يعرض 1 - 20 نتائج من 25 نتيجة بحث عن '"msc:62K05"', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المؤلفون: Katulska, Krystyna, Smaga, Łukasz

    وصف الملف: application/pdf

    Relation: mr:MR3565770; zbl:Zbl 06644311; reference:[1] Angelis, L., Bora-Senta, E., Moyssiadis, C.: Optimal exact experimental designs with correlated errors through a simulated annealing algorithm.Comput. Statist. Data Anal. 37 (2001), 275-296. Zbl 0990.62061, MR 1862514, 10.1016/s0167-9473(01)00011-1; reference:[2] Banerjee, K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics.Marcel Dekker Inc., New York 1975. Zbl 0334.62030, MR 0458751; reference:[3] Bora-Senta, E., Moyssiadis, C.: An algorithm for finding exact D- and A-optimal designs with $n$ observations and $k$ two-level factors in the presence of autocorrelated errors.J. Combinat. Math. Combinat. Comput. 30 (1999), 149-170. Zbl 0937.62074, MR 1705339; reference:[4] Bulutoglu, D. A., Ryan, K. J.: D-optimal and near D-optimal $2^k$ fractional factorial designs of resolution $V$.J. Statist. Plann. Inference 139 (2009), 16-22. Zbl 1284.62473, MR 2460547, 10.1016/j.jspi.2008.05.012; reference:[5] Ceranka, B., Graczyk, M.: Optimal chemical balance weighing designs for $v+1$ objects.Kybernetika 39 (2003), 333-340. Zbl 1248.62128, MR 1995737; reference:[6] Ceranka, B., Graczyk, M.: Robustness optimal spring balance weighing designs for estimation total weight.Kybernetika 47 (2011), 902-908. Zbl 1274.62492, MR 2907850; reference:[7] Ceranka, B., Graczyk, M., Katulska, K.: A-optimal chemical balance weighing design with nonhomogeneity of variances of errors.Statist. Probab. Lett. 76 (2006), 653-665. Zbl 1090.62074, MR 2234783, 10.1016/j.spl.2005.09.012; reference:[8] Ceranka, B., Graczyk, M., Katulska, K.: On certain A-optimal chemical balance weighing design.Comput. Statist. Data Analysis 51 (2007), 5821-5827. MR 2407680, 10.1016/j.csda.2006.10.021; reference:[9] Cheng, C. S.: Optimal biased weighing designs and two-level main-effect plans.J. Statist. Theory Practice 8 (2014), 83-99. MR 3196641, 10.1080/15598608.2014.840520; reference:[10] Domijan, K.: tabuSearch: R based tabu search algorithm. R package version 1.1.\url{http://CRAN.R-project.org/package=tabuSearch} (2012); reference:[11] Ehlich, H.: Determinantenabschätzungen für binäre Matrizen.Math. Zeitschrift 83 (1964), 123-132. Zbl 0115.24704, MR 0160792, 10.1007/bf01111249; reference:[12] Ehlich, H.: Determinantenabschätzungen für binäre Matrizen mit $n\equiv 3 \mathrm{mod} 4$.Math. Zeitschrift 84 (1964), 438-447. MR 0168573, 10.1007/bf01109911; reference:[13] Galil, Z., Kiefer, J.: D-optimum weighing designs.Ann. Statist. 8 (1980), 1293-1306. Zbl 0598.62087, MR 0594646, 10.1214/aos/1176345202; reference:[14] Graczyk, M.: A-optimal biased spring balance weighing design.Kybernetika 47 (2011), 893-901. Zbl 1274.62495, MR 2907849; reference:[15] Graczyk, M.: Some applications of weighing designs.Biometr. Lett. 50 (2013), 15-26. 10.2478/bile-2013-0014; reference:[16] Harman, R., Bachratá, A., Filová, L.: Construction of efficient experimental designs under multiple resource constraints.Appl. Stochast. Models in Business and Industry 32 (2015), 1, 3-17. MR 3460885, 10.1002/asmb.2117; reference:[17] Jacroux, M., Wong, C.S., Masaro, J.C.: On the optimality of chemical balance weighing designs.J. Statist. Planning Inference 8 (1983), 231-240. Zbl 0531.62072, MR 0720154, 10.1016/0378-3758(83)90041-1; reference:[18] Jenkins, G. M., Chanmugam, J.: The estimation of slope when the errors are autocorrelated.J. Royal Statist. Soc., Ser. B (Statistical Methodology) 24 (1962), 199-214. Zbl 0116.11401, MR 0138154; reference:[19] Jung, J. S., Yum, B. J.: Construction of exact D-optimal designs by tabu search.Comput. Statist. Data Analysis 21 (1996), 181-191. Zbl 0900.62403, MR 1394535, 10.1016/0167-9473(95)00014-3; reference:[20] Katulska, K., Smaga, Ł.: D-optimal chemical balance weighing designs with $n\equiv 0 (\text{mod} 4)$ and $3$ objects.Comm. Statist. - Theory and Methods 41 (2012), 2445-2455. Zbl 1271.62175, MR 3003795, 10.1080/03610926.2011.608587; reference:[21] Katulska, K., Smaga, Ł.: D-optimal chemical balance weighing designs with autoregressive errors.Metrika 76 (2013), 393-407. MR 3041462, 10.1007/s00184-012-0394-8; reference:[22] Katulska, K., Smaga, Ł.: A note on D-optimal chemical balance weighing designs and their applications.Colloquium Biometricum 43 (2013), 37-45.; reference:[23] Katulska, K., Smaga, Ł.: On highly D-efficient designs with non-negatively correlated observations.REVSTAT - Statist. J. (accepted).; reference:[24] Li, C. H., Yang, S. Y.: On a conjecture in D-optimal designs with $n\equiv 0 (\mathrm{mod} 4)$.Linear Algebra Appl. 400 (2005), 279-290. MR 2132491, 10.1016/j.laa.2004.11.020; reference:[25] Masaro, J., Wong, C. S.: D-optimal designs for correlated random vectors.J. Statist. Planning Inference 138 (2008), 4093-4106. Zbl 1147.62062, MR 2455990, 10.1016/j.jspi.2008.03.012; reference:[26] Neubauer, M. G., Pace, R. G.: D-optimal $(0,1)$-weighing designs for eight objects.Linear Algebra Appl. 432 (2010), 2634-2657. Zbl 1185.62134, MR 2608182, 10.1016/j.laa.2009.12.007; reference:[27] Pukelsheim, F.: Optimal Design of Experiments.John Wiley and Sons Inc., New York 1993. Zbl 1101.62063, MR 1211416; reference:[28] Team, R Core: R: A language and environment for statistical computing.R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ (2015).; reference:[29] Smaga, Ł.: D-optimal Chemical Balance Weighing Designs with Various Forms of the Covariance Matrix of Random Errors.Ph.D. Thesis, Adam Mickiewicz University, 2013 (in polish).; reference:[30] Smaga, Ł.: Necessary and sufficient conditions in the problem of D-optimal weighing designs with autocorrelated errors.Statist. Probab. Lett. 92 (2014), 12-16. MR 3230466, 10.1016/j.spl.2014.04.027; reference:[31] Smaga, Ł.: Uniquely E-optimal designs with $n\equiv 2 (\mathrm{mod} 4)$ correlated observations.Linear Algebra Appl. 473 (2015), 297-315. MR 3338337, 10.1016/j.laa.2014.08.022; reference:[32] Wojtas, M.: On Hadamard's inequality for the determinants of order non-divisible by $4$.Colloquium Mathematicum 12 (1964), 73-83. Zbl 0126.02604, MR 0168574, 10.4064/cm-12-1-73-83; reference:[33] Yang, C. H.: On designs of maximal $(+1,-1)$-matrices of order $n\equiv 2 (\text{mod} 4)$.Math. Computat. 22 (1968), 174-180. Zbl 0167.01703, MR 0225476, 10.1090/s0025-5718-1968-0225476-4; reference:[34] Yeh, H. G., Huang, M. N. Lo: On exact D-optimal designs with $2$ two-level factors and $n$ autocorrelated observations.Metrika 61 (2005), 261-275. Zbl 1079.62078, MR 2230375, 10.1007/s001840400336

  3. 3
    Academic Journal

    المؤلفون: Pázman, Andrej

    وصف الملف: application/pdf

    Relation: mr:MR2920712; zbl:Zbl 1244.62101; reference:[1] Fišerová, E., Kubáček, L., Kunderová, P.: Linear Statistical Models: Regularity and Singularities. Academia, Praha, 2007.; reference:[2] Harville, D. A.: Matrix Algebra from a Statistician’s Perspective. Springer, New York, 1997. Zbl 0881.15001, MR 1467237; reference:[3] Näther, W.: Exact designs for regression models with correlated errors. Statistics 16 (1985), 479–484. MR 0803486, 10.1080/02331888508801879; reference:[4] Pázman, A.: Foundations of Optimum Experimentsl Design. Kluwer, Dordrecht, 1986.; reference:[5] Pázman, A.: Information contained in design points of experiments with correlated observations. Kybernetika 46 (2010), 769–781. Zbl 1201.62105, MR 2722100; reference:[6] Pázman, A., Pronzato, L.: On the irregular behavior of LS estimators for asymptotically singular designs. Statistics and Probability Letters 76 (2006), 1089–1096. Zbl 1090.62076, MR 2269278, 10.1016/j.spl.2005.12.010; reference:[7] Pukelsheim, F.: Optimal Design of Experiments. Wiley, New York, 1993. Zbl 0834.62068, MR 1211416; reference:[8] Zvára, K.: Regresní analýza. Academia, Praha, 1989.

  4. 4
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2907850; zbl:Zbl 06047594; reference:[1] Banerjee, K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics.Marcel Dekker Inc., New York 1975. Zbl 0334.62030, MR 0458751; reference:[2] Ceranka, B., Katulska, K.: Optimum singular spring balance weighing designs with non-homogeneity of the variances of errors for estimating the total weight.Austral. J. Statist. 28 (1986), 200–205. Zbl 0657.62082, MR 0860464, 10.1111/j.1467-842X.1986.tb00599.x; reference:[3] Clatworthy, W. H.: Tables of two-associate-class partially balanced designs.NBS Appl. Math. 63 (1973). Zbl 0289.05017, MR 0415952; reference:[4] Dey, A., Gupta, S. C.: Singular weighing designs and the estimation of total weight.Comm. Statist. Theory Methods 7 (1977), 289–295. MR 0436489; reference:[5] Katulska, K.: On the estimation of total weight in singular spring balance weighing designs under the covariance matrix of errors $\sigma ^2{\bf G}$.Austral. J. Statist. 31 (1989), 277–286. Zbl 0707.62163, MR 1039415, 10.1111/j.1467-842X.1989.tb00397.x; reference:[6] Krzyśko, M., Skorzybut, M.: Dysciminant analysis of multivariate repeated measures data with Kronecker product structured covariance matrices.Statist. Papers 50 (2009), 817–835. MR 2551353, 10.1007/s00362-009-0259-z; reference:[7] Masaro, J., Wong, C. S.: Robustness of A-optimal designs.Linear Algebra Appl. 429 (2008), 1392–1408. Zbl 1145.62053, MR 2444331, 10.1016/j.laa.2008.02.017; reference:[8] Pukelsheim, F.: Optimal Design of Experiment.John Wiley and Sons, New York 1993. MR 1211416; reference:[9] Raghavarao, D.: Constructions and Combinatorial Problems in designs of Experiments.John Wiley Inc., New York 1971. MR 0365935; reference:[10] Raghavarao, D., Padgett, L. V.: Block Designs, Analysis, Combinatorics and Applications.Series of Applied Mathematics 17, Word Scientific Publishing Co. Pte. Ltd., 2005 Zbl 1102.62080, MR 2187913; reference:[11] Sinha, B. K.: Optimum spring balance weighing designs.In: Proc. All India Convention on Quality and Reliability. Indian Inst. Tech., Kharagpur 1972.; reference:[12] Shah, K. R., Sinha, B. K.: Theory of Optimal Designs.Springer-Verlag, Berlin 1989. Zbl 0688.62043, MR 1016151

  5. 5
    Academic Journal

    المؤلفون: Graczyk, Małgorzata

    وصف الملف: application/pdf

    Relation: mr:MR2907849; zbl:Zbl 06047593; reference:[1] Banerjee, K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics.Marcel Dekker Inc., New York 1975. Zbl 0334.62030, MR 0458751; reference:[2] Ceranka, B., Katulska, K.: Optimum spring balance weighing designs with non-homogeneity of the variances of errors.J. Statist. Plann. Inference 30 (1992), 185–193. MR 1157759, 10.1016/0378-3758(92)90080-C; reference:[3] Ceranka, B., Katulska, K.: A-optimal chemical balance weighing designs with diagonal covariance matrix of errors.In: MODA 6 (A. C. Atkinson, P. Hackl, W. G. Muller, eds.), Physica, Heidelberg 2001, pp. 29–36. MR 1865143; reference:[4] Ceranka, B., Graczyk, M., Katulska, K.: A-optimal chemical balance weighing design with nonhomogeneity of variances of errors.Statist. Probab. Lett. 76 (2006), 653–665. Zbl 1090.62074, MR 2234783, 10.1016/j.spl.2005.09.012; reference:[5] Pukelsheim, F.: Optimal Design of Experiment.John Wiley and Sons, New York 1993. MR 1211416; reference:[6] Raghavarao, D.: Constructions and Combinatorial Problems in Designs of Experiments.John Wiley Inc., New York 1971. MR 0365935; reference:[7] Shah, K. R., Sinha, B. K. : Theory of Optimal Designs.Springer-Verlag, Berlin 1989. Zbl 0688.62043, MR 1016151

  6. 6
    Academic Journal

    المؤلفون: Pázman, Andrej

    وصف الملف: application/pdf

    Relation: mr:MR2722100; zbl:Zbl 1201.62105; reference:[1] Brimkulov, U. N., Krug, G. V., Savanov, V. L.: Numerical construction of exact experimental designs when the measurements are correlated.(In Russian.) Industr. Laboratory 36 (1980), 435–442.; reference:[2] Cressie, N. A. C.: Statistics for Spatial Data.Second edition. Wiley, New York 1993. MR 1239641; reference:[3] Fedorov, V. V.: Design of spatial experiments: model fitting and prediction.In: Handbook of Statistics (S. Gosh and C. R. Rao, eds.), Vol. 13, Elsevier, Amsterdam 1996, pp. 515–553. Zbl 0910.62071, MR 1492578; reference:[4] Fedorov, V. V., Müller, W. G.: Optimum design for correlated fields via covariance kernel expansions.In: Model Oriented Data and Analysis 8, (J. Lopez-Fidalgo, J. H. Rodriguez-Diaz, and B. Torsney, eds.), Physica-Verlag, Heidelberg 2007, pp. 57–66. MR 2409030; reference:[5] Harville, D. A.: Matrix Algebra from a Statistician’s Perspective.Springer, New York 1997. Zbl 0881.15001, MR 1467237; reference:[6] Müller, W. G.: Collecting Spatial Data.Third edition. Springer, Heidelberg 2007. Zbl 1266.62048; reference:[7] Müller, W. G., Pázman, A.: An algorithm for the computation of optimum designs under a given covariance structure.Comput. Statist. 14 (1999), 197–211. MR 1712010; reference:[8] Müller, W. G., Pázman, A.: Measures for designs in experiments with correlated errors.Biometrika 90 (2003), 423–445. Zbl 1035.62077, MR 1986657, 10.1093/biomet/90.2.423; reference:[9] Näther, W.: Exact designs for regression models with correlated errors.Statistics 16 (1985), 479–484. MR 0803486, 10.1080/02331888508801879; reference:[10] Pázman, A.: Criteria for optimal design of small-sample experiments with correlated observations.Kybernetika 43 (2007), 453–462. Zbl 1134.62055, MR 2377923; reference:[11] Pukelsheim, F.: Optimal Design of Experiments.Wiley, New York 1993. Zbl 0834.62068, MR 1211416; reference:[12] Sacks, J., Ylvisaker, D.: Design for regression problems with correlated errors.Ann. Math. Statist. 37 (1966), 66–84. MR 0192601, 10.1214/aoms/1177699599; reference:[13] Zimmerman, D. L.: Optimum network design for spatial prediction, covariance parameter estimation and empirical prediction.Environmetrics 17 (2006), 635–652. MR 2247174, 10.1002/env.769

  7. 7
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2459072; zbl:Zbl 1173.93387; reference:[1] Byrnes C. I., Isidori A.: Asymptotic stabilization of minimum phase nonlinear systems.IEEE Trans. Automat. Control 36 (1991), 10, 1122–1137 Zbl 0758.93060, MR 1125894; reference:[2] Casti J. L.: Nonlinear Systems Theory.Academic Press, London 1985 MR 0777143; reference:[3] Furuta K.: Digital Control.Corona Publishing Company, Tokyo 1989 Zbl 0615.93060; reference:[4] Isidori A.: Nonlinear Control Systems.Third edition. Springer-Verlag, Berlin 1995 Zbl 0931.93005, MR 1410988; reference:[5] Khalil H. K.: Nonlinear Systems.MacMillan Publishing Company, New York 1992 Zbl 1140.93456, MR 1201326; reference:[6] Mita T.: Digital Control Theory.Shokoto Company, Tokyo 1984; reference:[7] Mori Y.: Control Engineering.Corona Publishing Company, Tokyo 2001; reference:[8] Okubo S.: A design of nonlinear model following control system with disturbances.Trans. Society of Instrument and Control Engineers 21 (1985), 8, 792–799; reference:[9] Okubo S.: A nonlinear model following control system with containing unputs in nonlinear parts.Trans. Society of Instrument and Control Engineers 22 (1986), 6, 792–799; reference:[10] Okubo S.: Nonlinear model following control system with unstable zero points of the linear part.Trans. Society of Instrument and Control Engineers 24 (1988), 9, 920–926; reference:[11] Okubo S.: Nonlinear model following control system using stable zero assignment.Trans. Society of Instrument and Control Engineers 28 (1992), 8, 939–946; reference:[12] Takaxashi Y.: Digital Control.Iwahami Shoten, Tokyo 1985; reference:[13] Zhang Y., Okubo S.: A design of discrete time nonlinear model following control system with disturbances.Trans. Inst. Electrical Engineers of Japan 117–C (1997), 8, 1113–1118

  8. 8
    Academic Journal

    المؤلفون: Zattoni, Elena

    وصف الملف: application/pdf

    Relation: mr:MR2405051; zbl:Zbl 1145.93334; reference:[1] Basile G., Marro G.: Controlled and Conditioned Invariants in Linear System Theory.Prentice Hall, Englewood Cliffs, NJ 1992 Zbl 0758.93002, MR 1149379; reference:[2] Bittanti S., Laub A. J., (eds.) J. C. Willems: The Riccati Equation.Springer-Verlag, Berlin – Heidelberg 1991 Zbl 0734.34004, MR 1132048; reference:[3] Chen J., Ren Z., Hara, S., Qiu L.: Optimal tracking performance: Preview control and exponential signals.IEEE Trans. Automat. Control 46 (2001), 10, 1647–1653 Zbl 1045.93503, MR 1858072; reference:[4] Clements D. J.: Rational spectral factorization using state-space methods.Systems Control Lett. 20 (1993), 335–343 Zbl 0772.93002, MR 1222397; reference:[5] Colaneri P., Geromel J. C., Locatelli A.: Control Theory and Design: An $RH_2$ and $RH_\infty $ Viewpoint.Academic Press, London 1997; reference:[6] Grimble M. J.: Polynomial matrix solution to the standard $H_2$-optimal control problem.Internat. J. Systems Sci. 22 (1991), 5, 793–806 MR 1102097; reference:[7] Hoover D. N., Longchamp, R., Rosenthal J.: Two-degree-of-freedom $\ell _2$-optimal tracking with preview.Automatica 40 (2004), 1, 155–162 Zbl 1035.93026, MR 2143984; reference:[8] Hunt K. J., Šebek, M., Kučera V.: Polynomial solution of the standard multivariable $H_2$-optimal control problem.IEEE Trans. Automat. Control 39 (1994), 7, 1502–1507 MR 1283931; reference:[9] Imai H., Shinozuka M., Yamaki T., Li, D., Kuwana M.: Disturbance decoupling by feedforward and preview control.ASME J. Dynamic Systems, Measurements and Control 105 (1983), 3, 11–17 Zbl 0512.93029; reference:[10] Kojima A., Ishijima S.: LQ preview synthesis: Optimal control and worst case analysis.IEEE Trans. Automat. Control 44 (1999), 2, 352–357 Zbl 1056.93643, MR 1668996; reference:[11] Lancaster P., Rodman L.: Algebraic Riccati Equations.Oxford University Press, New York 1995 Zbl 0836.15005, MR 1367089; reference:[12] Marro G., Prattichizzo, D., Zattoni E.: A unified setting for decoupling with preview and fixed-lag smoothing in the geometric context.IEEE Trans. Automat. Control 51 (2006), 5, 809–813 MR 2232604; reference:[13] Marro G., Zattoni E.: ${H}_2$-optimal rejection with preview in the continuous-time domain.Automatica 41 (2005), 5, 815–821 Zbl 1093.93008, MR 2157712; reference:[14] Marro G., Zattoni E.: Signal decoupling with preview in the geometric context: exact solution for nonminimum-phase systems.J. Optim. Theory Appl. 129 (2006), 1, 165–183 Zbl 1136.93013, MR 2281050; reference:[15] Moelja A. A., Meinsma G.: $H_2$ control of preview systems.Automatica 42 (2006), 6, 945–952 Zbl 1117.93327, MR 2227597; reference:[16] Vidyasagar M.: Control System Synthesis: A Factorization Approach.The MIT Press, Cambridge, MA 1985 Zbl 0655.93001, MR 0787045; reference:[17] Šebek M., Kwakernaak H., Henrion, D., Pejchová S.: Recent progress in polynomial methods and polynomial toolbox for Matlab version 2.0. In: Proc. 37th IEEE Conference on Decision and Control, Tampa 1998; reference:[18] Willems J. C.: Feedforward control, PID control laws, and almost invariant subspaces.Systems Control Lett. 1 (1982), 4, 277–282 Zbl 0473.93032, MR 0670212; reference:[19] Wonham W. M.: Linear Multivariable Control: A Geometric Approach.Third edition. Springer-Verlag, New York 1985 Zbl 0609.93001, MR 0770574; reference:[20] Yamada M., Funahashi, Y., Riadh Z.: Generalized optimal zero phase tracking controller design.Trans. ASME – J. Dynamic Systems, Measurement and Control 121 (1999), 2, 165–170; reference:[21] Zattoni E.: Decoupling of measurable signals via self-bounded controlled invariant subspaces: Minimal unassignable dynamics of feedforward units for prestabilized systems.IEEE Trans. Automat. Control 52 (2007), 1, 140–143 MR 2286774

  9. 9
    Academic Journal

    المؤلفون: Pázman, Andrej

    وصف الملف: application/pdf

    Relation: mr:MR2377923; zbl:Zbl 1134.62055; reference:[1] Apt M., Welch W. J.: Fisher information and maximum likelihood estimation of covariance parameters in Gaussian stochastic processes.Canad. J. Statist. 26 (1998), 127–137 MR 1624393; reference:[2] Brimkulov U. N., Krug G. K., Savanov V. L.: Design of Experiments in Investigating Random Fields and Processes.Nauka, Moscow 1986; reference:[3] Brown L. D.: Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory.(Vol. 9 of Institute of Mathematical Statistics Lecture Notes – Monograph Series.) Institute of Mathematical Statistics, Hayward 1986 Zbl 0685.62002, MR 0882001; reference:[4] Cresie N. A. C.: Statistics for Spatial Data.Wiley, New York 1993 MR 1239641; reference:[5] Gauchi J. P., Pázman A.: Design in nonlinear regression by stochastic minimization of functionals of the mean square error matrix.J. Statist. Plann. Inference 136 (2006), 1135–1152 MR 2181993; reference:[6] Harman R.: Minimal efficiency of designs under the class of orthogonally invariant information criteria.Metrika 60 (2004), 137–153 Zbl 1079.62072, MR 2088736; reference:[7] Müller W. G., Pázman A.: An algorithm for computation of optimum designs under a given covariance structure.Comput. Statist. 14 (1999), 197–211 MR 1712010; reference:[8] Pázman A.: Probability distribution of the multivariate nonlinear least squares estimates.Kybernetika 20 (1984), 209–230 MR 0763647; reference:[9] Pázman A.: Nonlinear Statistical Models.Kluwer, Dordrecht – Boston 1993 Zbl 0808.62058; reference:[10] Pázman A.: Correlated Optimum Design with Parametrized Covariance Function: Justification of the Use of the Fisher Information Matrix and of the Method of Virtual Noise.Research Report No. 5, Institut für Statistik, WU Wien, Vienna 2004; reference:[11] Pázman A., Pronzato L.: Nonlinear experimental design based on the distribution of estimators.J. Statist. Plann. Inference 33 (1992), 385–402 Zbl 0772.62042, MR 1200655; reference:[12] Pukelsheim F.: Optimal Design of Experiments.Wiley, New York 1993 Zbl 1101.62063, MR 1211416; reference:[13] Sacks J., Welch W. J., Mitchell T. J., Wynn H. P.: Design and analysis of computer experiments.Statist. Sci. 4 (1989), 409–435 Zbl 0955.62619, MR 1041765; reference:[14] Spivak M.: Calculus on Manifolds.W. A. Benjamin, Inc., Menlo Park, Calif. 1965 Zbl 0381.58003, MR 0209411; reference:[15] Uciński D., Atkinson A. C.: Experimental design for time-dependent models with correlated observations.Stud. Nonlinear Dynamics & Econometrics 8 (2004), Issue 2, Article 13 Zbl 1082.62514

  10. 10
    Academic Journal

    المؤلفون: Pázman, Andrej, Pronzato, Luc

    مصطلحات موضوعية: msc:62J02, msc:62K05

    وصف الملف: application/pdf

    Relation: mr:MR2293586; zbl:Zbl 1141.62061; reference:[1] BATES D. M.-WATTS D. G.: Nonlinear Regression Analysis and its Applications.Wileу, New York, 1988. Zbl 0728.62062, MR 1060528; reference:[2] GALLANT A. R.: Nonlinear Statistical Models.Wileу, New York, 1987. Zbl 0611.62071, MR 0921029; reference:[3] HARVILLE D. A.: Matrix Algebra from a Statistician's Perspective.Springer, New York, 1997. Zbl 0881.15001, MR 1467237; reference:[4] IVANOV A. V.: Asymptotic Theory of Nonlinear Regression.Kluwer, Dordrecht, 1997. Zbl 0874.62070, MR 1472234; reference:[5] JENNRICH R. L.: Asymptotic properties of nonlinear least squares estimation.Ann. Math. Statist. 40 (1969), 633-643. MR 0238419; reference:[6] KIEFER J.: Optimum design for fitting biased multivariate surfaces.In: Multivariate Analуsis (P. R. Krishnaian, ed.), North Holland, Amsterdam, 1973, pp. 287-297. MR 0365936; reference:[7] PÁZMAN A.: Nonlinear Statistical Models.Kluwer, Dordrecht, 1993. Zbl 0808.62058, MR 1254661; reference:[8] PÁZMAN A.-PRONZATO L.: On the irregular behavior of LS estimators for asymptotically singular designs.Lab. IЗS, CNRS Sophia Antipolis. Rapport de recherche ISRN IЗS/RR-2005-12-FR, Juin 2005 [Statist. & Probab. Lett. 76 (2006), 1089-1096]. Zbl 1090.62076, MR 2269278; reference:[9] PESOTCHINSKI L.: Optimal robust designs: linear regression in $R^k$.Ann. Statist. 10 (1982), 511-525. MR 0653526; reference:[10] PUKELSHEIM F.: Optimal Experimental Design.Wileу, New York, 1993. MR 1211416; reference:[11] WELCH W. J.: A mean squared error criterion for the design of experiments.Biometrika 70 (1983), 205-213. Zbl 0517.62066, MR 0742990

  11. 11
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1995737; zbl:Zbl 1248.62128; reference:[1] Banerjee K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics.Marcel Dekker, New York 1975 Zbl 0334.62030, MR 0458751; reference:[2] Billington E. J.: Balanced $n$-array designs: a combinatorial survey and some new results.Ars Combin. 17A (1984), 37–72 MR 0746174; reference:[3] Billington E. J., Robinson P. J.: A list of balanced ternary block designs with $r \le 15$ and some necessary existence conditions.Ars Combin. 16 (1983), 235–258 MR 0734059; reference:[4] Ceranka B., Graczyk M.: Optimum chemical balance weighing designs under the restriction on weighings.Discuss. Math. 21 (2001), 111–120 MR 1961022, 10.7151/dmps.1024; reference:[5] Ceranka B., Katulska K.: On some optimum chemical balance weighing designs for $v+1$ objects.J. Japan Statist. Soc. 18 (1988), 47–50 Zbl 0651.62072, MR 0959679; reference:[6] Ceranka B., Katulska K.: Chemical balance weighing designs under the restriction on the number of objects placed on the pans.Tatra Mt. Math. Publ. 17 (1999), 141–148 Zbl 0988.62047, MR 1737701; reference:[7] Ceranka B., Katulska, K., Mizera D.: The application of ternary balanced block designs to chemical balance weighing designs.Discuss. Math. 18 (1998), 179–185 MR 1687875; reference:[8] Hotelling H.: Some improvements in weighing and other experimental techniques.Ann. Math. Statist. 15 (1944), 297–305 Zbl 0063.02076, MR 0010951, 10.1214/aoms/1177731236; reference:[9] Raghavarao D.: Constructions and Combinatorial Problems in Designs of Experiments.Wiley, New York 1971 MR 0365935; reference:[10] Saha G. M., Kageyama S.: Balanced arrays and weighing designs.Austral. J. Statist. 26 (1984), 119–124 Zbl 0599.62089, MR 0766612, 10.1111/j.1467-842X.1984.tb01225.x; reference:[11] Shah K. R., Sinha B. L.: Theory of Optimal Designs.Springer, Berlin 1989 Zbl 0688.62043, MR 1016151; reference:[12] Swamy M. N.: Use of balanced bipartite weighing designs as chemical balance designs.Comm. Statist. Theory Methods 11 (1982), 769–785 Zbl 0514.62086, MR 0651611, 10.1080/03610928208828270

  12. 12
    Academic Journal

    المؤلفون: Pázman, Andrej

    مصطلحات موضوعية: msc:62E17, msc:62J02, msc:62K05

    وصف الملف: application/pdf

    Relation: mr:MR1420138; zbl:Zbl 0882.62070

  13. 13
    Academic Journal

    مصطلحات موضوعية: msc:15A15, msc:62K05, msc:62L20

    وصف الملف: application/pdf

    Relation: mr:MR1353504; zbl:Zbl 0838.62055

  14. 14
    Academic Journal

    المؤلفون: Pronzato, Luc, Pázman, Andrej

    مصطلحات موضوعية: msc:62E17, msc:62E20, msc:62F12, msc:62J02, msc:62K05

    وصف الملف: application/pdf

    Relation: mr:MR1283494; zbl:Zbl 0812.62071; reference:[1] S. Amari: Differential-Geometrical Methods in Statistics.Springer, Berlin 1985. Zbl 0559.62001, MR 0788689; reference:[2] D. Bates, D. Watts: Relative curvature measures of nonlinearity.J. Roy. Statist. Soc. Ser. B 42 (1980), 1-25. Zbl 0455.62028, MR 0567196; reference:[3] M. Box: Bias in nonlinear estimation.J. Roy. Statist. Soc. Ser. B 33 (1971), 171-201. Zbl 0232.62029, MR 0315827; reference:[4] G. Clarke: Moments of the least-squares estimators in a non-linear regression model.J. Roy. Statist. Soc. Ser. B 42 (1980), 227-237. Zbl 0436.62054, MR 0583361; reference:[5] P. Hougaard: Saddlepoint approximations for curved exponential families.Statist. Probab. Lett. 3 (1985), 161-166. Zbl 0573.62016, MR 0801863; reference:[6] A. Pázman: Probability distribution of the multivariate nonlinear least-squares estimates.Kybernetika 20 (1984), 209-230. MR 0763647; reference:[7] A. Pázman: Small-sample distributional properties of nonlinear regression estimators (a geometric approach) (with discussion).Statistics 21 (1990), 3, 323-367. MR 1062847; reference:[8] N. Reid: Saddlepoint methods and statistical inference.Statist. Sci. 3 (1988), 213-238. Zbl 0955.62541, MR 0968390

  15. 15
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1185799; zbl:Zbl 0764.62065; reference:[1] Böhning D: Likelihood inference for mixtures: geometrical and other constructions of monotone step-length algorithms.Biometrika 76 no. 2 (1989), 375-383. MR 1016029, 10.1093/biomet/76.2.375; reference:[2] Fedorov V. V.: Theory of Optimal Experiments.Academic Press, New York, 1972. MR 0403103; reference:[3] Lindsay B. G.: The geometry of mixture likelihoods: a general theory.Annals of Stat. 11 no. 1 (1983), 86-94. Zbl 0512.62005, MR 0684866, 10.1214/aos/1176346059; reference:[4] Mallet A.: A maximum likelihood estimation method for random coefficient regression models.Biometrika 73 no. 3 (1986), 645-656. Zbl 0615.62083, MR 0897856, 10.1093/biomet/73.3.645; reference:[5] Pázman A.: Foundations of Optimum Experimental Design.co-editor VEDA, Bratislava, Reidel, Dordrecht, 1986. MR 0838958; reference:[6] Silvey S. D.: Optimal Design.Chapman & Hall, London, 1980. Zbl 0468.62070, MR 0606742; reference:[7] Torsney B.: A moment inequality and monotonicity of an algorithm.Semi-Infinite Programming and Applications (A. V. Fiacco and K. O. Kortanek, eds.), Springer-Verlag, Berlin, 1983, pp. 249-260. Zbl 0512.90082, MR 0709281; reference:[8] Torsney B.: Computing optimizing distributions with applications in design, estimation and image processing.Optimal Design and Analysis of Experiments (Y. Dodge, V. V. Fedorov and H. P. Wynn, eds.), North-Holland, Amsterdam, 1988, pp. 361-370.; reference:[9] Wynn H. P.: The sequential generation of D-optimum experimental designs.Annals of Math. Stat. 41 (1970), 1655-1664. Zbl 0224.62038, MR 0267704, 10.1214/aoms/1177696809

  16. 16
    Academic Journal

    المؤلفون: Horváth, Emil

    مصطلحات موضوعية: msc:62J05, msc:62J07, msc:62K05

    وصف الملف: application/pdf

    Relation: mr:MR953687; zbl:Zbl 0654.62061; reference:[1] A. E. Hoerl, R. W. Kennard: Ridge regression: Biased estimation for nonorthogonal problems; Application to nonorthogonal problems.Technometrics 12 (1970), 55-67; 69-82.; reference:[2] A. Pázman: Foundations of Optimum Experimental Design.D. Reidel Publishing Company, Dordrecht--Boston--Lancaster--Tokyo 1986. MR 0838958; reference:[3] L. Kubáček: Základy teorie odhadu.(Foundation of Estimation Theory.) Veda, Bratislava 1983.; reference:[4] G. A. F. Seber: Linear Regression Analysis.J. Wiley and Sons, New York--London--Sydney--Toronto 1977. Zbl 0354.62055, MR 0436482; reference:[5] E. Z. Demienko: Linejnaja i nelinejnaja regressii.Finansy i statistika, Moskva 1981.; reference:[6] E. Horváth: Navrhovanie optimálneho regresného experimentu pre hrebeňové odhady.(On Optimum Experimental Design for Ridge Estimates.) Ph. D. Thesis, Mathematical Institute, Slovak Academy of Sciences, Bratislava 1987. MR 0953687

  17. 17
    Academic Journal

    المؤلفون: Mikulecká, Jaroslava

    مصطلحات موضوعية: msc:62J05, msc:62K05, msc:62K99, msc:90C25, msc:90C90

    وصف الملف: application/pdf

    Relation: mr:MR710912; zbl:Zbl 0513.62076; reference:[1] A. C. Atkinson: Planning experiments to detect inadequate regression models.Biometrika 59 (1972), 275-293. Zbl 0243.62046, MR 0334418; reference:[2] A. C. Atkinson: Planning experiments for model testing and discrimination.Math. Operationsforsch. Statist. 6 (1975), 252-267. Zbl 0342.62049, MR 0408138; reference:[3] D. M. Borth: A total entropy criterion for the dual problem of model discrimination and parameter estimation.J. Roy. Statist. Soc. Ser. B 37 (1975), 77-87. Zbl 0297.62061, MR 0375681; reference:[4] V. V. Fedorov: Theory of Optimal Design.Nauka, Moskva, 1971. In Russian. MR 0403102; reference:[5] V. V. Fedorov, A. Pázman: Design of physical experiments.Fortschr. Phys. 16 (1968), 325-355.; reference:[6] M. Hamala: Nonlinear Programming.ALFA, Bratislava 1972. In Slovak.; reference:[7] W. J. Hill W. G. Hunter, and D. W. Wichern: A joint design criterion for the dual problem of model discrimination and parameter estimation.Technometrics 10 (1968), 145-160. MR 0221680; reference:[8] E. Lauter: Experimental design in a class of models.Math. Operationsforsch. Statist. 5 (1974), 379-398. MR 0440812; reference:[9] J. Mikulecká: A Hybrid Optimal Design of Experiments.Ph. D. Dissertation, Comenius University, Bratislava 1981. In Slovak.; reference:[10] A. Pázman: A convergence theorem in the theory of D-optimum experimental designs.Ann. Statist. 2 (1974), 216-218. MR 0345348; reference:[11] A. Pázman: Foundations of Optimization of Experiments.Veda, Bratislava 1980. In Slovak.; reference:[12] A. Pázman: Some features of the optimal design theory - A survey.Math. Operationsforsch. Statist. Ser. Statist. 11 (1980), 415-446. MR 0596522; reference:[13] M. J. D. Powell: A method for nonlinear constrains in minimization problems.In: Optimization (R. Fletcher, ed.), Academic Press, London-New York 1969. MR 0272403; reference:[14] R. T. Rockafellar: Convex Analysis.Princeton University Press, Princeton 1970. Zbl 0193.18401, MR 0274683; reference:[15] R. T. Rockafellar: The multiplier method of Hestens and Powell applied to convex programming.J. Optim. Theory Appl. 12 (1973), 555-561. MR 0334953; reference:[16] R. T. Rockafellar: A dual approach to solving nonlinear programming problems by unconstrained optimization.Math. Programming 5 (1973), 354-373. Zbl 0279.90035, MR 0371416; reference:[17] S. M. Stigler: Optimal experimental design for polynomial regression.J. Amer. Statist. Assoc. 66 (1971), 311-318. Zbl 0217.51701

  18. 18
    Academic Journal

    المؤلفون: Pázman, Andrej

    مصطلحات موضوعية: msc:46E30, msc:62K05

    وصف الملف: application/pdf

    Relation: mr:MR629346; zbl:Zbl 0466.62067; reference:[1] Chien-Fu Wu H. P. Wynn: The convergence of general steplength algorithms for regular optimum design criteria.Ann. Statist. 6 (1978), 1273-1285. MR 0523762; reference:[2] V. V. Fedorov: Theory of Optimal Experiments.Academic Press, New York 1972. MR 0403103; reference:[3] J. Kiefer: General equivalence theory for optimal designs.Ann. Statist. 2 (1974), 849-879. MR 0356386; reference:[4] J. Neveu: Processus aléatoires gaussiens.Presses de l'Univ. Montreal, 1968. Zbl 0192.54701, MR 0272042; reference:[5] A. Pázman: A convergence theorem in the theory of D-optimum experimental designs.Ann. Statist. 2 (1974), 216-218. MR 0345348; reference:[6] A. Pázman: Plans d'expérience pour les estimations de fonctionnelles non-linéaires.Ann. Inst. H. Poincare XIIIB (1977), 259-267. MR 0455230; reference:[7] A. Pázman: Hilbert-space methods in experimental design.Kybernetika 14 (1978), 73-84. MR 0478496; reference:[8] A. Pázman: Singular experimental designs.(Standard and Hilbert-space approaches). Math. Operationsforsch. u. Statist. Ser. Statistics 11 (1980), 137-149. MR 0606165

  19. 19
    Academic Journal

    المؤلفون: Pázman, Andrej

    مصطلحات موضوعية: msc:62K05, msc:62K99, msc:62M99

    وصف الملف: application/pdf

    Relation: mr:MR0478496; zbl:Zbl 0385.62052; reference:[1] A. S. Atkinson V. V. Fedorov: The design of experiments for discriminating between two rival models.Biometrika 62 (1975), 57-69. MR 0370955; reference:[2] C. L. Atwood: Convergent design sequences for sufficiently regular optimality criteria.Ann. of Statist. 4 (1976), 1124-1138. Zbl 0344.62064, MR 0418352; reference:[3] O. Bunke: Model choice and parameter estimation in regression analysis.Math. Operationsforsch. u. Statist. 4 (1973), 407-423. Zbl 0277.62045, MR 0386170; reference:[4] G. Elfving: Optimum allocation in linear regression.Ann. Math. Statist. 23 (1952), 255 - 262. Zbl 0047.13403, MR 0047998; reference:[5] B. B. Федоров: Теория оптимального эксперимента.Hayкa, Mocквa 1971. Zbl 1170.92344; reference:[6] V. V. Fedorov A. Pázman: Design of experiments based on the measure of information.Print N° E 5 - 3247 of the Joint Institute for Nuclear Research, Dubna (USSR) 1967.; reference:[7] J. Fellman: On the allocation of linear observations.Comentationes Physico-Mathematicae (Helsinki) 44, 27-78. Zbl 0303.62062, MR 0356369; reference:[8] P. R. Halmos: Introduction to Hilbert space.Chelsea Publ. C. New York 1957. Zbl 0079.12404; reference:[9] S. Karlin W. J. Studden: Optimal experimental designs.Ann. Math. Statist. 37 (1966), 783-815. MR 0196871; reference:[10] J. Kiefer W. J. Studden: Optimum designs for large degree polynomial regression.Ann. of Statist. 4 (1976), 113-123. MR 0423701; reference:[11] J. Kiefer J. Wolfowitz: Optimum design in regression problems.Ann. Math. Statist. 30 (1959), 271-294. MR 0104324; reference:[12] B. B. Налимов: Теория эксперимента.Hayкa, Mocквa 1971. Zbl 1170.92344; reference:[13] J. Neveu: Processus aléatoires gaussiens.Lab. de Calcul des Probabilités, Univ. Paris VI, 1974. MR 0272042; reference:[14] K. R. Parthasarathy: Probability measures on metric spaces.Academic Press, New York and London 1967. Zbl 0153.19101, MR 0226684; reference:[15] A. Pázman: The ordering of experimental designs. A. Hilbert space approach.Kybernetika (Praha) 10 (1974), 373-388. MR 0381170; reference:[16] A. Pázman: Optimum experimental designs with a lack of a priori information II. - Designs for the estimation of the whole response function.Kybernetika (Praha) 12 (1976), 7-14. MR 0420987; reference:[17] A. Pázman: Plans d'expérience pour les estimations des functionnelles non-linéaires.Ann. de l'Institut Henri Poincaré B 13 (1977), 259-267. MR 0455230; reference:[18] S. D. Silvey D. M. Titterington: A geometric approach to optimal design theory.Biometrica 60 (1973), 21-32. MR 0334428; reference:[19] C. H. Coколов: Непрерывное планирование регрессионных экспериментов.Teoрия вероятностей 8 (1963), 95-101, 318-324.; reference:[20] M. Stone: Application of a measure of information to the design and comparison of regression experiments.Ann. Math. Statist. 30 (1959), 55 - 70. Zbl 0094.13602, MR 0106528

  20. 20
    Academic Journal

    المؤلفون: Pázman, Andrej

    مصطلحات موضوعية: msc:62K05, msc:62K99, msc:62M99

    وصف الملف: application/pdf

    Relation: mr:MR0423702; zbl:Zbl 0339.62058; reference:[1] N. Aronszajn: Theory of Reproducing Kernels.Trans. Amer. Math. Soc. 68 (1950), 337-404. Zbl 0037.20701, MR 0051437; reference:[2] C. L. Atwood: Convergent Design Sequences for Sufficiently Regular Optimality Criteria.(1975) Preprint of the University of California. MR 0418352; reference:[3] В. В. Федоров: Teopия оптимального эксперимента.Hayкa, Mocквa 1971.; reference:[4] P. R. Halmos: Introduction to Hilbert Space.Second edition. Chelsa, New York, 1972.; reference:[5] S. Karlin W. J. Studden: Optimal Experimental Designs.Ann. Math. Statist. 37 (1966), 783-815. MR 0196871; reference:[6] J. Neveu: Processus aleatoires gaussiens.(1974) Laboratoire de Calcul des Probability, Universite de Paris VI. MR 0272042; reference:[7] K. R. Parthasarathy: Probability Measures on Metric Spaces.Academic Press, New York and London, 1967. Zbl 0153.19101, MR 0226684; reference:[8] A. Pazman: The Ordering of Experimental Designs. A Hilbert Space Approach.Kybernetika, 10 (1974), 373-388. Zbl 0291.62105, MR 0381170