2466027, 10.1007/s11228-008-0102-z; reference:[26] Martinez-Yanes, C., Xu, H.K.: Strong convergence of the CQ method for fixed-point iteration processes.Nonlinear Anal. 64 (2006), 2400–2411. MR 2215815, 10.1016/j.na.2005.08.018; reference:[27] Meir, A., Keeler, E.: A theorem on contraction mappings.J. Math. Anal. Appl. 28 (1969), 326–329. MR 0250291, 10.1016/0022-247X(69)90031-6; reference:[28] Mewomo, O.T., Ogbuisi, F.U.: Convergence analysis of iterative method for multiple set split feasibility problems in certain Banach spaces.Quaestiones Math. 41 (1) (2018), 129–148. MR 3761493, 10.2989/16073606.2017.1375569; reference:[29] Moudafi, A.: Viscosity approximation method for fixed-points problems.J. Math. Anal. Appl. 241 (1) (2000), 46–55. MR 1738332, 10.1006/jmaa.1999.6615; reference:[30] Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators.J. Comput. Appl. Math. 155 (2003), 447–454. MR 1984300, 10.1016/S0377-0427(02)00906-8; reference:[31] Moudafi, A., Thakur, B.S.: Solving proximal split feasibility problems without prior knowledge of operator norms.Optim. Lett. 8 (7) (2014), 2099–2110. MR 3263242, 10.1007/s11590-013-0708-4; reference:[32] Nesterov, Y.: A method for solving the convex programming problem with convergence rate $0(\frac{1}{k^2})$.Dokl. Akad. Nauk SSSR 269 (3) (1983), 543–547. MR 0701288; reference:[33] Ogbuisi, F.U., Mewomo, O.T.: On split generalized mixed equilibrium problems and fixed point problems with no prior knowledge of operator norm.J. Fixed Point Theory Appl. 19 (3) (2016), 2109–2128. MR 3692443, 10.1007/s11784-016-0397-6; reference:[34] Ogbuisi, F.U., Mewomo, O.T.: Iterative solution of split variational inclusion problem in a real Banach space.Afrika Mat. (3) 28 (1–2) (2017), 295–309. MR 3613639, 10.1007/s13370-016-0450-z; reference:[35] Ogbuisi, F.U., Mewomo, O.T.: Convergence analysis of common solution of certain nonlinear problems.Fixed Point Theory 19 (1) (2018), 335–358. MR 3754008, 10.24193/fpt-ro.2018.1.26; reference:[36] Okeke, C.C., Mewomo, O.T.: On split equilibrim problem, variational inequality problem and fixed point problem for multi-valued mappings.Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2) (2017), 255–280. MR 3742495; reference:[37] Parith, N., Boyd, S.: Proximal algorithms.Foundations and Trends in Optimization 1 (3) (2013), 123–231.; reference:[38] Pesquet, J.-C., Putselnik, N.: A parallel inertial proximal optimization method.Pacific J. Optim. 8 (2) (2012), 273–306. MR 2954380; reference:[39] Polyak, B.T.: Some methods of speeding up the convergence of iteration methods.U.S.S.R. Comput. Math. Math. Phys. 4 (5) (1964), 1–17. MR 0169403, 10.1016/0041-5553(64)90137-5; reference:[40] Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators.Trans. Amer. Math. Soc. 149 (1970), 75–88. MR 0282272, 10.1090/S0002-9947-1970-0282272-5; reference:[41] Rockafellar, R.T., Wets, R.: Variational Analysis.Springer, Berlin, 1988.; reference:[42] Shehu, Y.: Approximation of solutions to constrained convex minimization problem in Hilbert spaces.Vietnam J. Math. (2014), DOI 10.1007/s10013-014-0091-1. MR 3386057, 10.1007/s10013-014-0091-1; reference:[43] Stampacchia, G.: Formes bilinearies coercitives sur les ensembles convexes.Comput. Rend. Acad. Sci. Paris 258 (1964), 4413–4416. MR 0166591; reference:[44] Su, M., Xu, H.K.: Remarks on the gradient-projection algorithm.J. Nonlinear Anal. Optim. 1 (1) (2010), 35–43. MR 2911685; reference:[45] Suzuki, T.: Moudai’s viscosity approximations with Meir-Keeler contractions.J. Math. Anal. Appl. 325 (2007), 342–352. MR 2273529, 10.1016/j.jmaa.2006.01.080; reference:[46] Takahashi, W., Wen, C.-F., Yao, J.-C.: The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space.Fixed Point Theory 19 (1) (2018), 407–420. MR 3754014, 10.24193/fpt-ro.2018.1.32; reference:[47] Tian, M., Huang, L.H.: A general approximation method for a kind of convex optimization problems in Hilbert spaces.J. Appl. Math. 2014 (2014), 9 pages, Article ID 156073. MR 3198359; reference:[48] Xu, H.K.: Viscosity approximation method for nonexpansive mappings.J. Math. Anal. Appl. 298 (1) (2004), 279–291. MR 2086546, 10.1016/j.jmaa.2004.04.059; reference:[49] Xu, H.K.: Average mappings and the gradient projection algorithm.J. Optim. Theory Appl. 150 rm (2) (2011), 360–378. MR 2818926, 10.1007/s10957-011-9837-z

  4. 4
    Academic Journal

    المؤلفون: Kebaili, Zahira, Benterki, Djamel

    وصف الملف: application/pdf

    Relation: mr:MR3842962; zbl:Zbl 06945741; reference:[1] Auslender, A.: Optimisation. Méthodes numériques.Maitrise de mathématiques et applications fondamentales. Masson, Paris French (1976). Zbl 0326.90057, MR 0441204; reference:[2] Censor, Y., Iusem, A. N., Zenios, S. A.: An interior point method with Bregman functions for the variational inequality problem with paramonotone operators.Math. Program. 81 (1998), 373-400. Zbl 0919.90123, MR 1617732, 10.1007/BF01580089; reference:[3] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. I.Springer Series in Operations Research Springer, New York (2003). Zbl 1062.90001, MR 1955648, 10.1007/b97543; reference:[4] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. II.Springer Series in Operations Research Springer, New York (2003). Zbl 1062.90002, MR 1955649, 10.1007/b97544; reference:[5] Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems.Math. Program., Ser. A 53 (1992), 99-110. Zbl 0756.90081, MR 1151767, 10.1007/BF01585696; reference:[6] Hao, Z., Wan, Z., Chi, X., Chen, J.: A power penalty method for second-order cone nonlinear complementarity problems.J. Comput. Appl. Math. 290 (2015), 136-149. Zbl 1327.90207, MR 3370398, 10.1016/j.cam.2015.05.007; reference:[7] Harker, P. T., Pang, J.-S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications.Math. Program., Ser. B 48 (1990), 161-220. Zbl 0734.90098, MR 1073707, 10.1007/BF01582255; reference:[8] Huang, C., Wang, S.: A power penalty approach to a nonlinear complementarity problem.Oper. Res. Lett. 38 (2010), 72-76. Zbl 1182.90090, MR 2565819, 10.1016/j.orl.2009.09.009; reference:[9] Huang, C., Wang, S.: A penalty method for a mixed nonlinear complementarity problem.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 588-597. Zbl 1233.65040, MR 2847442, 10.1016/j.na.2011.08.061; reference:[10] Kanzow, C., Fukushima, M.: Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities.Math. Program. 83 (1998), 55-87. Zbl 0920.90134, MR 1643959, 10.1007/BF02680550; reference:[11] Ma, C., Kang, T.: A Jacobian smoothing method for box constrained variational inequality problems.Appl. Math. Comput. 162 (2005), 1397-1429. Zbl 1068.65089, MR 2113979, 10.1016/j.amc.2004.03.018; reference:[12] Noor, M. A., Wang, Y., Xiu, N.: Some new projection methods for variational inequalities.Appl. Math. Comput. 137 (2003), 423-435. Zbl 1031.65078, MR 1950108, 10.1016/S0096-3003(02)00148-0; reference:[13] Sun, D.-F.: A projection and contraction method for the nonlinear complementarity problem and its extensions.Chin. J. Numer. Math. Appl. 16 (1994), 73-84 English. Chinese original translation from Math. Numer. Sin. 16 1994 183-194. Zbl 0900.65188, MR 1459564; reference:[14] Tang, J., Liu, S.: A new smoothing Broyden-like method for solving the mixed complementarity problem with a $P_0$-function.Nonlinear Anal., Real World Appl. 11 (2010), 2770-2786. Zbl 1208.90172, MR 2661943, 10.1016/j.nonrwa.2009.10.002; reference:[15] Ulji, Chen, G.-Q.: New simple smooth merit function for box constrained variational inequalities and damped Newton type method.Appl. Math. Mech., Engl. Ed. 26 (2005), 1083-1092 Appl. Math. Mech. 26 2005 988-996 Chinese. English, Chinese summary. Zbl 1144.65309, MR 2169264, 10.1007/BF02466422; reference:[16] Wang, S., Yang, X.: A power penalty method for linear complementarity problems.Oper. Res. Lett. 36 (2008), 211-214. Zbl 1163.90762, MR 2396598, 10.1016/j.orl.2007.06.006; reference:[17] Wang, Y., Zhu, D.: An affine scaling interior trust region method via optimal path for solving monotone variational inequality problem with linear constraints.Chin. Ann. Math., Ser. B 29 (2008), 273-290. Zbl 1151.49025, MR 2421761, 10.1007/s11401-007-0082-6

  5. 5
    Conference
  6. 6
    Academic Journal

    المؤلفون: Harasim, Petr, Valdman, Jan

    وصف الملف: application/pdf

    Relation: mr:MR3301782; zbl:Zbl 06416870; reference:[1] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis.Wiley and Sons, New York 2000. Zbl 1008.65076, MR 1885308; reference:[2] Babuška, I., Strouboulis, T.: The finite Element Method and its Reliability.Oxford University Press, New York 2001. MR 1857191; reference:[3] Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations.Birkhäuser, Berlin 2003. Zbl 1020.65058, MR 1960405; reference:[4] Braess, D., Hoppe, R. H. W., Schöberl, J.: A posteriori estimators for obstacle problems by the hypercircle method.Comput. Vis. Sci. 11 (2008), 351-362. MR 2425501, 10.1007/s00791-008-0104-2; reference:[5] Brezi, F., Hager, W. W., Raviart, P. A.: Error estimates for the finite element solution of variational inequalities I.Numer. Math. 28 (1977), 431-443. MR 0448949, 10.1007/BF01404345; reference:[6] Buss, H., Repin, S.: A posteriori error estimates for boundary value problems with obstacles.In: Proc. 3nd European Conference on Numerical Mathematics and Advanced Applications, Jÿvaskylä 1999, World Scientific 2000, pp. 162-170. Zbl 0968.65041, MR 1936177; reference:[7] Carstensen, C., Merdon, C.: A posteriori error estimator competition for conforming obstacle problems.Numer. Methods Partial Differential Equations 29 (2013), 667-692. MR 3022903, 10.1002/num.21728; reference:[8] Dostál, Z.: Optimal Quadratic Programming Algorithms.Springer 2009. MR 2492434; reference:[9] Falk, R. S.: Error estimates for the approximation of a class of variational inequalities.Math. Comput. 28 (1974), 963-971. Zbl 0297.65061, MR 0391502, 10.1090/S0025-5718-1974-0391502-8; reference:[10] Fuchs, M., Repin, S.: A posteriori error estimates for the approximations of the stresses in the Hencky plasticity problem.Numer. Funct. Anal. Optim. 32 (2011), 610-640. MR 2795532, 10.1080/01630563.2011.571802; reference:[11] Glowinski, R., Lions, J. L., Trémolieres, R.: Numerical Analysis of Variational Inequalities.North-Holland 1981. Zbl 0463.65046, MR 0635927; reference:[12] Gustafsson, B.: A simple proof of the regularity theorem for the variational inequality of the obstacle problem.Nonlinear Anal. 10 (1986), 12, 1487-1490. Zbl 0612.49005, MR 0869557, 10.1016/0362-546X(86)90119-7; reference:[13] Valdman, P. Harasim AD J.: Verification of functional a posteriori error estimates for obstacle problem in 1D.Kybernetika 49 (2013), 5, 738-754. MR 3182637; reference:[14] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of variational inequalities in mechanics.Applied Mathematical Sciences 66, Springer-Verlag, New York 1988. Zbl 0654.73019, MR 0952855; reference:[15] Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications.Academic Press, New York 1980. Zbl 0988.49003, MR 0567696; reference:[16] Lions, J. L., Stampacchia, G.: Variational inequalities.Comm. Pure Appl. Math. 20 (1967), 493-519. Zbl 0152.34601, MR 0216344, 10.1002/cpa.3160200302; reference:[17] Neittaanmäki, P., Repin, S.: Reliable Methods for Computer Simulation (Error Control and A Posteriori Estimates).Elsevier, 2004. Zbl 1076.65093, MR 2095603; reference:[18] Nochetto, R. H., Seibert, K. G., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems.Numer. Math. 95 (2003), 631-658. MR 1993943, 10.1007/s00211-002-0411-3; reference:[19] Rahman, T., Valdman, J.: Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements.Appl. Math. Comput. 219 (2013), 7151-7158. Zbl 1288.65169, MR 3030557, 10.1016/j.amc.2011.08.043; reference:[20] Repin, S.: A posteriori error estimation for variational problems with uniformly convex functionals.Math. Comput. 69 (230) (2000), 481-500. Zbl 0949.65070, MR 1681096, 10.1090/S0025-5718-99-01190-4; reference:[21] Repin, S.: A posteriori error estimation for nonlinear variational problems by duality theory.Zapiski Nauchn. Semin. POMI 243 (1997), 201-214. Zbl 0904.65064, MR 1629741; reference:[22] Repin, S.: Estimates of deviations from exact solutions of elliptic variational inequalities.Zapiski Nauchn. Semin, POMI 271 (2000), 188-203. Zbl 1118.35320, MR 1810617; reference:[23] Repin, S.: A Posteriori Estimates for Partial Differential Equations.Walter de Gruyter, Berlin 2008. Zbl 1162.65001, MR 2458008; reference:[24] Repin, S., Valdman, J.: Functional a posteriori error estimates for problems with nonlinear boundary conditions.J. Numer. Math. 16 (2008), 1, 51-81. Zbl 1146.65054, MR 2396672, 10.1515/JNUM.2008.003; reference:[25] Repin, S., Valdman, J.: Functional a posteriori error estimates for incremental models in elasto-plasticity.Centr. Eur. J. Math. 7 (2009), 3, 506-519. Zbl 1269.74202, MR 2534470, 10.2478/s11533-009-0035-2; reference:[26] Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces.SIAM, 2011. Zbl 1235.49001, MR 2839219; reference:[27] Valdman, J.: Minimization of functional majorant in a posteriori error analysis based on $H(div)$ multigrid-preconditioned CG method.Adv. Numer. Anal. (2009). Zbl 1200.65095, MR 2739760, 10.1155/2009/164519; reference:[28] Zou, Q., Veeser, A., Kornhuber, R., Gräser, C.: Hierarchical error estimates for the energy functional in obstacle problems.Numer. Math. 117 (2012), 4, 653-677. Zbl 1218.65067, MR 2776914, 10.1007/s00211-011-0364-5

  7. 7
    Academic Journal

    المؤلفون: Harasim, Petr, Valdman, Jan

    وصف الملف: application/pdf

    Relation: mr:MR3182637; zbl:Zbl 1278.49035; reference:[1] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis.Wiley and Sons, New York 2000. Zbl 1008.65076, MR 1885308; reference:[2] Babuška, I., Strouboulis, T.: The Finite Element Method and its Reliability.Oxford University Press, New York 2001. MR 1857191; reference:[3] Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations.Birkhäuser, Berlin 2003. Zbl 1020.65058, MR 1960405; reference:[4] Braess, D., Hoppe, R. H. W., Schöberl, J.: A posteriori estimators for obstacle problems by the hypercircle method.Comp. Visual. Sci. 11 (2008), 351-362. MR 2425501, 10.1007/s00791-008-0104-2; reference:[5] Brezi, F., Hager, W. W., Raviart, P. A.: Error estimates for the finite element solution of variational inequalities I.Numer. Math. 28 (1977), 431-443. MR 0448949, 10.1007/BF01404345; reference:[6] Buss, H., Repin, S.: A posteriori error estimates for boundary value problems with obstacles.In: Proc. 3rd European Conference on Numerical Mathematics and Advanced Applications, Jÿvaskylä 1999, World Scientific 2000, pp. 162-170. Zbl 0968.65041, MR 1936177; reference:[7] Carstensen, C., Merdon, C.: A posteriori error estimator completition for conforming obstacle problems.Numer. Methods Partial Differential Equations 29 (2013), 667-�692. MR 3022903, 10.1002/num.21728; reference:[8] Dostál, Z.: Optimal Quadratic Programming Algorithms.Springer 2009. MR 2492434; reference:[9] Falk, R. S.: Error estimates for the approximation of a class of variational inequalities.Math. Comput. 28 (1974), 963-971. Zbl 0297.65061, MR 0391502, 10.1090/S0025-5718-1974-0391502-8; reference:[10] Fuchs, M., Repin, S.: A Posteriori Error Estimates for the Approximations of the Stresses in the Hencky Plasticity Problem.Numer. Funct. Anal. Optim. 32 (2011), 610-640. MR 2795532, 10.1080/01630563.2011.571802; reference:[11] Glowinski, R., Lions, J. L., Trémolieres, R.: Numerical Analysis of Variational Inequalities.North-Holland 1981. Zbl 0463.65046, MR 0635927; reference:[12] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanics.Applied Mathematical Sciences 66, Springer-Verlag, New York 1988. Zbl 0654.73019, MR 0952855; reference:[13] Kikuchi, N., Oden, J. T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods.SIAM 1995. Zbl 0685.73002, MR 0961258; reference:[14] Kraus, J., Tomar, S.: Algebraic multilevel iteration method for lowest-order Raviart-Thomas space and applications.Internat. J. Numer. Meth. Engrg. 86 (2011), 1175-1196. Zbl 1235.65130, MR 2817075, 10.1002/nme.3103; reference:[15] Lions, J. L., Stampacchia, G.: Variational inequalities.Comm. Pure Appl. Math. XX(3) (1967), 493-519. Zbl 0152.34601, MR 0216344, 10.1002/cpa.3160200302; reference:[16] Neittaanmäki, P., Repin, S.: Reliable Methods for Computer Simulation (Error Control and a Posteriori Estimates).Elsevier 2004. Zbl 1076.65093, MR 2095603; reference:[17] Repin, S.: A posteriori error estimation for variational problems with uniformly convex functionals.Math. Comput. 69(230) (2000), 481-500. Zbl 0949.65070, MR 1681096, 10.1090/S0025-5718-99-01190-4; reference:[18] Repin, S.: A posteriori error estimation for nonlinear variational problems by duality theory.Zapiski Nauchn. Semin. POMI 243 (1997), 201-214. Zbl 0904.65064, MR 1629741; reference:[19] Repin, S.: Estimates of deviations from exact solutions of elliptic variational inequalities.Zapiski Nauchn. Semin. POMI 271 (2000), 188-203. Zbl 1118.35320, MR 1810617; reference:[20] Repin, S.: A Posteriori Estimates for Partial Differential Equations.Walter de Gruyter, Berlin 2008. Zbl 1162.65001, MR 2458008; reference:[21] Repin, S., Valdman, J.: Functional a posteriori error estimates for problems with nonlinear boundary conditions.J. Numer. Math. 16 (2008), 1, 51-81. Zbl 1146.65054, MR 2396672, 10.1515/JNUM.2008.003; reference:[22] Repin, S., Valdman, J.: Functional a posteriori error estimates for incremental models in elasto-plasticity.Cent. Eur. J. Math. 7 (2009), 3, 506-519. Zbl 1269.74202, MR 2534470, 10.2478/s11533-009-0035-2; reference:[23] Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces.SIAM 2011. Zbl 1235.49001, MR 2839219; reference:[24] Valdman, J.: Minimization of functional majorant in a posteriori error analysis based on $H(div)$ multigrid-preconditioned CG method.Advances in Numerical Analysis (2009). Zbl 1200.65095, MR 2739760; reference:[25] Zou, Q., Veeser, A., Kornhuber, R., Gräser, C.: Hierarchical error estimates for the energy functional in obstacle problems.Numer. Math. 117 (2012), 4, 653-677. Zbl 1218.65067, MR 2776914, 10.1007/s00211-011-0364-5

  8. 8
    Academic Journal

    المؤلفون: Fang, Liang

    وصف الملف: application/pdf

    Relation: mr:MR2833168; zbl:Zbl 1240.90316; reference:[1] Chen, B., Chen, X.: A global and local superlinear continuation smoothing method for $P_0$ and $R_0$NCP or monotone NCP.SIAM J. Optim. 9 (1999), 624-645. MR 1681055, 10.1137/S1052623497321109; reference:[2] Chen, B., Harker, P. T.: Smoothing approximations to nonlinear complementarity problems.SIAM J. Optim. 7 (1997), 403-420. MR 1443626, 10.1137/S1052623495280615; reference:[3] Chen, B., Xiu, N.: A global linear and local quadratic non-interior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions.SIAM J. Optim. 9 (1999), 605-623. MR 1681059, 10.1137/S1052623497316191; reference:[4] Clarke, F. H.: Optimization and Nonsmooth Analysis.John Wiley & Sons New York (1990). Zbl 0696.49002, MR 1058436; reference:[5] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. 1.Spinger New York (2003). MR 1955649; reference:[6] Ferris, M. C., Mangasarian, O. L., Pang, J.-S., eds.: Complementarity: Applications, Algorithms and Extensions.Kluwer Academic Publishers Dordrecht (2001). Zbl 0966.00043, MR 1818614; reference:[7] Ferris, M. C., Pang, J.-S.: Engineering and economic applications of complementarity problems.SIAM Rev. 39 (1997), 669-713. Zbl 0891.90158, MR 1491052, 10.1137/S0036144595285963; reference:[8] Harker, P. T., Pang, J.-S.: Finite-dimensional variational inequality and non-linear complementarity problems: A survey of theory, algorithms and applications.Math. Program. 48 (1990), 161-220. MR 1073707, 10.1007/BF01582255; reference:[9] Jiang, H.: Smoothed Fischer-Burmeister equation methods for the complementarity problem.Technical Report Department of Mathematics, The University of Melbourne Parville, June 1997.; reference:[10] Mifflin, R.: Semismooth and semiconvex functions in constrained optimization.SIAM J. Control Optim. 15 (1977), 959-972. Zbl 0376.90081, MR 0461556, 10.1137/0315061; reference:[11] Moré, J. J., Rheinboldt, W. C.: On $P$- and $S$-functions and related classes of $n$-dimensional non-linear mappings.Linear Algebra Appl. 6 (1973), 45-68. MR 0311855; reference:[12] Pang, J.-S.: Complementarity problems.In: Handbook of Global Optimization R. Horst, P. Pardalos Kluwer Academic Publishers Boston (1994), 271-338. Zbl 0821.90114, MR 1377087; reference:[13] Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations.Math. Oper. Res. 18 (1993), 227-244. Zbl 0776.65037, MR 1250115, 10.1287/moor.18.1.227; reference:[14] Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities.Math. Program., Ser. A 87 (2000), 1-35. Zbl 0989.90124, MR 1734657, 10.1007/s101079900127; reference:[15] Qi, L., Sun, D.: Improving the convergence of non-interior point algorithm for nonlinear complementarity problems.Math. Comput. 69 (2000), 283-304. MR 1642766, 10.1090/S0025-5718-99-01082-0; reference:[16] Qi, L., Sun, J.: A nonsmooth version of Newton's method.Math. Program. 58 (1993), 353-367. Zbl 0780.90090, MR 1216791, 10.1007/BF01581275

  9. 9
    Academic Journal

    المؤلفون: Lovíšek, Ján

    وصف الملف: application/pdf

    Relation: mr:MR2563122; zbl:Zbl 1212.49009; reference:[1] Adams, R. A.: Sobolev Spaces.Academic Press New York-London (1975). Zbl 0314.46030, MR 0450957; reference:[2] Armand, J. L.: Application of the Theory of Optimal Control of Distributed Parameter Systems of Structural Optimization.NASA (1972).; reference:[3] Boccardo, L., Murat, F.: Nouveaux résultats de convergence des problèmes unilateraux.Res. Notes Math. 60 (1982), 64-85 French. MR 0652507; reference:[4] Boccardo, L., Marcellini, F.: Sulla convergenza delle soluzioni di disequazioni variazionali.Ann. Mat. Pura Appl., IV. Ser. 110 (1976), 137-159 Italian. Zbl 0333.35030, MR 0425344, 10.1007/BF02418003; reference:[5] Boccardo, L., Dolcetta, J. C.: $G$-convergenza e problema di Dirichlet unilaterale.Boll. Unione Math. Ital., IV. Ser. 12 (1975), 115-123 Italian. Zbl 0337.35023, MR 0399988; reference:[6] Brezis, H., Stampacchia, G.: Sur la régularité de la solution d'inéquations elliptiques.Bull. Soc. Math. Fr. 96 (1968), 153-180 French. Zbl 0165.45601, MR 0239302, 10.24033/bsmf.1663; reference:[7] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.North Holland Amsterdam-New York-Oxford (1978). Zbl 0383.65058, MR 0520174; reference:[8] Glowinski, R.: Numerical Methods for Nonlinear Variational Problems.Springer New York (1984). Zbl 0536.65054, MR 0737005; reference:[9] Haslinger, J., Mäkinen, R. A. E.: Introduction to Shape Optimization. Theory, Approximation and Computation Advance in Design and Control.SIAM Philadelphia (2003). MR 1969772; reference:[10] Hlaváček, I., Chleboun, J., Babuška, I.: Uncertain Input Data Problems and the Worst Scenario Method.Elsevier Amsterdam (2004). Zbl 1116.74003, MR 2285091; reference:[11] Hlaváček, I., Lovíšek, J.: Control in obstacle-pseudoplate problems with friction on the boundary. Optimal design and problems with uncertain data.Applicationes Mathematicae 28 (2001), 407-426 Control in obstacle-pseudoplate problems with friction on the boundary. Approximate optimal design and worst scenario problems. Applicationes Mathematicae 29 (2002), 75-95. MR 1873903, 10.4064/am28-4-3; reference:[12] Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications.Academic Press New York (1980). Zbl 0457.35001, MR 0567696; reference:[13] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications.Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1990). MR 1066462; reference:[14] Lurie, K. A., Cherkaev, A. V.: $G$-closure of a set of anisotropically conducting media in the two dimensional case.J. Optimization Theory Appl. 42 (1984), 283-304. Zbl 0504.73060, MR 0737972, 10.1007/BF00934300; reference:[15] Mignot, F.: Controle dans les inéquations variationelles elliptiques.J. Funct. Anal. 22 (1976), 130-185 French. Zbl 0364.49003, MR 0423155, 10.1016/0022-1236(76)90017-3; reference:[16] Murat, F.: $H$-convergence.Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger. Lecture Notes (1977-1978).; reference:[17] Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques.Academia Prague (1967), French. MR 0227584; reference:[18] Petersson, J.: On stiffness maximization of variable thickness sheet with unilateral contact.Q. Appl. Math. 54 (1996), 541-550. Zbl 0871.73046, MR 1402408, 10.1090/qam/1402408; reference:[19] Raitum, U. E.: Sufficient conditions for sets of solutions of linear elliptic equations to be weakly sequentially closed.Latvian Math. J. 24 (1980), 142-155. MR 0616251; reference:[20] Rodrigues, J.-F.: Obstacle Problems in Mathematical Physics.North Holland Amsterdam (1987). Zbl 0606.73017, MR 0880369; reference:[21] Shillor, M., Sofonea, M., Telega, J. J.: Models and Analysis of Quasistatic Contact. Variational Methods.Springer Berlin (2004). Zbl 1069.74001; reference:[22] Sokolowski, J.: Optimal control in coefficients of boundary value problems with unilateral constraints.Bull. Pol. Acad. Sci., Tech. Sci. 31 (1983), 71-81. Zbl 0544.49005; reference:[23] Spagnolo, S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche.Ann. Sc. Norm. Super. Pisa Sci. Fis. Mat., III. Ser. 22 (1968), 571-597 Italian. MR 0240443; reference:[24] Zhikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals.Springer Berlin (1994). MR 1329546

  10. 10
    Academic Journal

    المؤلفون: Lin, Qun, Liu, Tang, Zhang, Shuhua

    وصف الملف: application/pdf

    Relation: mr:MR2530538; zbl:Zbl 1212.65252; reference:[1] Allegretto, W., Barone-Adesi, G., Dinenis, E., Lin, Y., Sorwar, G.: A new approach to check the free boundary of single factor interest rate put option.Finance 20 (1999), 153-168.; reference:[2] Allegretto, W., Barone-Adesi, G., Elliott, R. J.: Numerical evaluation of the critical price and American options.European J. Finance 1 (1995), 69-78. 10.1080/13518479500000009; reference:[3] Allegretto, W., Lin, Y., Yang, H.: Finite element error estimates for a nonlocal problem in American option valuation.SIAM J. Numer. Anal. 39 (2001), 834-857. Zbl 0996.91064, MR 1860447, 10.1137/S0036142900370137; reference:[4] Allegretto, W., Lin, Y., Yang, H.: A fast and highly accurate numerical method for the evaluation of American options.Dyn. Contin. Discrete Impuls. Syst., Ser. B Appl. Algorithms 8 (2001), 127-138. Zbl 1108.91034, MR 1824289; reference:[5] Badea, L., Wang, J.: A new formulation for the valuation of American options. I. Solution uniqueness. II. Solution existence.Anal. Sci. Comput. (Eun-Jae Park, Jongwoo Lee, eds.) 5 (2000), 3-16, 17-33.; reference:[6] Barone-Adesi, G., Whaley, R. E.: Efficient analytic approximation of American option values.J. Finance 42 (1987), 301-320. 10.1111/j.1540-6261.1987.tb02569.x; reference:[7] Black, F., Scholes, M.: The pricing of options and corporate liabilities.J. Polit. Econ. 81 (1973), 637-659. Zbl 1092.91524, 10.1086/260062; reference:[8] Boyle, P., Broadie, M., Glasserman, P.: Monte Carlo methods for security pricing.J. Econ. Dyn. Control 21 (1997), 1267-1321. Zbl 0901.90007, MR 1470283, 10.1016/S0165-1889(97)00028-6; reference:[9] Brennan, M. J., Schwartz, E. S.: The valuation of American put options.J. Finance 32 (1997), 449-462. 10.2307/2326779; reference:[10] Broadie, M., Detemple, J.: American option valuation: New bounds, approximations, and a comparison of existing methods.Rev. Financial Studies 9 (1996), 1211-1250. 10.1093/rfs/9.4.1211; reference:[11] Crank, J.: Free and Moving Boundary Problems.Clarendon Press Oxford (1984). Zbl 0547.35001, MR 0776227; reference:[12] Duffy, D. J.: Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach.John Wiley & Sons Hoboken (2006). MR 2286409; reference:[13] Eaves, B. C.: On the basic theorem of complementarity.Math. Program. 1 (1971), 68-75. Zbl 0227.90044, MR 0287901, 10.1007/BF01584073; reference:[14] Elliott, C. M., Ockendon, J. R.: Weak and Variational Methods for Moving Boundary Problems.Pitman Boston-London-Melbourne (1982). Zbl 0476.35080, MR 0650455; reference:[15] Fetter, A.: $L^{\infty}$-error estimate for an approximation of a parabolic variational inequality.Numer. Math. 50 (1987), 557-565. MR 0880335, 10.1007/BF01408576; reference:[16] Feistauer, M.: On the finite element approximation of functions with noninteger derivatives.Numer. Funct. Anal. Optimization 10 (1989), 91-110. Zbl 0668.65008, MR 0978805, 10.1080/01630568908816293; reference:[17] Han, W., Chen, X.: An Introduction to Variational Inequalities: Elementary Theory, Numerical Analysis and Applications.Higher Education Press Beijing (2007). MR 2791918; reference:[18] Huang, J., Subrahmanyam, M. C., Yu, G. G.: Pricing and hedging American options: A recursive integration method.Rev. Financial Studies 9 (1996), 277-300. 10.1093/rfs/9.1.277; reference:[19] Hull, J.: Option, Futures and Other Derivative Securities, 2nd edition.Prentice Hall New Jersey (1993).; reference:[20] Jaillet, P., Lamberton, D., Lapeyre, B.: Variational inequalities and the pricing of American options.Acta Appl. Math. 21 (1990), 263-289. Zbl 0714.90004, MR 1096582, 10.1007/BF00047211; reference:[21] Jiang, L., Dai, M.: Convergence of binomial tree methods for European/American path-dependent options.SIAM J. Numer. Anal. 42 (2004), 1094-1109. Zbl 1159.91392, MR 2113677, 10.1137/S0036142902414220; reference:[22] Jiang, L., Dai, M.: Convergence of the explicit difference scheme and binomial tree method for American options.J. Comput. Math. 22 (2004), 371-380. MR 2056293; reference:[23] Jiang, L.: Mathematical Modeling and Methods of Options Pricing.Higher Education Press Beijing (2003). MR 1318688; reference:[24] Johnson, H. E.: An analytic approximation for the American put price.J. Financial and Quantitative Anal. 18 (1983), 141-148. 10.2307/2330809; reference:[25] Křížek, M., Neittaanmäki, P.: Bibliography on superconvergence.In: Proc. Conf. Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates, Lecture Notes in Pure and Appl. Math. 196 M. Křížek et al. Marcel Dekker New York (1998), 315-348. MR 1602730; reference:[26] Kwok, Y. K.: Mathematical Models of Financial Derivatives.Springer Singapore (1998). Zbl 0931.91018, MR 1645143; reference:[27] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods.Hebei University Publishers Baoding (1996), Chinese.; reference:[28] Lin, Q., Zhang, S.: An immediate analysis for global superconvergence for integrodifferential equations.Appl. Math. 42 (1997), 1-21. Zbl 0902.65090, MR 1426677, 10.1023/A:1022264125558; reference:[29] Liu, M., Wang, J.: Pricing American options by domain decomposition methods.In: Iterative Methods in Scientific Computation J. Wang, H. Allen, H. Chen, L. Mathew IMACS Publication (1998).; reference:[30] Liu, T., Zhang, P.: Numerical methods for option pricing problems.J. Syst. Sci. & Math. Sci. 12 (2003), 12-20. MR 2034582; reference:[31] Marcozzi, M. D.: On the approximation of optimal stopping problems with application to financial mathematics.SIAM J. Sci. Comput. 22 (2001), 1865-1884. Zbl 0980.60047, MR 1813301, 10.1137/S1064827599364647; reference:[32] MacMillan, L. W.: Analytic approximation for the American put option.Adv. in Futures and Options Res. 1 (1986), 1149-1159.; reference:[33] McKean, H. P.: Appendix: A free boundary problem for the heat equation arising from a problem in mathematical economics.Industrial Management Rev. 6 (1965), 32-39.; reference:[34] Merton, R. C.: Theory of rational option pricing.Bell J. Econom. and Management Sci. 4 (1973), 141-183. MR 0496534, 10.2307/3003143; reference:[35] Sanchez, A. M., Arcangéli, R.: Estimations des erreurs de meilleure approximation polynomiale et d'interpolation de Lagrange dans les espaces de Sobolev d'ordre non entier.Numer. Math. 45 (1984), 301-321 French. Zbl 0587.41018, MR 0766187, 10.1007/BF01389473; reference:[36] Topper, J.: Financial Engineering with Finite Elements.John Wiley & Sons Hoboken (2005).; reference:[37] Underwood, R., Wang, J.: An integral representation and computation for the solution of American options.Nonlinear. Anal., Real World Appl. 3 (2002), 259-274. Zbl 1011.91049, MR 1893977, 10.1016/S1468-1218(01)00028-1; reference:[38] Vuik, C.: An $L^2$-error estimate for an approximation of the solution of a parabolic variational inequality.Numer. Math. 57 (1990), 453-471. MR 1063805, 10.1007/BF01386423; reference:[39] Wilmott, P., Dewynne, J., Howison, S.: Option Pricing: Mathematical Models and Computation.Financial Press Oxford (1995). Zbl 0844.90011, MR 1357666; reference:[40] Zhang, T.: The numerical methods for American options pricing.Acta Math. Appl. Sin. 25 (2002), 113-122. MR 1926728

  11. 11