يعرض 1 - 20 نتائج من 44 نتيجة بحث عن '"msc:65D07"', وقت الاستعلام: 0.51s تنقيح النتائج
  1. 1
    Conference
  2. 2
  3. 3
    Conference
  4. 4
    Conference

    المؤلفون: Segeth, Karel

    وصف الملف: application/pdf

    Relation: zbl:Zbl 06669932

  5. 5
  6. 6
    Conference
  7. 7
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3333834; zbl:Zbl 06433833; reference:[1] Betts, J.: Issues in the direct transcription of optimal control problem to sparse nonlinear programs.In: Computational Optimal Control (R. Bulirsch and D. Kraft, eds.), Birkhauser, 1994, pp. 3-17. MR 1287613, 10.1007/978-3-0348-8497-6_1; reference:[2] Betts, J.: Survey of numerical methods for trajectory optimization.J. Guidance, Control, and Dynamics 21 (1998), 193-207. Zbl 1158.49303, 10.2514/2.4231; reference:[3] Boor, C. De.: A Practical Guide to Spline.Springer-Verlag, New York 1978. MR 0507062; reference:[4] Elnegar, G. N., Kazemi, M. A.: Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems.Comput. Optim. Appl. 11 (1998), 195-217. MR 1652069, 10.1023/A:1018694111831; reference:[5] Foroozandeh, Z., Shamsi, M.: Solution of nonlinear optimal control problems by the interpolating scaling functions.Acta Astronautica 72 (2012), 21-26. 10.1016/j.actaastro.2011.10.004; reference:[6] Gong, Q., Kang, W., Ross, I. M.: A pseudospectral method for the optimal control of constrained feedback linearizable systems.IEEE Trans. Automat. Control 51 (2006), 1115-1129. MR 2238794, 10.1109/tac.2006.878570; reference:[7] Goswami, J. C., Chan, A. K.: Fundamentals of Wavelets: Theory, Algorithms, and Applications.John Wiley and Sons Inc. 1999. Zbl 1214.65071, MR 2799281, 10.1002/9780470926994; reference:[8] Jaddu, H.: Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials.J. Franklin Inst. 339 (2002), 479-498. Zbl 1010.93507, MR 1931507, 10.1016/s0016-0032(02)00028-5; reference:[9] Jaddu, H., Shimemura, E.: Computation of optimal control trajectories using Chebyshev polynomials: parameterization and quadratic programming.Optimal Control Appl. Methods 20 (1999), 21-42. MR 1690446, 10.1002/(sici)1099-1514(199901/02)20:13.3.co;2-4; reference:[10] Lancaster, P.: Theory of Matrices.Academic Press, New York 1969. Zbl 0558.15001, MR 0245579; reference:[11] Lakestani, M., Dehghan, M., Irandoust-Pakchin, S.: The construction of operational matrix of fractional derivatives using B-spline functions.Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3, 1149-1162. Zbl 1276.65015, MR 2843781, 10.1016/j.cnsns.2011.07.018; reference:[12] Lakestani, M., Razzaghi, M., Dehghan, M.: Solution of nonlinear fredholm-hammerstein integral equations by using semiorthogonal spline wavelets.Hindawi Publishing Corporation Mathematical Problems in Engineering 1 (2005), 113-121. Zbl 1073.65568, MR 2144111, 10.1155/mpe.2005.113; reference:[13] Lakestani, M., Razzaghi, M., Dehghan, M.: Semiorthogonal spline wavelets approximation for fredholm integro-differential equations.Hindawi Publishing Corporation Mathematical Problems in Engineering 1 (2006), 1-12. Zbl 1200.65112, 10.1155/mpe/2006/96184; reference:[14] Marzban, H. R., Razzaghi, M.: Hybrid functions approach for linearly constrained quadratic optimal control problems.Appl. Math. Modell. 27 (2003), 471-485. Zbl 1020.49025, 10.1016/s0307-904x(03)00050-7; reference:[15] Marzban, H. R., Razzaghi, M.: Rationalized Haar approach for nonlinear constrined optimal control problems.Appl. Math. Modell. 34 (2010), 174-183. MR 2566686, 10.1016/j.apm.2009.03.036; reference:[16] Marzban, H. R., Hoseini, S. M.: A composite Chebyshev finite difference method for nonlinear optimal control problems.Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 1347-1361. Zbl 1282.65075, MR 3016889, 10.1016/j.cnsns.2012.10.012; reference:[17] Mashayekhi, S., Ordokhani, Y., Razzaghi, M.: Hybrid functions approach for nonlinear constrained optimal control problems.Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1831-1843. Zbl 1239.49043, MR 2855473, 10.1016/j.cnsns.2011.09.008; reference:[18] Mehra, R. K., Davis, R. E.: A generalized gradient method for optimal control problems with inequality constraints and singular arcs.IEEE Trans. Automat. Control 17 (1972), 69-72. Zbl 0268.49038, 10.1109/tac.1972.1099881; reference:[19] Ordokhani, Y., Razzaghi, M.: Linear quadratic optimal control problems with inequality constraints via rationalized Haar functions.Dynam. Contin. Discrete Impuls. Syst. Ser. B 12 (2005), 761-773. Zbl 1081.49026, MR 2179602; reference:[20] Powell, M. J. D.: An efficient method for finding the minimum of a function of several variables without calculating the derivatives.Comput. J. 7 (1964), 155-162. MR 0187376, 10.1093/comjnl/7.2.155; reference:[21] Razzaghi, M., Elnagar, G.: Linear quadratic optimal control problems via shifted Legendre state parameterization.Int. J. Systems Sci. 25 (1994), 393-399. MR 1262503, 10.1080/00207729408928967; reference:[22] Schittkowskki, K.: NLPQL: A fortran subroutine for solving constrained nonlinear programming problems.Ann. Oper. Res. 5 (1986), 2, 485-500. MR 0948031, 10.1007/bf02022087; reference:[23] Schumaker, L.: Spline Functions: Basic Theory.Cambridge University Press, 2007. Zbl 1123.41008, MR 2348176; reference:[24] Teo, K. L., Wong, K. H.: Nonlinearly constrained optimal control problems.J. Austral. Math. Soc. Ser. B 33 (1992), 507-530. Zbl 0764.49017, MR 1154823, 10.1017/s0334270000007207; reference:[25] Vlassenbroeck, J.: A Chebyshev polynomial method for optimal control with constraints.Automatica 24 (1988), 499-506. MR 0956571, 10.1016/0005-1098(88)90094-5; reference:[26] Yen, V., Nagurka, M.: Linear quadratic optimal control via Fourier-based state parameterization.J. Dynam. Syst. Measure Control 11 (1991), 206-215. 10.1115/1.2896367; reference:[27] Yen, V., Nagurka, M.: Optimal control of linearly constrained linear systems via state parameterization.Optimal Control Appl. Methods 13 (1992), 155-167. MR 1197736, 10.1002/oca.4660130206

  8. 8
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3275084; zbl:Zbl 06386426; reference:[1] Agrachev, A., Sachkov, Y.: Control Theory from the Geometric Viewpoint.In: Encyclopaedia of Mathematical Sciences 87 (2004), Springer-Verlag. Zbl 1062.93001, MR 2062547; reference:[2] Camarinha, M.: The Geometry of Cubic Polynomials on Riemannian Manifolds.PhD. Thesis, Departamento de Matemática, Universidade de Coimbra 1996.; reference:[3] Crouch, P., Kun, G., Leite, F. S.: The De Casteljau algorithm on Lie groups and spheres.J. Dyn. Control Syst. 5 (1999), 3, 397-429. Zbl 0961.53027, MR 1706785, 10.1023/A:1021770717822; reference:[4] Crouch, P, Leite, F. S.: Geometry and the dynamic interpolation problem.In: Proc. American Control Conference Boston 1991, pp. 1131-1137.; reference:[5] Crouch, P., Leite, F. S.: The dynamic interpolation problem: on Riemannian manifolds, Lie groups and symmetric spaces.J. Dyn. Control Syst. 1 (1995), 2, 177-202. Zbl 0946.58018, MR 1333770, 10.1007/BF02254638; reference:[6] Fedorov, Y. N., Jovanović, B.: Nonholonomic LR systems as generalized chaplygin systems with an invariant measure and flows on homogeneous spaces.J. Nonlinear Sci. 14 (2004), 4, 341-381. Zbl 1125.37045, MR 2076030, 10.1007/s00332-004-0603-3; reference:[7] Giambó, R., Giannoni, F., Piccione, P.: Fitting smooth paths to spherical data.IMA J. Math. Control Inform. 19 (2002), 445-460. MR 1949013; reference:[8] Hüper, K., Kleinsteuber, M., Leite, F. S.: Rolling Stiefel manifolds.Int. J. Systems Sci. 39 (2008), 8, 881-887. Zbl 1168.53007, MR 2437853; reference:[9] Hüper, K., Krakowski, K. A., Leite, F. S.: Rolling Maps in a Riemannian Framework.In: Mathematical Papers in Honour of Fátima Silva Leite, Textos de Matemática 43, Department of Mathematics, University of Coimbra 2011, pp. 15-30. Zbl 1254.53018, MR 2894254; reference:[10] Hüper, K., Leite, F. S.: Smooth interpolating curves with applications to path planning.In: 10th IEEE Mediterranean Conference on Control and Automation (MED 2002), Lisbon 2002.; reference:[11] Hüper, K., Leite, F. S.: On the geometry of rolling and interpolation curves on $S^n$, $SO_n$ and Graßmann manifolds.J. Dyn. Control Syst. 13 (2007), 4, 467-502. MR 2350231, 10.1007/s10883-007-9027-3; reference:[12] Jupp, P., Kent, J.: Fitting smooth paths to spherical data.Appl. Statist. 36 (1987), 34-46. Zbl 0613.62086, MR 0887825, 10.2307/2347843; reference:[13] Jurdjevic, V., Zimmerman, J.: Rolling problems on spaces of constant curvature.In: Lagrangian and Hamiltonian methods for nonlinear control 2006, Proc. 3rd IFAC Workshop 2006 (F. Bullo and K. Fujimoto, eds.), Nagoya 2007, Lect. Notes Control Inform. Sciences, Springer, pp. 221-231. Zbl 1136.49028, MR 2376942; reference:[14] Krakowski, K., Leite, F. S.: Smooth interpolation on ellipsoids via rolling motions.In: PhysCon 2013, San Luis Potosí, Mexico 2013.; reference:[15] Krakowski, K. A., Leite, F. S.: Why controllability of rolling may fail: a few illustrative examples.In: Pré-Publicações do Departamento de Matemática, No. 12-26, University of Coimbra 2012, pp. 1-30.; reference:[16] Lee, J. M.: Riemannian Manifolds: An Introduction to Curvature.In? Graduate Texts in Mathematics No. 176, Springer-Verlag, New York 1997. Zbl 0905.53001, MR 1468735; reference:[17] Machado, L., Leite, F. S., Krakowski, K.: Higher-order smoothing splines versus least squares problems on riemannian manifolds.J. Dyn. Control Syst. 16 (2010), 1, 121-148. Zbl 1203.65028, MR 2580471, 10.1007/s10883-010-9080-1; reference:[18] Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved spaces.IMA J. Math. Control Inform. 6 (1989), 465-473. Zbl 0698.58018, MR 1036158, 10.1093/imamci/6.4.465; reference:[19] Nomizu, K.: Kinematics and differential geometry of submanifolds.Tôhoku Math. J. 30 (1978), 623-637. Zbl 0395.53005, MR 0516894, 10.2748/tmj/1178229921; reference:[20] Park, F., Ravani, B.: Optimal control of the sphere ${S^n}$ rolling on ${E^n}$.ASME J. Mech. Design 117 (1995), 36-40.; reference:[21] Samir, C., Absil, P.-A., Srivastava, A., Klassen, E.: A gradient-descent method for curve fitting on Riemannian manifolds.Found. Comput. Math. 12 (2012), 49-73. Zbl 1245.65017, MR 2886156, 10.1007/s10208-011-9091-7; reference:[22] Sharpe, R. W.: Differential Geometry: Cartan's Generalization of Klein's Erlangen Program.In: Graduate Texts in Mathematics, No. 166. Springer-Verlag, New York 1997. Zbl 0876.53001, MR 1453120; reference:[23] Zimmerman, J.: Optimal control of the sphere ${S^n}$ rolling on ${E^n}$.Math. Control Signals Systems 17 (2005), 1, 14-37. Zbl 1064.49021, MR 2121282, 10.1007/s00498-004-0143-2

  9. 9
    Academic Journal

    المؤلفون: Török, Csaba

    وصف الملف: application/pdf

    Relation: reference:[1] Csörgő, S., Mielniczuk, J.: Nonparametric regression under long-range dependent normal errors.Ann. Statist. 23 (1995), 3, 1000-1014. Zbl 0852.62035, MR 1345211, 10.1214/aos/1176324633; reference:[2] Dikoussar, N. D.: Function parametrization by using 4-point transforms.Comput. Phys. Commun. 99 (1997), 235-254. Zbl 0927.65009, 10.1016/S0010-4655(96)00110-5; reference:[3] Dikoussar, N. D.: Kusochno-kubicheskoje priblizhenije I sglazhivanije krivich v rezhime adaptacii.Communication JINR, P10-99-168, Dubna 1999.; reference:[4] Dikusar, N. D.: The basic element method.Math. Models Comput. Simulat. 3 (2011), 4, 492-507. Zbl 1240.65077, MR 2810219, 10.1134/S2070048211040053; reference:[5] Dikoussar, N. D., Török, Cs.: Automatic knot finding for piecewise-cubic approximation.Matem. Mod. 18 (2006), 3, 23-40. Zbl 1099.65014, MR 2255951; reference:[6] Dikoussar, N. D., Török, Cs.: On one approach to local surface smoothing.Kybernetika 43 (2007), 4, 533-546. Zbl 1139.65009, MR 2377931; reference:[7] Eubank, R. L.: Nonparametric Regression and Spline Smoothing.Marcel Dekker, Inc., 1999. Zbl 0936.62044, MR 1680784; reference:[8] Kahaner, D., Moler, C., Nash, S.: Numerical Methods and Software.Prentice-Hall, Inc., 1989. Zbl 0744.65002; reference:[9] Kepič, T., Török, Cs., Dikoussar, N. D.: Wavelet compression.In: 13. International Workshop on Computational Statistics, Bratislava 2004, pp. 49-52.; reference:[10] Matejčiková, A., Török, Cs.: Noise suppression in RDPT.Forum Statisticum Slovacum 3 (2005), 199-203.; reference:[11] Nadaraya, E. A.: On estimating regression.Theory Probab. Appl. 9 (1964), 141-142. Zbl 0136.40902; reference:[12] Révayová, M., Török, Cs.: Piecewise approximation and neural networks.Kybernetika 43 (2007), 4, 547-559. Zbl 1145.68495, MR 2377932; reference:[13] Révayová, M., Török, Cs.: Reference points based recursive approximation.Kybernetika 49 (2013), 1, 60-72.; reference:[14] Riplay, B. D.: Pattern Recognition and Neural Networks.Cambridge University Press 1996. MR 1438788; reference:[15] Seber, G. A. F.: Linear Regression Analysis.J. Wiley and Sons, New York 1977. Zbl 1029.62059, MR 0436482; reference:[16] Török, Cs.: 4-point transforms and approximation.Comput. Phys. Commun. 125 (2000), 154-166. Zbl 0976.65011, 10.1016/S0010-4655(99)00483-X; reference:[17] Török, Cs., Dikoussar, N. D.: Approximation with DPT.Comput. Math. Appl. 38 (1999), 211-220. MR 1718884, 10.1016/S0898-1221(99)00276-X; reference:[18] Trefethen, L. N.: Approximation Theory and Approximation Practice.SIAM, 2013. Zbl 1264.41001, MR 3012510

  10. 10
    Academic Journal

    المؤلفون: Révayová, Martina, Török, Csaba

    وصف الملف: application/pdf

    Relation: reference:[1] Dikoussar, N. D.: Adaptive projective filters for track finding.Comput. Phys. Commun. 79 (1994), 39-51. 10.1016/0010-4655(94)90228-3; reference:[2] Dikoussar, N. D.: Kusochno-kubicheskoje priblizhenije I sglazhivanije krivich v rezhime adaptacii.Comm. JINR, P10-99-168, Dubna 1999.; reference:[3] Dikoussar, N. D., Török, Cs.: Automatic knot finding for piecewise-cubic approximation.Mat. Model. T-17 (2006), 3. Zbl 1099.65014, MR 2255951; reference:[4] Dikoussar, N. D., Török, Cs.: Approximation with DPT.Comput. Math. Appl. 38 (1999), 211-220. MR 1718884; reference:[5] Haykin, S.: Adaptive Filter Theory.Prentice Hall, 2002 Zbl 0723.93070; reference:[6] Nadaraya, E. A.: On estimating regression.Theory Probab. Appl. 9 (1964 ), 141-142. Zbl 0136.40902; reference:[7] Reinsch, Ch. H.: Smoothing by spline functions.Numer. Math. 10 (1967), 177-183. Zbl 1248.65020, MR 0295532, 10.1007/BF02162161; reference:[8] Révayová, M., Török, Cs.: Piecewise approximation and neural networks.Kybernetika 43 (2007), 4, 547-559. Zbl 1145.68495, MR 2377932; reference:[9] Ripley, B. D.: Pattern Recognision and Neural Networks.Cambridge University Press, 1996. MR 1438788; reference:[10] Török, Cs.: 4-point transforms and approximation.Comput. Phys. Commun. 125 (2000), 154-166. Zbl 0976.65011, 10.1016/S0010-4655(99)00483-X; reference:[11] Wasan, M. T.: Stochastic Approximation.Cambridge University Press, 2004. Zbl 0271.62112, MR 0247712

  11. 11
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3060005; zbl:Zbl 06204917; reference:[1] Altmann, G.: Prolegomena to Menzerath’s law. Glottometrika 2, 2, (1980), 1–10.; reference:[2] Altmann, G., Schwibbe, M. H.: Das Menzerathsche Gesetz in informations – verarbeitenden Systemen. Olms, Hildesheim, 1989.; reference:[3] Andres, J.: On de Saussure’s principle of linearity and visualization of language structures. Glottotheory 2, 2, (2009), 1–14.; reference:[4] Andres, J.: On a conjecture about the fractal structure of language. Journal of Quantitative Linguistics 17, 2, (2010), 101–122. 10.1080/09296171003643189; reference:[5] Andres, J., Benešová, M.: Fractal analysis of Poe’s Raven. Glottometrics 21 (2011), 73–98.; reference:[6] Cramer, I.: The parameters of the Altmann–Menzerath law. Journal of Quantitative Linguistics 12, 1,(2005), 41–52. 10.1080/09296170500055301; reference:[7] Fišerová, E., Kubáček, L., Kunderová, P.: Linear Statistical Models. Regularity and Singularities. Academia, Prague, 2007.; reference:[8] Hřebíček, L.: The constants of Menzerath–Altmann’s law. Glottometrika. 12 (1990), 61–71.; reference:[9] Hřebíček, L.: Text Levels. Language Constructs, Constituents and the Menzerath–Altmann Law. Wissenschaftlicher Verlag Trier, Trier, 1995.; reference:[10] Hřebíček, L.: Text in Semantics. The Principle of Compositeness. Oriental Institute of the Academy of Sciences of the Czech Republic, Prague, 2007.; reference:[11] Köhler, R.: Das Menzerathsche Gesetz auf Satzebene. Glottometrika 4 (1982), 103–113.; reference:[12] Köhler, R.: Zur Interpretation des Menzerathschen Gesetzes. Glottometrika 6 (1984), 177–183.; reference:[13] Köhler, R., Schwibbe, M. H.: Das Menzerathsche Gesetz als Resultat des SprachverarbeitungsmechanismusDas Menzerathsche Gesetz in informations – verarbeitenden Systemen. In: Altmann, G. und Schwibbe, M. H. (eds.): Das Menzerathsche Gesetz in informations – verarbeitenden Systemen Olms, Hildesheim, 1989, 108–116.; reference:[14] Kubáček, L., Kubáčková, L.: Statistics and Metrology. Palacký University, Olomouc, 2000, (in Czech).; reference:[15] Kulacka, A.: The coefficients in the formula for the Menzerath–Altmann law. Journal of Quantitative Linguistics 17, 4, (2010), 257–268. 10.1080/09296174.2010.512160; reference:[16] Kulacka, A., Mačutek, J.: A discrete formula for the Menzerath–Altmann law. Journal of Quantitative Linguistics 14, 1 (2007), 23–32. 10.1080/09296170600850585; reference:[17] Pázman, A: Foundations of Optimum Experimental Design. D. Reidel, Dordrecht, 1986. Zbl 0588.62117, MR 0838958; reference:[18] Prün, C.: Validity of Menzerath-Altmann’s law: graphic representation of language, information processing systems and synergetic linguistics. Journal of Quantitative Linguistics 1, 2 (1994), 148–155. 10.1080/09296179408590009; reference:[19] Tučková, M: Optimal Design of Regression Experiments. Diploma Thesis, Palacký University, Olomouc, 2010 (in Czech).; reference:[20] Wimmer, G., Altmann, G.: Unified derivation of some linguistic laws. In: Köhler, R., Altmann, G., Piotrowski, R. G.: Quantitative Linquistics. An International Handbook. De Gruyter, Berlin, 2005, 791–807.; reference:[21] Wimmer, G., Altmann, G., Hřebíček, L., Ondrejovič, S., Wimmerová, S.: Introduction to the Analysis of Texts. Veda, Bratislava, 2003, (in Slovak).

  12. 12
  13. 13
    Academic Journal

    المؤلفون: Luner, Petr, Flusser, Jan

    وصف الملف: application/pdf

    Relation: mr:MR2131128; zbl:Zbl 1249.65025; reference:[1] Arad N., Dyn N., Reisfeld, D., Yeshurun Y.: Image warping by radial basis functions: Application to facial expressions.CVGIP: Graphical Models and Image Processing 56 (1994), 161–172; reference:[2] Arad N., Gotsman C.: Enhancement by image-dependent warping.IEEE Trans. Image Processing 8 (1999), 1063–1074 10.1109/83.777087; reference:[3] Beatson R. K., Newsam G. N.: Fast evaluation of radial basis functions.Comput. Math. Appl. 24 (1992), 7–19 Zbl 0765.65021, MR 1190302, 10.1016/0898-1221(92)90167-G; reference:[4] Berman M.: Automated smoothing of image and other regularly spaced data.IEEE Trans. Pattern Anal. Mach. Intell. 16 (1994), 460–468 10.1109/34.291451; reference:[5] Bookstein F. L.: Principal warps: Thin-plate splines and the decomposition of deformations.IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989), 567–585 Zbl 0691.65002, 10.1109/34.24792; reference:[6] Carr J. C., Fright W. R., Beatson R.: Surface interpolation with radial basis functions for medical imaging.IEEE Trans. Medical Imaging 16 (1997), 96–107 10.1109/42.552059; reference:[7] Duchon J.: Interpolation des fonctions de deux variables suivant le principle de la flexion des plaques minces.RAIRO Anal. Num. 10 (1976), 5–12 MR 0470565; reference:[8] Flusser J.: An adaptive method for image registration.Pattern Recognition 25 (1992), 45–54 10.1016/0031-3203(92)90005-4; reference:[9] Goshtasby A.: Registration of images with geometric distortions.IEEE Trans. Geoscience and Remote Sensing 26 (1988), 60–64 10.1109/36.3000; reference:[10] Greengard L., Rokhlin V.: A fast algorithm for particle simulations.J. Comput. Phys. 73 (1987), 325–348 Zbl 0629.65005, MR 0918448, 10.1016/0021-9991(87)90140-9; reference:[11] Grimson W. E. L.: A computational theory of visual surface interpolation.Philos. Trans. Roy. Soc. London Ser. B 298 (1982), 395–427 10.1098/rstb.1982.0088; reference:[12] Harder R. L., Desmarais R. N.: Interpolation using surface splines.J. Aircraft 9 (1972), 189–191 10.2514/3.44330; reference:[13] Kašpar R., Zitová B.: Weighted thin-plate spline image denoising.Pattern Recognition 36 (2003), 3027–3030 Zbl 1059.68150, 10.1016/S0031-3203(03)00133-X; reference:[14] Powell M. J. D.: Tabulation of thin plate splines on a very fine two-dimensional grid.In: Numerical Methods of Approximation Theory, Volume 9 (D. Braess and L. L. Schumacher, eds.), Birkhäuser Verlag, Basel, 1992, pp. 221–244 Zbl 0813.65014, MR 1269364; reference:[15] Powell M. J. D.: Tabulation of Thin Plate Splines on a Very Fine Two-Dimensional Grid.Numerical Analysis Report of University of Cambridge, DAMTP/1992/NA2, Cambridge 1992 Zbl 0813.65014, MR 1269364; reference:[16] Rohr K., Stiehl H. S., Buzug T. M., Weese, J., Kuhn M. H.: Landmark-based elastic registration using approximating thin-plate splines.IEEE Trans. Medical Imaging 20 (2001), 526–534 10.1109/42.929618; reference:[17] Wahba G.: Spline Models for Observational Data.SIAM, Philadelphia 1990 Zbl 0813.62001, MR 1045442; reference:[18] Wolberg G.: Digital Image Warping.IEEE Computer Society Press, 1990

  14. 14
  15. 15
  16. 16
    Academic Journal

    المؤلفون: Kobza, Jiří

    وصف الملف: application/pdf

    Relation: mr:MR1900515; zbl:Zbl 1090.65012; reference:[1] A. Bjorck: Numerical Methods for Least Squares Problems.SIAM, Philadelphia, 1996. MR 1386889; reference:[2] C. Boor: A Practical Guide to Splines.Springer-Verlag, New York-Heidelberg-Berlin, 1978. Zbl 0406.41003, MR 0507062; reference:[3] L. Brugnano, D. Trigiante: Solving Differential Equations by Multistep. Initial and Boundary Value Methods.Gordon and Breach, London, 1998. MR 1673796; reference:[4] R. Fletcher: Practical Methods of Optimization.Wiley, Chichester, 1993. MR 1867781; reference:[5] J. Kobza: Splajny. Textbook.VUP, Olomouc, 1993. (Czech); reference:[6] J. Kobza: Computing solutions of linear difference equations.In: Proceedings of the XIIIth Summer School Software and Algorithms of Numerical Mathematics, Nečtiny 1999, I. Marek (ed.), University of West Bohemia, Plzeň, 1999, pp. 157–172.; reference:[7] J. S. Zavjalov, B. I. Kvasov and V. L. Miroschnichenko: Methods of Spline Functions.Nauka, Moscow, 1980. (Russian) MR 0614595

  17. 17
    Academic Journal

    المؤلفون: Ženčák, Pavel

    مصطلحات موضوعية: msc:41A15, msc:41A29, msc:65D07

    وصف الملف: application/pdf

    Relation: mr:MR1968229; zbl:Zbl 1040.41005; reference:[1] de Boor C.: A Practical Guide to Splines.Springer Verlag, New York, 1978 Zbl 0987.65015, MR 0507062; reference:[2] Schmidt J. W., Hess W., Nordheim, Th.: Shape preserving histopolation using rational quadratic splines.Computing 44 (1990), 245-258. Zbl 0721.65002, MR 1058701; reference:[3] Schmidt J. W., Hess W.: Shape preserving $C^2$-spline histopolation.Journal of Approximation Theory 75, 3 (1993), 325-345. MR 1250544; reference:[4] Ženčák P.: Some algorithm for testing convexity of histogram.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 38 (1999), 149-163. Zbl 0961.41007, MR 1767215; reference:[5] Ženčák P.: Convexity of histogram and convex histopolation by polynomial splines.In: Proceed, of SANM, Nečtiny, 1999, 327-342.

  18. 18
    Academic Journal

    المؤلفون: Machalová, Jitka

    مصطلحات موضوعية: msc:41A15, msc:65D05, msc:65D07, msc:65F20

    وصف الملف: application/pdf

    Relation: mr:MR1968224; zbl:Zbl 1068.41017; reference:[1] Boor C. de: A Practical Guide to Splines.Springer, New York, 1978. Zbl 0406.41003, MR 0507062; reference:[2] Chipman J. S.: Specification problems in regression analysis.T. L. Boullion, P. I. Odell, Proceedings of the Symposium on Theory and Applications of Generalized Inverses of Matrices, Texas 1968, 114-176. MR 0254984; reference:[3] Dierckx P.: Curve and Surface Fitting with Splines.Clarendon Press, 1993. Zbl 0782.41016, MR 1218172; reference:[4] Djordovič D. S., Stanimirovič P. S.: Universal iterative methods for computing generalized inverses.Acta Mathematica Hungarica 79 (1998), 253-268. MR 1616062; reference:[5] Fletcher R.: Practical Methods of Optimization.John Wiley, New York, 1987. Zbl 0905.65002, MR 0955799; reference:[6] Kobza J.: Splajny.VUP, Olomouc, 1993 (textbook in czech).; reference:[7] Kobza J.: Cubic splines with minimal norm.Applications of Mathematics (to appear). Zbl 1090.65012, MR 1900515; reference:[8] Kobza J.: Quartic splines with minimal norm.Dept. Math. Anal. and Appl. Math., Fac. Sci., Palacki Univ., Olomouc, Preprint series 22/2000. MR 1904689; reference:[9] Rao C. R., Mitra K. S.: Generalized Inverse of Matrices and Its Application.J. Wiley, New York, 1971. MR 0338013

  19. 19
    Academic Journal

    المؤلفون: Kobza, Jiří

    مصطلحات موضوعية: msc:41A15, msc:65D05, msc:65D07

    وصف الملف: application/pdf

    Relation: mr:MR1904689; zbl:Zbl 1044.41008; reference:[1] Bjorck A.: Numerical Methods for Least Squares Problems.SIAM, Philadelphia, 1996. MR 1386889; reference:[2] Boor C.: A Practical Guide to Splines.Springer, 1978. Zbl 0406.41003, MR 0507062; reference:[3] Gould I. M.: On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming probem.Mathematical Programming 32 (1985) 90-99. MR 0787745; reference:[4] Kobza J.: Quartic interpolatory splines.Studia Univ. Babes-Bolyai, Math. (1996). MR 1644442; reference:[5] Kobza J.: Spline recurrences for quartic splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat. 34, Math. 63 (1995), 229-236. Zbl 0854.41011, MR 1447257; reference:[6] Kobza J.: Local representation of quartic splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 63-78. MR 1620525; reference:[7] Kobza J.: Splajny.Vydavatelství UP, Olomouc, 1993 (textbook in Czech); reference:[8] Kobza J.: Computing solutions of linear difference equations.Dept. Math. Anal. and Appl. Math., Fac. Sci., Palacki Univ., Olomouc, Preprint series 21, 1999; Proceedings SANM XIII, Nectiny 1999, 157-172.; reference:[9] Kobza J., Ženčák P.: Some algorithms for quartic smoothing splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 79-94. Zbl 0958.41004, MR 1620529

  20. 20