-
1Academic Journal
المؤلفون: Müller, Christine
مصطلحات موضوعية: Linear model, Infinitesimal contamination neighbourhood, Robust estimation, Hampel-Krasker estimator, Huber estimator, Linear aspect, Optimal design, A-optimality, ddc:510, msc:62F35, msc:62K05, msc:62J05
وصف الملف: 624055 bytes; application/pdf
Relation: http://nbn-resolving.org/urn:nbn:de:hebis:34-2008031020683; urn:nbn:de:hebis:34-2008031020683; urn:issn:0378-3758
-
2Academic Journal
المؤلفون: Katulska, Krystyna, Smaga, Łukasz
مصطلحات موضوعية: keyword:correlation, keyword:D-efficiency, keyword:D-optimal chemical balance weighing design, keyword:Hadamard matrix, keyword:simulated annealing algorithm, keyword:tabu search, msc:15A18, msc:62K05
وصف الملف: application/pdf
Relation: mr:MR3565770; zbl:Zbl 06644311; reference:[1] Angelis, L., Bora-Senta, E., Moyssiadis, C.: Optimal exact experimental designs with correlated errors through a simulated annealing algorithm.Comput. Statist. Data Anal. 37 (2001), 275-296. Zbl 0990.62061, MR 1862514, 10.1016/s0167-9473(01)00011-1; reference:[2] Banerjee, K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics.Marcel Dekker Inc., New York 1975. Zbl 0334.62030, MR 0458751; reference:[3] Bora-Senta, E., Moyssiadis, C.: An algorithm for finding exact D- and A-optimal designs with $n$ observations and $k$ two-level factors in the presence of autocorrelated errors.J. Combinat. Math. Combinat. Comput. 30 (1999), 149-170. Zbl 0937.62074, MR 1705339; reference:[4] Bulutoglu, D. A., Ryan, K. J.: D-optimal and near D-optimal $2^k$ fractional factorial designs of resolution $V$.J. Statist. Plann. Inference 139 (2009), 16-22. Zbl 1284.62473, MR 2460547, 10.1016/j.jspi.2008.05.012; reference:[5] Ceranka, B., Graczyk, M.: Optimal chemical balance weighing designs for $v+1$ objects.Kybernetika 39 (2003), 333-340. Zbl 1248.62128, MR 1995737; reference:[6] Ceranka, B., Graczyk, M.: Robustness optimal spring balance weighing designs for estimation total weight.Kybernetika 47 (2011), 902-908. Zbl 1274.62492, MR 2907850; reference:[7] Ceranka, B., Graczyk, M., Katulska, K.: A-optimal chemical balance weighing design with nonhomogeneity of variances of errors.Statist. Probab. Lett. 76 (2006), 653-665. Zbl 1090.62074, MR 2234783, 10.1016/j.spl.2005.09.012; reference:[8] Ceranka, B., Graczyk, M., Katulska, K.: On certain A-optimal chemical balance weighing design.Comput. Statist. Data Analysis 51 (2007), 5821-5827. MR 2407680, 10.1016/j.csda.2006.10.021; reference:[9] Cheng, C. S.: Optimal biased weighing designs and two-level main-effect plans.J. Statist. Theory Practice 8 (2014), 83-99. MR 3196641, 10.1080/15598608.2014.840520; reference:[10] Domijan, K.: tabuSearch: R based tabu search algorithm. R package version 1.1.\url{http://CRAN.R-project.org/package=tabuSearch} (2012); reference:[11] Ehlich, H.: Determinantenabschätzungen für binäre Matrizen.Math. Zeitschrift 83 (1964), 123-132. Zbl 0115.24704, MR 0160792, 10.1007/bf01111249; reference:[12] Ehlich, H.: Determinantenabschätzungen für binäre Matrizen mit $n\equiv 3 \mathrm{mod} 4$.Math. Zeitschrift 84 (1964), 438-447. MR 0168573, 10.1007/bf01109911; reference:[13] Galil, Z., Kiefer, J.: D-optimum weighing designs.Ann. Statist. 8 (1980), 1293-1306. Zbl 0598.62087, MR 0594646, 10.1214/aos/1176345202; reference:[14] Graczyk, M.: A-optimal biased spring balance weighing design.Kybernetika 47 (2011), 893-901. Zbl 1274.62495, MR 2907849; reference:[15] Graczyk, M.: Some applications of weighing designs.Biometr. Lett. 50 (2013), 15-26. 10.2478/bile-2013-0014; reference:[16] Harman, R., Bachratá, A., Filová, L.: Construction of efficient experimental designs under multiple resource constraints.Appl. Stochast. Models in Business and Industry 32 (2015), 1, 3-17. MR 3460885, 10.1002/asmb.2117; reference:[17] Jacroux, M., Wong, C.S., Masaro, J.C.: On the optimality of chemical balance weighing designs.J. Statist. Planning Inference 8 (1983), 231-240. Zbl 0531.62072, MR 0720154, 10.1016/0378-3758(83)90041-1; reference:[18] Jenkins, G. M., Chanmugam, J.: The estimation of slope when the errors are autocorrelated.J. Royal Statist. Soc., Ser. B (Statistical Methodology) 24 (1962), 199-214. Zbl 0116.11401, MR 0138154; reference:[19] Jung, J. S., Yum, B. J.: Construction of exact D-optimal designs by tabu search.Comput. Statist. Data Analysis 21 (1996), 181-191. Zbl 0900.62403, MR 1394535, 10.1016/0167-9473(95)00014-3; reference:[20] Katulska, K., Smaga, Ł.: D-optimal chemical balance weighing designs with $n\equiv 0 (\text{mod} 4)$ and $3$ objects.Comm. Statist. - Theory and Methods 41 (2012), 2445-2455. Zbl 1271.62175, MR 3003795, 10.1080/03610926.2011.608587; reference:[21] Katulska, K., Smaga, Ł.: D-optimal chemical balance weighing designs with autoregressive errors.Metrika 76 (2013), 393-407. MR 3041462, 10.1007/s00184-012-0394-8; reference:[22] Katulska, K., Smaga, Ł.: A note on D-optimal chemical balance weighing designs and their applications.Colloquium Biometricum 43 (2013), 37-45.; reference:[23] Katulska, K., Smaga, Ł.: On highly D-efficient designs with non-negatively correlated observations.REVSTAT - Statist. J. (accepted).; reference:[24] Li, C. H., Yang, S. Y.: On a conjecture in D-optimal designs with $n\equiv 0 (\mathrm{mod} 4)$.Linear Algebra Appl. 400 (2005), 279-290. MR 2132491, 10.1016/j.laa.2004.11.020; reference:[25] Masaro, J., Wong, C. S.: D-optimal designs for correlated random vectors.J. Statist. Planning Inference 138 (2008), 4093-4106. Zbl 1147.62062, MR 2455990, 10.1016/j.jspi.2008.03.012; reference:[26] Neubauer, M. G., Pace, R. G.: D-optimal $(0,1)$-weighing designs for eight objects.Linear Algebra Appl. 432 (2010), 2634-2657. Zbl 1185.62134, MR 2608182, 10.1016/j.laa.2009.12.007; reference:[27] Pukelsheim, F.: Optimal Design of Experiments.John Wiley and Sons Inc., New York 1993. Zbl 1101.62063, MR 1211416; reference:[28] Team, R Core: R: A language and environment for statistical computing.R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ (2015).; reference:[29] Smaga, Ł.: D-optimal Chemical Balance Weighing Designs with Various Forms of the Covariance Matrix of Random Errors.Ph.D. Thesis, Adam Mickiewicz University, 2013 (in polish).; reference:[30] Smaga, Ł.: Necessary and sufficient conditions in the problem of D-optimal weighing designs with autocorrelated errors.Statist. Probab. Lett. 92 (2014), 12-16. MR 3230466, 10.1016/j.spl.2014.04.027; reference:[31] Smaga, Ł.: Uniquely E-optimal designs with $n\equiv 2 (\mathrm{mod} 4)$ correlated observations.Linear Algebra Appl. 473 (2015), 297-315. MR 3338337, 10.1016/j.laa.2014.08.022; reference:[32] Wojtas, M.: On Hadamard's inequality for the determinants of order non-divisible by $4$.Colloquium Mathematicum 12 (1964), 73-83. Zbl 0126.02604, MR 0168574, 10.4064/cm-12-1-73-83; reference:[33] Yang, C. H.: On designs of maximal $(+1,-1)$-matrices of order $n\equiv 2 (\text{mod} 4)$.Math. Computat. 22 (1968), 174-180. Zbl 0167.01703, MR 0225476, 10.1090/s0025-5718-1968-0225476-4; reference:[34] Yeh, H. G., Huang, M. N. Lo: On exact D-optimal designs with $2$ two-level factors and $n$ autocorrelated observations.Metrika 61 (2005), 261-275. Zbl 1079.62078, MR 2230375, 10.1007/s001840400336
-
3Academic Journal
المؤلفون: Pázman, Andrej
مصطلحات موضوعية: keyword:singular models, keyword:optimal design, keyword:correlated observations, msc:62J05, msc:62K05
وصف الملف: application/pdf
Relation: mr:MR2920712; zbl:Zbl 1244.62101; reference:[1] Fišerová, E., Kubáček, L., Kunderová, P.: Linear Statistical Models: Regularity and Singularities. Academia, Praha, 2007.; reference:[2] Harville, D. A.: Matrix Algebra from a Statistician’s Perspective. Springer, New York, 1997. Zbl 0881.15001, MR 1467237; reference:[3] Näther, W.: Exact designs for regression models with correlated errors. Statistics 16 (1985), 479–484. MR 0803486, 10.1080/02331888508801879; reference:[4] Pázman, A.: Foundations of Optimum Experimentsl Design. Kluwer, Dordrecht, 1986.; reference:[5] Pázman, A.: Information contained in design points of experiments with correlated observations. Kybernetika 46 (2010), 769–781. Zbl 1201.62105, MR 2722100; reference:[6] Pázman, A., Pronzato, L.: On the irregular behavior of LS estimators for asymptotically singular designs. Statistics and Probability Letters 76 (2006), 1089–1096. Zbl 1090.62076, MR 2269278, 10.1016/j.spl.2005.12.010; reference:[7] Pukelsheim, F.: Optimal Design of Experiments. Wiley, New York, 1993. Zbl 0834.62068, MR 1211416; reference:[8] Zvára, K.: Regresní analýza. Academia, Praha, 1989.
-
4Academic Journal
المؤلفون: Ceranka, Bronisław, Graczyk, Małgorzata
مصطلحات موضوعية: keyword:robustness, keyword:spring balance weighing design, keyword:total weight, msc:62K05, msc:62K10
وصف الملف: application/pdf
Relation: mr:MR2907850; zbl:Zbl 06047594; reference:[1] Banerjee, K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics.Marcel Dekker Inc., New York 1975. Zbl 0334.62030, MR 0458751; reference:[2] Ceranka, B., Katulska, K.: Optimum singular spring balance weighing designs with non-homogeneity of the variances of errors for estimating the total weight.Austral. J. Statist. 28 (1986), 200–205. Zbl 0657.62082, MR 0860464, 10.1111/j.1467-842X.1986.tb00599.x; reference:[3] Clatworthy, W. H.: Tables of two-associate-class partially balanced designs.NBS Appl. Math. 63 (1973). Zbl 0289.05017, MR 0415952; reference:[4] Dey, A., Gupta, S. C.: Singular weighing designs and the estimation of total weight.Comm. Statist. Theory Methods 7 (1977), 289–295. MR 0436489; reference:[5] Katulska, K.: On the estimation of total weight in singular spring balance weighing designs under the covariance matrix of errors $\sigma ^2{\bf G}$.Austral. J. Statist. 31 (1989), 277–286. Zbl 0707.62163, MR 1039415, 10.1111/j.1467-842X.1989.tb00397.x; reference:[6] Krzyśko, M., Skorzybut, M.: Dysciminant analysis of multivariate repeated measures data with Kronecker product structured covariance matrices.Statist. Papers 50 (2009), 817–835. MR 2551353, 10.1007/s00362-009-0259-z; reference:[7] Masaro, J., Wong, C. S.: Robustness of A-optimal designs.Linear Algebra Appl. 429 (2008), 1392–1408. Zbl 1145.62053, MR 2444331, 10.1016/j.laa.2008.02.017; reference:[8] Pukelsheim, F.: Optimal Design of Experiment.John Wiley and Sons, New York 1993. MR 1211416; reference:[9] Raghavarao, D.: Constructions and Combinatorial Problems in designs of Experiments.John Wiley Inc., New York 1971. MR 0365935; reference:[10] Raghavarao, D., Padgett, L. V.: Block Designs, Analysis, Combinatorics and Applications.Series of Applied Mathematics 17, Word Scientific Publishing Co. Pte. Ltd., 2005 Zbl 1102.62080, MR 2187913; reference:[11] Sinha, B. K.: Optimum spring balance weighing designs.In: Proc. All India Convention on Quality and Reliability. Indian Inst. Tech., Kharagpur 1972.; reference:[12] Shah, K. R., Sinha, B. K.: Theory of Optimal Designs.Springer-Verlag, Berlin 1989. Zbl 0688.62043, MR 1016151
-
5Academic Journal
المؤلفون: Graczyk, Małgorzata
مصطلحات موضوعية: keyword:A-optimal design, keyword:biased design, keyword:spring balance weighing design, msc:62K05, msc:62K10
وصف الملف: application/pdf
Relation: mr:MR2907849; zbl:Zbl 06047593; reference:[1] Banerjee, K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics.Marcel Dekker Inc., New York 1975. Zbl 0334.62030, MR 0458751; reference:[2] Ceranka, B., Katulska, K.: Optimum spring balance weighing designs with non-homogeneity of the variances of errors.J. Statist. Plann. Inference 30 (1992), 185–193. MR 1157759, 10.1016/0378-3758(92)90080-C; reference:[3] Ceranka, B., Katulska, K.: A-optimal chemical balance weighing designs with diagonal covariance matrix of errors.In: MODA 6 (A. C. Atkinson, P. Hackl, W. G. Muller, eds.), Physica, Heidelberg 2001, pp. 29–36. MR 1865143; reference:[4] Ceranka, B., Graczyk, M., Katulska, K.: A-optimal chemical balance weighing design with nonhomogeneity of variances of errors.Statist. Probab. Lett. 76 (2006), 653–665. Zbl 1090.62074, MR 2234783, 10.1016/j.spl.2005.09.012; reference:[5] Pukelsheim, F.: Optimal Design of Experiment.John Wiley and Sons, New York 1993. MR 1211416; reference:[6] Raghavarao, D.: Constructions and Combinatorial Problems in Designs of Experiments.John Wiley Inc., New York 1971. MR 0365935; reference:[7] Shah, K. R., Sinha, B. K. : Theory of Optimal Designs.Springer-Verlag, Berlin 1989. Zbl 0688.62043, MR 1016151
-
6Academic Journal
المؤلفون: Pázman, Andrej
مصطلحات موضوعية: keyword:optimal sampling design, keyword:spatial statistics, keyword:random process, keyword:nonlinear regression, keyword:information matrix, msc:62B15, msc:62K05, msc:62M30
وصف الملف: application/pdf
Relation: mr:MR2722100; zbl:Zbl 1201.62105; reference:[1] Brimkulov, U. N., Krug, G. V., Savanov, V. L.: Numerical construction of exact experimental designs when the measurements are correlated.(In Russian.) Industr. Laboratory 36 (1980), 435–442.; reference:[2] Cressie, N. A. C.: Statistics for Spatial Data.Second edition. Wiley, New York 1993. MR 1239641; reference:[3] Fedorov, V. V.: Design of spatial experiments: model fitting and prediction.In: Handbook of Statistics (S. Gosh and C. R. Rao, eds.), Vol. 13, Elsevier, Amsterdam 1996, pp. 515–553. Zbl 0910.62071, MR 1492578; reference:[4] Fedorov, V. V., Müller, W. G.: Optimum design for correlated fields via covariance kernel expansions.In: Model Oriented Data and Analysis 8, (J. Lopez-Fidalgo, J. H. Rodriguez-Diaz, and B. Torsney, eds.), Physica-Verlag, Heidelberg 2007, pp. 57–66. MR 2409030; reference:[5] Harville, D. A.: Matrix Algebra from a Statistician’s Perspective.Springer, New York 1997. Zbl 0881.15001, MR 1467237; reference:[6] Müller, W. G.: Collecting Spatial Data.Third edition. Springer, Heidelberg 2007. Zbl 1266.62048; reference:[7] Müller, W. G., Pázman, A.: An algorithm for the computation of optimum designs under a given covariance structure.Comput. Statist. 14 (1999), 197–211. MR 1712010; reference:[8] Müller, W. G., Pázman, A.: Measures for designs in experiments with correlated errors.Biometrika 90 (2003), 423–445. Zbl 1035.62077, MR 1986657, 10.1093/biomet/90.2.423; reference:[9] Näther, W.: Exact designs for regression models with correlated errors.Statistics 16 (1985), 479–484. MR 0803486, 10.1080/02331888508801879; reference:[10] Pázman, A.: Criteria for optimal design of small-sample experiments with correlated observations.Kybernetika 43 (2007), 453–462. Zbl 1134.62055, MR 2377923; reference:[11] Pukelsheim, F.: Optimal Design of Experiments.Wiley, New York 1993. Zbl 0834.62068, MR 1211416; reference:[12] Sacks, J., Ylvisaker, D.: Design for regression problems with correlated errors.Ann. Math. Statist. 37 (1966), 66–84. MR 0192601, 10.1214/aoms/1177699599; reference:[13] Zimmerman, D. L.: Optimum network design for spatial prediction, covariance parameter estimation and empirical prediction.Environmetrics 17 (2006), 635–652. MR 2247174, 10.1002/env.769
-
7Academic Journal
المؤلفون: Wu, Shujing, Okubo, Shigenori, Wang, Dazhong
مصطلحات موضوعية: keyword:discrete-time system, keyword:descriptor, keyword:model following control system, keyword:nonlinear control system, keyword:disturbance, msc:62A10, msc:62F15, msc:62K05, msc:93B51, msc:93C10, msc:93C55, msc:93E12
وصف الملف: application/pdf
Relation: mr:MR2459072; zbl:Zbl 1173.93387; reference:[1] Byrnes C. I., Isidori A.: Asymptotic stabilization of minimum phase nonlinear systems.IEEE Trans. Automat. Control 36 (1991), 10, 1122–1137 Zbl 0758.93060, MR 1125894; reference:[2] Casti J. L.: Nonlinear Systems Theory.Academic Press, London 1985 MR 0777143; reference:[3] Furuta K.: Digital Control.Corona Publishing Company, Tokyo 1989 Zbl 0615.93060; reference:[4] Isidori A.: Nonlinear Control Systems.Third edition. Springer-Verlag, Berlin 1995 Zbl 0931.93005, MR 1410988; reference:[5] Khalil H. K.: Nonlinear Systems.MacMillan Publishing Company, New York 1992 Zbl 1140.93456, MR 1201326; reference:[6] Mita T.: Digital Control Theory.Shokoto Company, Tokyo 1984; reference:[7] Mori Y.: Control Engineering.Corona Publishing Company, Tokyo 2001; reference:[8] Okubo S.: A design of nonlinear model following control system with disturbances.Trans. Society of Instrument and Control Engineers 21 (1985), 8, 792–799; reference:[9] Okubo S.: A nonlinear model following control system with containing unputs in nonlinear parts.Trans. Society of Instrument and Control Engineers 22 (1986), 6, 792–799; reference:[10] Okubo S.: Nonlinear model following control system with unstable zero points of the linear part.Trans. Society of Instrument and Control Engineers 24 (1988), 9, 920–926; reference:[11] Okubo S.: Nonlinear model following control system using stable zero assignment.Trans. Society of Instrument and Control Engineers 28 (1992), 8, 939–946; reference:[12] Takaxashi Y.: Digital Control.Iwahami Shoten, Tokyo 1985; reference:[13] Zhang Y., Okubo S.: A design of discrete time nonlinear model following control system with disturbances.Trans. Inst. Electrical Engineers of Japan 117–C (1997), 8, 1113–1118
-
8Academic Journal
المؤلفون: Zattoni, Elena
مصطلحات موضوعية: keyword:optimal design, keyword:geometric approach, keyword:linear systems, keyword:discrete- time systems, msc:62K05, msc:93B27, msc:93C05, msc:93C55
وصف الملف: application/pdf
Relation: mr:MR2405051; zbl:Zbl 1145.93334; reference:[1] Basile G., Marro G.: Controlled and Conditioned Invariants in Linear System Theory.Prentice Hall, Englewood Cliffs, NJ 1992 Zbl 0758.93002, MR 1149379; reference:[2] Bittanti S., Laub A. J., (eds.) J. C. Willems: The Riccati Equation.Springer-Verlag, Berlin – Heidelberg 1991 Zbl 0734.34004, MR 1132048; reference:[3] Chen J., Ren Z., Hara, S., Qiu L.: Optimal tracking performance: Preview control and exponential signals.IEEE Trans. Automat. Control 46 (2001), 10, 1647–1653 Zbl 1045.93503, MR 1858072; reference:[4] Clements D. J.: Rational spectral factorization using state-space methods.Systems Control Lett. 20 (1993), 335–343 Zbl 0772.93002, MR 1222397; reference:[5] Colaneri P., Geromel J. C., Locatelli A.: Control Theory and Design: An $RH_2$ and $RH_\infty $ Viewpoint.Academic Press, London 1997; reference:[6] Grimble M. J.: Polynomial matrix solution to the standard $H_2$-optimal control problem.Internat. J. Systems Sci. 22 (1991), 5, 793–806 MR 1102097; reference:[7] Hoover D. N., Longchamp, R., Rosenthal J.: Two-degree-of-freedom $\ell _2$-optimal tracking with preview.Automatica 40 (2004), 1, 155–162 Zbl 1035.93026, MR 2143984; reference:[8] Hunt K. J., Šebek, M., Kučera V.: Polynomial solution of the standard multivariable $H_2$-optimal control problem.IEEE Trans. Automat. Control 39 (1994), 7, 1502–1507 MR 1283931; reference:[9] Imai H., Shinozuka M., Yamaki T., Li, D., Kuwana M.: Disturbance decoupling by feedforward and preview control.ASME J. Dynamic Systems, Measurements and Control 105 (1983), 3, 11–17 Zbl 0512.93029; reference:[10] Kojima A., Ishijima S.: LQ preview synthesis: Optimal control and worst case analysis.IEEE Trans. Automat. Control 44 (1999), 2, 352–357 Zbl 1056.93643, MR 1668996; reference:[11] Lancaster P., Rodman L.: Algebraic Riccati Equations.Oxford University Press, New York 1995 Zbl 0836.15005, MR 1367089; reference:[12] Marro G., Prattichizzo, D., Zattoni E.: A unified setting for decoupling with preview and fixed-lag smoothing in the geometric context.IEEE Trans. Automat. Control 51 (2006), 5, 809–813 MR 2232604; reference:[13] Marro G., Zattoni E.: ${H}_2$-optimal rejection with preview in the continuous-time domain.Automatica 41 (2005), 5, 815–821 Zbl 1093.93008, MR 2157712; reference:[14] Marro G., Zattoni E.: Signal decoupling with preview in the geometric context: exact solution for nonminimum-phase systems.J. Optim. Theory Appl. 129 (2006), 1, 165–183 Zbl 1136.93013, MR 2281050; reference:[15] Moelja A. A., Meinsma G.: $H_2$ control of preview systems.Automatica 42 (2006), 6, 945–952 Zbl 1117.93327, MR 2227597; reference:[16] Vidyasagar M.: Control System Synthesis: A Factorization Approach.The MIT Press, Cambridge, MA 1985 Zbl 0655.93001, MR 0787045; reference:[17] Šebek M., Kwakernaak H., Henrion, D., Pejchová S.: Recent progress in polynomial methods and polynomial toolbox for Matlab version 2.0. In: Proc. 37th IEEE Conference on Decision and Control, Tampa 1998; reference:[18] Willems J. C.: Feedforward control, PID control laws, and almost invariant subspaces.Systems Control Lett. 1 (1982), 4, 277–282 Zbl 0473.93032, MR 0670212; reference:[19] Wonham W. M.: Linear Multivariable Control: A Geometric Approach.Third edition. Springer-Verlag, New York 1985 Zbl 0609.93001, MR 0770574; reference:[20] Yamada M., Funahashi, Y., Riadh Z.: Generalized optimal zero phase tracking controller design.Trans. ASME – J. Dynamic Systems, Measurement and Control 121 (1999), 2, 165–170; reference:[21] Zattoni E.: Decoupling of measurable signals via self-bounded controlled invariant subspaces: Minimal unassignable dynamics of feedforward units for prestabilized systems.IEEE Trans. Automat. Control 52 (2007), 1, 140–143 MR 2286774
-
9Academic Journal
المؤلفون: Pázman, Andrej
مصطلحات موضوعية: keyword:optimal design, keyword:correlated observations, keyword:random field, keyword:spatial statistics, keyword:information matrix, msc:62K05, msc:62M10, msc:62M40
وصف الملف: application/pdf
Relation: mr:MR2377923; zbl:Zbl 1134.62055; reference:[1] Apt M., Welch W. J.: Fisher information and maximum likelihood estimation of covariance parameters in Gaussian stochastic processes.Canad. J. Statist. 26 (1998), 127–137 MR 1624393; reference:[2] Brimkulov U. N., Krug G. K., Savanov V. L.: Design of Experiments in Investigating Random Fields and Processes.Nauka, Moscow 1986; reference:[3] Brown L. D.: Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory.(Vol. 9 of Institute of Mathematical Statistics Lecture Notes – Monograph Series.) Institute of Mathematical Statistics, Hayward 1986 Zbl 0685.62002, MR 0882001; reference:[4] Cresie N. A. C.: Statistics for Spatial Data.Wiley, New York 1993 MR 1239641; reference:[5] Gauchi J. P., Pázman A.: Design in nonlinear regression by stochastic minimization of functionals of the mean square error matrix.J. Statist. Plann. Inference 136 (2006), 1135–1152 MR 2181993; reference:[6] Harman R.: Minimal efficiency of designs under the class of orthogonally invariant information criteria.Metrika 60 (2004), 137–153 Zbl 1079.62072, MR 2088736; reference:[7] Müller W. G., Pázman A.: An algorithm for computation of optimum designs under a given covariance structure.Comput. Statist. 14 (1999), 197–211 MR 1712010; reference:[8] Pázman A.: Probability distribution of the multivariate nonlinear least squares estimates.Kybernetika 20 (1984), 209–230 MR 0763647; reference:[9] Pázman A.: Nonlinear Statistical Models.Kluwer, Dordrecht – Boston 1993 Zbl 0808.62058; reference:[10] Pázman A.: Correlated Optimum Design with Parametrized Covariance Function: Justification of the Use of the Fisher Information Matrix and of the Method of Virtual Noise.Research Report No. 5, Institut für Statistik, WU Wien, Vienna 2004; reference:[11] Pázman A., Pronzato L.: Nonlinear experimental design based on the distribution of estimators.J. Statist. Plann. Inference 33 (1992), 385–402 Zbl 0772.62042, MR 1200655; reference:[12] Pukelsheim F.: Optimal Design of Experiments.Wiley, New York 1993 Zbl 1101.62063, MR 1211416; reference:[13] Sacks J., Welch W. J., Mitchell T. J., Wynn H. P.: Design and analysis of computer experiments.Statist. Sci. 4 (1989), 409–435 Zbl 0955.62619, MR 1041765; reference:[14] Spivak M.: Calculus on Manifolds.W. A. Benjamin, Inc., Menlo Park, Calif. 1965 Zbl 0381.58003, MR 0209411; reference:[15] Uciński D., Atkinson A. C.: Experimental design for time-dependent models with correlated observations.Stud. Nonlinear Dynamics & Econometrics 8 (2004), Issue 2, Article 13 Zbl 1082.62514
-
10Academic Journal
المؤلفون: Pázman, Andrej, Pronzato, Luc
وصف الملف: application/pdf
Relation: mr:MR2293586; zbl:Zbl 1141.62061; reference:[1] BATES D. M.-WATTS D. G.: Nonlinear Regression Analysis and its Applications.Wileу, New York, 1988. Zbl 0728.62062, MR 1060528; reference:[2] GALLANT A. R.: Nonlinear Statistical Models.Wileу, New York, 1987. Zbl 0611.62071, MR 0921029; reference:[3] HARVILLE D. A.: Matrix Algebra from a Statistician's Perspective.Springer, New York, 1997. Zbl 0881.15001, MR 1467237; reference:[4] IVANOV A. V.: Asymptotic Theory of Nonlinear Regression.Kluwer, Dordrecht, 1997. Zbl 0874.62070, MR 1472234; reference:[5] JENNRICH R. L.: Asymptotic properties of nonlinear least squares estimation.Ann. Math. Statist. 40 (1969), 633-643. MR 0238419; reference:[6] KIEFER J.: Optimum design for fitting biased multivariate surfaces.In: Multivariate Analуsis (P. R. Krishnaian, ed.), North Holland, Amsterdam, 1973, pp. 287-297. MR 0365936; reference:[7] PÁZMAN A.: Nonlinear Statistical Models.Kluwer, Dordrecht, 1993. Zbl 0808.62058, MR 1254661; reference:[8] PÁZMAN A.-PRONZATO L.: On the irregular behavior of LS estimators for asymptotically singular designs.Lab. IЗS, CNRS Sophia Antipolis. Rapport de recherche ISRN IЗS/RR-2005-12-FR, Juin 2005 [Statist. & Probab. Lett. 76 (2006), 1089-1096]. Zbl 1090.62076, MR 2269278; reference:[9] PESOTCHINSKI L.: Optimal robust designs: linear regression in $R^k$.Ann. Statist. 10 (1982), 511-525. MR 0653526; reference:[10] PUKELSHEIM F.: Optimal Experimental Design.Wileу, New York, 1993. MR 1211416; reference:[11] WELCH W. J.: A mean squared error criterion for the design of experiments.Biometrika 70 (1983), 205-213. Zbl 0517.62066, MR 0742990
-
11Academic Journal
المؤلفون: Ceranka, Bronisław, Graczyk, Małgorzata
مصطلحات موضوعية: keyword:chemical balance weighing design, keyword:ternary balanced block design, msc:62K05, msc:62K10, msc:62K15, msc:92E20
وصف الملف: application/pdf
Relation: mr:MR1995737; zbl:Zbl 1248.62128; reference:[1] Banerjee K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics.Marcel Dekker, New York 1975 Zbl 0334.62030, MR 0458751; reference:[2] Billington E. J.: Balanced $n$-array designs: a combinatorial survey and some new results.Ars Combin. 17A (1984), 37–72 MR 0746174; reference:[3] Billington E. J., Robinson P. J.: A list of balanced ternary block designs with $r \le 15$ and some necessary existence conditions.Ars Combin. 16 (1983), 235–258 MR 0734059; reference:[4] Ceranka B., Graczyk M.: Optimum chemical balance weighing designs under the restriction on weighings.Discuss. Math. 21 (2001), 111–120 MR 1961022, 10.7151/dmps.1024; reference:[5] Ceranka B., Katulska K.: On some optimum chemical balance weighing designs for $v+1$ objects.J. Japan Statist. Soc. 18 (1988), 47–50 Zbl 0651.62072, MR 0959679; reference:[6] Ceranka B., Katulska K.: Chemical balance weighing designs under the restriction on the number of objects placed on the pans.Tatra Mt. Math. Publ. 17 (1999), 141–148 Zbl 0988.62047, MR 1737701; reference:[7] Ceranka B., Katulska, K., Mizera D.: The application of ternary balanced block designs to chemical balance weighing designs.Discuss. Math. 18 (1998), 179–185 MR 1687875; reference:[8] Hotelling H.: Some improvements in weighing and other experimental techniques.Ann. Math. Statist. 15 (1944), 297–305 Zbl 0063.02076, MR 0010951, 10.1214/aoms/1177731236; reference:[9] Raghavarao D.: Constructions and Combinatorial Problems in Designs of Experiments.Wiley, New York 1971 MR 0365935; reference:[10] Saha G. M., Kageyama S.: Balanced arrays and weighing designs.Austral. J. Statist. 26 (1984), 119–124 Zbl 0599.62089, MR 0766612, 10.1111/j.1467-842X.1984.tb01225.x; reference:[11] Shah K. R., Sinha B. L.: Theory of Optimal Designs.Springer, Berlin 1989 Zbl 0688.62043, MR 1016151; reference:[12] Swamy M. N.: Use of balanced bipartite weighing designs as chemical balance designs.Comm. Statist. Theory Methods 11 (1982), 769–785 Zbl 0514.62086, MR 0651611, 10.1080/03610928208828270
-
12Academic Journal
-
13Academic Journal
المؤلفون: Erickson, Roy V., Fabian, Václav, Mařík, Jan
وصف الملف: application/pdf
Relation: mr:MR1353504; zbl:Zbl 0838.62055
-
14Academic Journal
المؤلفون: Pronzato, Luc, Pázman, Andrej
وصف الملف: application/pdf
Relation: mr:MR1283494; zbl:Zbl 0812.62071; reference:[1] S. Amari: Differential-Geometrical Methods in Statistics.Springer, Berlin 1985. Zbl 0559.62001, MR 0788689; reference:[2] D. Bates, D. Watts: Relative curvature measures of nonlinearity.J. Roy. Statist. Soc. Ser. B 42 (1980), 1-25. Zbl 0455.62028, MR 0567196; reference:[3] M. Box: Bias in nonlinear estimation.J. Roy. Statist. Soc. Ser. B 33 (1971), 171-201. Zbl 0232.62029, MR 0315827; reference:[4] G. Clarke: Moments of the least-squares estimators in a non-linear regression model.J. Roy. Statist. Soc. Ser. B 42 (1980), 227-237. Zbl 0436.62054, MR 0583361; reference:[5] P. Hougaard: Saddlepoint approximations for curved exponential families.Statist. Probab. Lett. 3 (1985), 161-166. Zbl 0573.62016, MR 0801863; reference:[6] A. Pázman: Probability distribution of the multivariate nonlinear least-squares estimates.Kybernetika 20 (1984), 209-230. MR 0763647; reference:[7] A. Pázman: Small-sample distributional properties of nonlinear regression estimators (a geometric approach) (with discussion).Statistics 21 (1990), 3, 323-367. MR 1062847; reference:[8] N. Reid: Saddlepoint methods and statistical inference.Statist. Sci. 3 (1988), 213-238. Zbl 0955.62541, MR 0968390
-
15Academic Journal
المؤلفون: Chernov, N. I., Ososkov, G. A., Pronzato, L.
مصطلحات موضوعية: keyword:3-dimensional multivertex reconstruction, keyword:2-dimensional tracks observations, keyword:projections, keyword:reconstruction of vertices, keyword:noisy observations, keyword:likelihood inference for mixtures, msc:62F10, msc:62J02, msc:62K05, msc:62K99, msc:62P99, msc:65C99
وصف الملف: application/pdf
Relation: mr:MR1185799; zbl:Zbl 0764.62065; reference:[1] Böhning D: Likelihood inference for mixtures: geometrical and other constructions of monotone step-length algorithms.Biometrika 76 no. 2 (1989), 375-383. MR 1016029, 10.1093/biomet/76.2.375; reference:[2] Fedorov V. V.: Theory of Optimal Experiments.Academic Press, New York, 1972. MR 0403103; reference:[3] Lindsay B. G.: The geometry of mixture likelihoods: a general theory.Annals of Stat. 11 no. 1 (1983), 86-94. Zbl 0512.62005, MR 0684866, 10.1214/aos/1176346059; reference:[4] Mallet A.: A maximum likelihood estimation method for random coefficient regression models.Biometrika 73 no. 3 (1986), 645-656. Zbl 0615.62083, MR 0897856, 10.1093/biomet/73.3.645; reference:[5] Pázman A.: Foundations of Optimum Experimental Design.co-editor VEDA, Bratislava, Reidel, Dordrecht, 1986. MR 0838958; reference:[6] Silvey S. D.: Optimal Design.Chapman & Hall, London, 1980. Zbl 0468.62070, MR 0606742; reference:[7] Torsney B.: A moment inequality and monotonicity of an algorithm.Semi-Infinite Programming and Applications (A. V. Fiacco and K. O. Kortanek, eds.), Springer-Verlag, Berlin, 1983, pp. 249-260. Zbl 0512.90082, MR 0709281; reference:[8] Torsney B.: Computing optimizing distributions with applications in design, estimation and image processing.Optimal Design and Analysis of Experiments (Y. Dodge, V. V. Fedorov and H. P. Wynn, eds.), North-Holland, Amsterdam, 1988, pp. 361-370.; reference:[9] Wynn H. P.: The sequential generation of D-optimum experimental designs.Annals of Math. Stat. 41 (1970), 1655-1664. Zbl 0224.62038, MR 0267704, 10.1214/aoms/1177696809
-
16Academic Journal
المؤلفون: Horváth, Emil
وصف الملف: application/pdf
Relation: mr:MR953687; zbl:Zbl 0654.62061; reference:[1] A. E. Hoerl, R. W. Kennard: Ridge regression: Biased estimation for nonorthogonal problems; Application to nonorthogonal problems.Technometrics 12 (1970), 55-67; 69-82.; reference:[2] A. Pázman: Foundations of Optimum Experimental Design.D. Reidel Publishing Company, Dordrecht--Boston--Lancaster--Tokyo 1986. MR 0838958; reference:[3] L. Kubáček: Základy teorie odhadu.(Foundation of Estimation Theory.) Veda, Bratislava 1983.; reference:[4] G. A. F. Seber: Linear Regression Analysis.J. Wiley and Sons, New York--London--Sydney--Toronto 1977. Zbl 0354.62055, MR 0436482; reference:[5] E. Z. Demienko: Linejnaja i nelinejnaja regressii.Finansy i statistika, Moskva 1981.; reference:[6] E. Horváth: Navrhovanie optimálneho regresného experimentu pre hrebeňové odhady.(On Optimum Experimental Design for Ridge Estimates.) Ph. D. Thesis, Mathematical Institute, Slovak Academy of Sciences, Bratislava 1987. MR 0953687
-
17Academic Journal
المؤلفون: Mikulecká, Jaroslava
وصف الملف: application/pdf
Relation: mr:MR710912; zbl:Zbl 0513.62076; reference:[1] A. C. Atkinson: Planning experiments to detect inadequate regression models.Biometrika 59 (1972), 275-293. Zbl 0243.62046, MR 0334418; reference:[2] A. C. Atkinson: Planning experiments for model testing and discrimination.Math. Operationsforsch. Statist. 6 (1975), 252-267. Zbl 0342.62049, MR 0408138; reference:[3] D. M. Borth: A total entropy criterion for the dual problem of model discrimination and parameter estimation.J. Roy. Statist. Soc. Ser. B 37 (1975), 77-87. Zbl 0297.62061, MR 0375681; reference:[4] V. V. Fedorov: Theory of Optimal Design.Nauka, Moskva, 1971. In Russian. MR 0403102; reference:[5] V. V. Fedorov, A. Pázman: Design of physical experiments.Fortschr. Phys. 16 (1968), 325-355.; reference:[6] M. Hamala: Nonlinear Programming.ALFA, Bratislava 1972. In Slovak.; reference:[7] W. J. Hill W. G. Hunter, and D. W. Wichern: A joint design criterion for the dual problem of model discrimination and parameter estimation.Technometrics 10 (1968), 145-160. MR 0221680; reference:[8] E. Lauter: Experimental design in a class of models.Math. Operationsforsch. Statist. 5 (1974), 379-398. MR 0440812; reference:[9] J. Mikulecká: A Hybrid Optimal Design of Experiments.Ph. D. Dissertation, Comenius University, Bratislava 1981. In Slovak.; reference:[10] A. Pázman: A convergence theorem in the theory of D-optimum experimental designs.Ann. Statist. 2 (1974), 216-218. MR 0345348; reference:[11] A. Pázman: Foundations of Optimization of Experiments.Veda, Bratislava 1980. In Slovak.; reference:[12] A. Pázman: Some features of the optimal design theory - A survey.Math. Operationsforsch. Statist. Ser. Statist. 11 (1980), 415-446. MR 0596522; reference:[13] M. J. D. Powell: A method for nonlinear constrains in minimization problems.In: Optimization (R. Fletcher, ed.), Academic Press, London-New York 1969. MR 0272403; reference:[14] R. T. Rockafellar: Convex Analysis.Princeton University Press, Princeton 1970. Zbl 0193.18401, MR 0274683; reference:[15] R. T. Rockafellar: The multiplier method of Hestens and Powell applied to convex programming.J. Optim. Theory Appl. 12 (1973), 555-561. MR 0334953; reference:[16] R. T. Rockafellar: A dual approach to solving nonlinear programming problems by unconstrained optimization.Math. Programming 5 (1973), 354-373. Zbl 0279.90035, MR 0371416; reference:[17] S. M. Stigler: Optimal experimental design for polynomial regression.J. Amer. Statist. Assoc. 66 (1971), 311-318. Zbl 0217.51701
-
18Academic Journal
المؤلفون: Pázman, Andrej
وصف الملف: application/pdf
Relation: mr:MR629346; zbl:Zbl 0466.62067; reference:[1] Chien-Fu Wu H. P. Wynn: The convergence of general steplength algorithms for regular optimum design criteria.Ann. Statist. 6 (1978), 1273-1285. MR 0523762; reference:[2] V. V. Fedorov: Theory of Optimal Experiments.Academic Press, New York 1972. MR 0403103; reference:[3] J. Kiefer: General equivalence theory for optimal designs.Ann. Statist. 2 (1974), 849-879. MR 0356386; reference:[4] J. Neveu: Processus aléatoires gaussiens.Presses de l'Univ. Montreal, 1968. Zbl 0192.54701, MR 0272042; reference:[5] A. Pázman: A convergence theorem in the theory of D-optimum experimental designs.Ann. Statist. 2 (1974), 216-218. MR 0345348; reference:[6] A. Pázman: Plans d'expérience pour les estimations de fonctionnelles non-linéaires.Ann. Inst. H. Poincare XIIIB (1977), 259-267. MR 0455230; reference:[7] A. Pázman: Hilbert-space methods in experimental design.Kybernetika 14 (1978), 73-84. MR 0478496; reference:[8] A. Pázman: Singular experimental designs.(Standard and Hilbert-space approaches). Math. Operationsforsch. u. Statist. Ser. Statistics 11 (1980), 137-149. MR 0606165
-
19Academic Journal
المؤلفون: Pázman, Andrej
وصف الملف: application/pdf
Relation: mr:MR0478496; zbl:Zbl 0385.62052; reference:[1] A. S. Atkinson V. V. Fedorov: The design of experiments for discriminating between two rival models.Biometrika 62 (1975), 57-69. MR 0370955; reference:[2] C. L. Atwood: Convergent design sequences for sufficiently regular optimality criteria.Ann. of Statist. 4 (1976), 1124-1138. Zbl 0344.62064, MR 0418352; reference:[3] O. Bunke: Model choice and parameter estimation in regression analysis.Math. Operationsforsch. u. Statist. 4 (1973), 407-423. Zbl 0277.62045, MR 0386170; reference:[4] G. Elfving: Optimum allocation in linear regression.Ann. Math. Statist. 23 (1952), 255 - 262. Zbl 0047.13403, MR 0047998; reference:[5] B. B. Федоров: Теория оптимального эксперимента.Hayкa, Mocквa 1971. Zbl 1170.92344; reference:[6] V. V. Fedorov A. Pázman: Design of experiments based on the measure of information.Print N° E 5 - 3247 of the Joint Institute for Nuclear Research, Dubna (USSR) 1967.; reference:[7] J. Fellman: On the allocation of linear observations.Comentationes Physico-Mathematicae (Helsinki) 44, 27-78. Zbl 0303.62062, MR 0356369; reference:[8] P. R. Halmos: Introduction to Hilbert space.Chelsea Publ. C. New York 1957. Zbl 0079.12404; reference:[9] S. Karlin W. J. Studden: Optimal experimental designs.Ann. Math. Statist. 37 (1966), 783-815. MR 0196871; reference:[10] J. Kiefer W. J. Studden: Optimum designs for large degree polynomial regression.Ann. of Statist. 4 (1976), 113-123. MR 0423701; reference:[11] J. Kiefer J. Wolfowitz: Optimum design in regression problems.Ann. Math. Statist. 30 (1959), 271-294. MR 0104324; reference:[12] B. B. Налимов: Теория эксперимента.Hayкa, Mocквa 1971. Zbl 1170.92344; reference:[13] J. Neveu: Processus aléatoires gaussiens.Lab. de Calcul des Probabilités, Univ. Paris VI, 1974. MR 0272042; reference:[14] K. R. Parthasarathy: Probability measures on metric spaces.Academic Press, New York and London 1967. Zbl 0153.19101, MR 0226684; reference:[15] A. Pázman: The ordering of experimental designs. A. Hilbert space approach.Kybernetika (Praha) 10 (1974), 373-388. MR 0381170; reference:[16] A. Pázman: Optimum experimental designs with a lack of a priori information II. - Designs for the estimation of the whole response function.Kybernetika (Praha) 12 (1976), 7-14. MR 0420987; reference:[17] A. Pázman: Plans d'expérience pour les estimations des functionnelles non-linéaires.Ann. de l'Institut Henri Poincaré B 13 (1977), 259-267. MR 0455230; reference:[18] S. D. Silvey D. M. Titterington: A geometric approach to optimal design theory.Biometrica 60 (1973), 21-32. MR 0334428; reference:[19] C. H. Coколов: Непрерывное планирование регрессионных экспериментов.Teoрия вероятностей 8 (1963), 95-101, 318-324.; reference:[20] M. Stone: Application of a measure of information to the design and comparison of regression experiments.Ann. Math. Statist. 30 (1959), 55 - 70. Zbl 0094.13602, MR 0106528
-
20Academic Journal
المؤلفون: Pázman, Andrej
وصف الملف: application/pdf
Relation: mr:MR0423702; zbl:Zbl 0339.62058; reference:[1] N. Aronszajn: Theory of Reproducing Kernels.Trans. Amer. Math. Soc. 68 (1950), 337-404. Zbl 0037.20701, MR 0051437; reference:[2] C. L. Atwood: Convergent Design Sequences for Sufficiently Regular Optimality Criteria.(1975) Preprint of the University of California. MR 0418352; reference:[3] В. В. Федоров: Teopия оптимального эксперимента.Hayкa, Mocквa 1971.; reference:[4] P. R. Halmos: Introduction to Hilbert Space.Second edition. Chelsa, New York, 1972.; reference:[5] S. Karlin W. J. Studden: Optimal Experimental Designs.Ann. Math. Statist. 37 (1966), 783-815. MR 0196871; reference:[6] J. Neveu: Processus aleatoires gaussiens.(1974) Laboratoire de Calcul des Probability, Universite de Paris VI. MR 0272042; reference:[7] K. R. Parthasarathy: Probability Measures on Metric Spaces.Academic Press, New York and London, 1967. Zbl 0153.19101, MR 0226684; reference:[8] A. Pazman: The Ordering of Experimental Designs. A Hilbert Space Approach.Kybernetika, 10 (1974), 373-388. Zbl 0291.62105, MR 0381170