يعرض 1 - 20 نتائج من 48 نتيجة بحث عن '"msc:60G55"', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Université du Québec à Montréal = University of Québec in Montréal (UQAM), Statistique pour le Vivant et l’Homme (SVH), Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA), GIPSA Pôle Géométrie, Apprentissage, Information et Algorithmes (GIPSA-GAIA), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), ANR-15-IDEX-0002,UGA,IDEX UGA(2015)

    المصدر: ISSN: 2211-6753 ; Spatial Statistics ; https://hal.science/hal-02990859 ; Spatial Statistics, 2020, 38, pp.100437. ⟨10.1016/j.spasta.2020.100437⟩.

  2. 2
    Academic Journal

    المؤلفون: Petráková, Martina

    وصف الملف: application/pdf

    Relation: mr:MR4567845; zbl:Zbl 07675646; reference:[1] Dereudre, D.: The existence of quermass-interaction processes for nonlocally stable interaction and nonbounded convex grains.Adv. Appl.Probab. 41 (2009), 3, 664-681. MR 2571312; reference:[2] Dereudre, D.: Introduction to the theory of Gibbs point processes.In: Stochastic Geometry: Modern Research Frontiers, (D. Coupier, ed.), Springer International Publishing, Cham 2019, pp 181-229. MR 3931586; reference:[3] Dereudre, D., Drouilhet, R., Georgii, H. O.: Existence of Gibbsian point processes with geometry-dependent interactions.Probab. Theory Related Fields 153 (2012), 3, 643-670. MR 2948688; reference:[4] Georgii, H. O., Zessin, H.: Large deviations and the maximum entropy principle for marked point random fields.Probab. Theory Related Fields 96 (1993), 2, 177-204. MR 1227031; reference:[5] Jahn, D., Seitl, F.: Existence and simulation of Gibbs-Delaunay-Laguerre tessellations.Kybernetika 56 (2020), 4, 617-645. MR 4168528; reference:[6] Lautensack, C.: Random Laguerre Tessellations.PhD Thesis, University of Karlsruhe, 2007.; reference:[7] Moller, J.: Lectures on Random Voronoi Tessellations.Lecture Notes in Statistics, Springer-Verlag, New York 1994. MR 1295245; reference:[8] Moller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes.Monographs on Statistics and Applied Probability. Chapman and Hall/CRC, Boca Raton 2004. MR 2004226; reference:[9] Roelly, S., Zass, A.: Marked Gibbs point processes with unbounded interaction: an existence result.J. Statist. Physics 179 (2020), 4, 972-996. MR 4102445; reference:[10] Ruelle, D.: Statistical Mechanics: Rigorous Results.W. A. Benjamin, Inc., New York - Amsterdam 1969. MR 0289084; reference:[11] Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory.Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge 1993. MR 1216521; reference:[12] Schneider, R., Weil, W.: Stochastic and Integral Geometry.Probability and its Applications (New York). Springer-Verlag, Berlin 2008. Zbl 1175.60003, MR 2455326; reference:[13] Večeřa, J., Beneš, V.: Interaction processes for unions of facets, the asymptotic behaviour with increasing intensity.Methodology Computing Appl. Probab. 18 (2016), 4, 1217-1239. MR 3564860; reference:[14] Zessin, H.: Point processes in general position.J. Contempor. Math. Anal. 43 (2008), 1, 59-65. MR 2465001

  3. 3
    Academic Journal

    المؤلفون: Jahn, Daniel, Seitl, Filip

    وصف الملف: application/pdf

    Relation: mr:MR4168528; zbl:Zbl 07286039; reference:[1] Chiu, S. N., Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic Geometry and its Applications.J. Willey and Sons, Chichester 2013. MR 3236788, 10.1002/9781118658222; reference:[2] Dereudre, D.: Introduction to the theory of Gibbs point processes.In: Chapter in Stochastic Geometry, pp. 181-229, Springer, Cham 2019. MR 3931586, 10.1007/978-3-030-13547-8_5; reference:[3] Dereudre, D., Drouilhet, R., Georgii, H. O.: Existence of Gibbsian point processes with geometry-dependent interactions.Probab. Theory Rel. 153 (2012), 3, 643-670. MR 2948688, 10.1007/s00440-011-0356-5; reference:[4] Dereudre, D., Lavancier, F.: Practical simulation and estimation for Gibbs Delaunay-Voronoi tessellations with geometric hardcore interaction.Comput. Stat. Data An. 55 (2011), 1, 498-519. MR 2736572, 10.1016/j.csda.2010.05.018; reference:[5] Fropuff: The vertex configuration of a tetrahedral-octahedral honeycomb.; reference:[6] Hadamard, P.: Résolution d'une question relative aux déterminants.Bull. Sci. Math. 17 (1893), 3, 240-246.; reference:[7] Lautensack, C., Zuyev, S.: Random Laguerre tessellations.Adv. Appl. Probab. 40 (2008), 3, 630-650. MR 2454026, 10.1017/s000186780000272x; reference:[8] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes.Chapman and Hall/CRC, Boca Raton 2003. MR 2004226, 10.1201/9780203496930; reference:[9] Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams.J. Willey and Sons, Chichester 2009. MR 1770006, 10.2307/2687299; reference:[10] Preston, C.: Random Fields.Springer, Berlin 1976. MR 0448630, 10.1007/bfb0080563; reference:[11] Quey, R., Renversade, L.: Optimal polyhedral description of 3{D} polycrystals: Method and application to statistical and synchrotron {X}-ray diffraction data.Comput. Method Appl. M 330 (2018), 308-333. MR 3759098, 10.1016/j.cma.2017.10.029; reference:[12] Rycroft, C.: Voro++: A three-dimensional Voronoi cell library in C++.Chaos 19 (2009), 041111. 10.1063/1.3215722; reference:[13] Seitl, F., Petrich, L., Staněk, J., III, C. E. Krill, Schmidt, V., Beneš, V.: Exploration of Gibbs-Laguerre Tessellations for Three-Dimensional Stochastic Modeling.Methodol. Comput. Appl. Probab. (2020). 10.1007/s11009-019-09757-x; reference:[14] Sommerville, D. M. Y.: An Introduction to the Geometry of N Dimensions.Methuen and Co, London 1929. MR 0100239; reference:[15] Stein, P.: A note on the volume of a simplex.Amer. Math. Monthly 73 (1966), 3, 299-301. MR 1533698, 10.2307/2315353; reference:[16] Zessin, H.: Point processes in general position.J. Contemp. Math. Anal. 43 (2008), 1, 59-65. MR 2465001, 10.3103/s11957-008-1005-x

  4. 4
    Academic Journal

    المؤلفون: Morvai, Gusztáv, Weiss, Benjamin

    مصطلحات موضوعية: keyword:Point processes, msc:60G55

    وصف الملف: application/pdf

    Relation: mr:MR4055577; zbl:Zbl 07177917; reference:[1] Daley, D. J., Vere-Jones, D.: An introduction to the theory of point processes. Vol. II. General theory and structure. Second edition.In: Probability and its Applications. Springer, New York 2008. MR 2371524, 10.1007/978-0-387-49835-5; reference:[2] Haywood, J., Khmaladze, E.: On distribution-free goodness-of-fit testing of exponentiality.J. Econometr. 143 (2008), 5-18. MR 2384430, 10.1016/j.jeconom.2007.08.005; reference:[3] Kallenberg, O.: Foundations of modern probability. Second edition.In: Probability and its Applications. Springer-Verlag, New York 2002. MR 1876169, 10.1007/978-1-4757-4015-8; reference:[4] Lewis, P. A. W.: Some results on tests for Poisson processes.Biometrika 52 (1965), 1 and 2, 67-77. MR 0207107, 10.1093/biomet/52.1-2.67; reference:[5] Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality.Ann. Probab. 18 (1990), 3, 1269-1283. Zbl 0713.62021, MR 1062069, 10.1214/aop/1176990746; reference:[6] Morvai, G., Weiss, B.: Testing stationary processes for independence.Ann. Inst. H. Poincare' Probab. Statist. 47 (2011), 4, 1219-1225. MR 2884232, 10.1214/11-aihp426; reference:[7] Ryabko, B., Astola, J.: Universal codes as a basis for time series testing.Statist. Methodol. 3 (2006), 375-397. MR 2252392, 10.1016/j.stamet.2005.10.004; reference:[8] Thorisson, H.: Coupling, stationarity, and regeneration.In: Probability and its Applications. Springer-Verlag, New York 2000. MR 1741181, 10.1007/978-1-4612-1236-2

  5. 5

    المساهمون: Université du Québec à Montréal = University of Québec in Montréal (UQAM), Statistique pour le Vivant et l’Homme (SVH), Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), GIPSA Pôle Géométrie, Apprentissage, Information et Algorithmes (GIPSA-GAIA), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )

    المصدر: Spatial Statistics
    Spatial Statistics, 2020, 38, pp.100437. ⟨10.1016/j.spasta.2020.100437⟩
    Spatial Statistics, Elsevier, 2020, 38, pp.100437. ⟨10.1016/j.spasta.2020.100437⟩

  6. 6
    Academic Journal

    المؤلفون: Flimmel, Daniela, Beneš, Viktor

    وصف الملف: application/pdf

    Relation: mr:MR3863255; zbl:Zbl 06987033; reference:[1] Beneš, V., Večeřa, J., Pultar, M.: Planar segment processes with reference mark distributions, modeling and simulation.Methodol. Comput. Appl. Probab. (2018), accepted. 10.1007/s11009-017-9608-x; reference:[2] Blaszczyszyn, B., Yogeshwaran, D., Yukich, J. E.: Limit theory for geometric statistics of point processes having fast decay of correlations.Preprint (2018), submitted to the Annals of Probab.; reference:[3] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes.Volume I: Elementary Theory and Methods. MR 1950431; reference:[4] Dereudre, D.: Introduction to the theory of Gibbs point processes.Preprint (2017), submitted.; reference:[5] Georgii, H.-O.: Gibbs Measures and Phase Transitions. Second edition.W. de Gruyter and Co., Berlin 2011. MR 2807681, 10.1515/9783110250329; reference:[6] Last, G., Penrose, M.: Lectures on the Poisson Process.Cambridge University Press, Cambridge 2017. MR 3791470, 10.1017/9781316104477; reference:[7] Mase, S.: Marked Gibbs processes and asymptotic normality of maximum pseudo-likelihood estimators.Math. Nachr. 209 (2000), 151-169. MR 1734363, 10.1002/(sici)1522-2616(200001)209:13.0.co;2-j; reference:[8] Ruelle, D.: Superstable interactions in classical statistical mechanics.Commun. Math. Phys. 18 (1970), 127-159. MR 0266565, 10.1007/bf01646091; reference:[9] Schneider, R., Weil, W.: Stochastic and Integral Geometry.Springer, Berlin 2008. Zbl 1175.60003, MR 2455326, 10.1007/978-3-540-78859-1; reference:[10] Schreiber, T., Yukich, J. E.: Limit theorems for geometric functionals of Gibbs point processes.Ann. Inst. Henri Poincaré - Probab. et Statist. 49 (2013), 1158-1182. MR 3127918, 10.1214/12-aihp500; reference:[11] Serra, J.: Image Analysis and Mathematical Morphology.Academic Press, London 1982. MR 0753649, 10.1002/cyto.990040213; reference:[12] Stucki, K., Schuhmacher, D.: Bounds for the probability generating functional of a Gibbs point process.Adv. Appl. Probab. 46 (2014), 21-34. MR 3189046, 10.1239/aap/1396360101; reference:[13] Torrisi, G. L.: Probability approximation of point processes with Papangelou conditional intensity.Bernoulli 23 (2017), 2210-2256. MR 3648030, 10.3150/16-bej808; reference:[14] Večeřa, J., Beneš, V.: Approaches to asymptotics for U-statistics of Gibbs facet processes.Statist. Probab. Let. 122 (2017), 51-57. MR 3584137, 10.1016/j.spl.2016.10.024; reference:[15] Xia, A., Yukich, J. E.: Normal approximation for statistics of Gibbsian input in geometric probability.Adv. Appl. Probab. 25 (2015), 934-972. MR 3433291, 10.1017/s0001867800048965

  7. 7
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3532254; zbl:Zbl 06644007; reference:[1] Altendorf, H., Latourte, F., Jeulin, D., Faessel, M., Saintyant, L.: 3D reconstruction of a multiscale microstructure by anisotropic tessellation models.Image Anal. Stereol. 33 (2014), 121-130. 10.5566/ias.v33.p121-130; reference:[2] Chiu, S. N., Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic Geometry and Its Applications.Wiley Series in Probability and Statistics John Wiley & Sons, Chichester (2013). Zbl 1291.60005, MR 3236788; reference:[3] Dereudre, D.: Existence of Quermass processes for non locally stable interaction and non bounded convex grains.Adv. Appl. Probab. 41 (2009), 664-681. MR 2571312, 10.1017/S0001867800003517; reference:[4] Dereudre, D., Lavancier, F., Helisová, K. Staňková: Estimation of the intensity parameter of the germ-grain Quermass-interaction model when the number of germs is not observed.Scand. J. Stat. 41 (2014), 809-829. MR 3249430, 10.1111/sjos.12064; reference:[5] Diggle, P. J.: Binary mosaics and the spatial pattern of heather.Biometrics 37 (1981), 531-539. 10.2307/2530566; reference:[6] Geyer, C. J., Møller, J.: Simulation procedures and likelihood inference for spatial point processes.Scand. J. Stat. 21 (1994), 359-373. Zbl 0809.62089, MR 1310082; reference:[7] Helisová, K.: Modeling, statistical analyses and simulations of random items and behavior on material surfaces.Supplemental UE: TMS 2014 Conference Proceedings, San Diego (2014), 461-468.; reference:[8] Hermann, P., Mrkvička, T., Mattfeldt, T., Minárová, M., Helisová, K., Nicolis, O., Wartner, F., Stehlík, M.: Fractal and stochastic geometry inference for breast cancer: a case study with random fractal models and Quermass-interaction process.Stat. Med. 34 (2015), 2636-2661. MR 3368407, 10.1002/sim.6497; reference:[9] Kendall, W. S., Lieshout, M. N. M. van, Baddeley, A. J.: Quermass-interaction processes: conditions for stability.Adv. Appl. Probab. 31 (1999), 315-342. MR 1724554, 10.1017/S0001867800009137; reference:[10] Klazar, M.: Generalised Davenport-Schinzel sequences: results, problems and applications.Integers: The Electronic Journal of Combinatorial Number Theory 2 (2002), A11. MR 1917956; reference:[11] Molchanov, I.: Theory of Random Sets.Probability and Its Applications Springer, London (2005). Zbl 1109.60001, MR 2132405; reference:[12] Møller, J., Helisová, K.: Power diagrams and interaction processes for unions of discs.Adv. Appl. Probab. 40 (2008), 321-347. Zbl 1146.60322, MR 2431299, 10.1017/S0001867800002548; reference:[13] Møller, J., Helisová, K.: Likelihood inference for unions of interacting discs.Scand. J. Stat. 37 (2010), 365-381. Zbl 1226.60016, MR 2724503, 10.1111/j.1467-9469.2009.00660.x; reference:[14] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes.Monographs on Statistics and Applied Probability 100 Chapman and Hall/CRC, Boca Raton (2004). Zbl 1044.62101, MR 2004226; reference:[15] Mrkvička, T., Mattfeldt, T.: Testing histological images of mammary tissues on compatibility with the Boolean model of random sets.Image Anal. Stereol. 30 (2011), 11-18. MR 2816303, 10.5566/ias.v30.p11-18; reference:[16] Mrkvička, T., Rataj, J.: On the estimation of intrinsic volume densities of stationary random closed sets.Stochastic Processes Appl. 118 (2008), 213-231. Zbl 1148.62023, MR 2376900; reference:[17] Ohser, J., Mücklich, F.: Statistical Analysis of Microstructures in Materials Science.Wiley Series in Statistics in Practice Wiley, Chichester (2000).; reference:[18] Pratt, W. K.: Digital Image Processing.Wiley & Sons, New York (2001).; reference:[19] Team, R Development Core: R: A language and environment for statistical computing.R Found Stat Comp, Vienna. http://www.R-project.org/ (2010).; reference:[20] Helisová, K. Staňková, Staněk, J.: Dimension reduction in extended Quermass-interaction process.Methodol. Comput. Appl. Probab. 16 (2014), 355-368. MR 3199051, 10.1007/s11009-013-9343-x; reference:[21] Zikmundová, M., Helisová, K. Staňková, Beneš, V.: Spatio-temporal model for a random set given by a union of interacting discs.Methodol. Comput. Appl. Probab. 14 (2012), 883-894. MR 2966326, 10.1007/s11009-012-9287-6; reference:[22] Zikmundová, M., Helisová, K. Staňková, Beneš, V.: On the use of particle Markov chain Monte Carlo in parameter estimation of space-time interacting discs.Methodol. Comput. Appl. Probab. 16 (2014), 451-463. MR 3199057, 10.1007/s11009-013-9367-2

  8. 8
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3532250; zbl:Zbl 06644003; reference:[1] Baddeley, A. J., Møller, J., Waagepetersen, R.: Non- and semi-parametric estimation of interaction in inhomogeneous point patterns.Stat. Neerl. 54 (2000), 329-350. Zbl 1018.62027, MR 1804002, 10.1111/1467-9574.00144; reference:[2] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure.Probability and Its Applications Springer, New York (2008). Zbl 1159.60003, MR 2371524; reference:[3] Diggle, P. J.: Spatio-temporal point processes: methods and applications.B. Finkenstädt, et al. Statistical Methods for Spatio-temporal Systems Selected Invited Papers Based on the Presentations at the 6th Séminaire Européen de Statistique SemStat Held as a Summer School of the European Mathematical Society, Bernried, 2004, Chapman and Hall/CRC, Boca Raton, 2007 Monographs on Statistics and Applied Probability {\it 107} (2007), 1-45. Zbl 1121.62080, MR 2307967; reference:[4] Doukhan, P.: Mixing: Properties and Examples.Lecture Notes in Statistics 85 Springer, New York (1994). Zbl 0801.60027, MR 1312160, 10.1007/978-1-4612-2642-0_3; reference:[5] Dvořák, J., Prokešová, M.: Parameter estimation for inhomogeneous space-time shot-noise Cox point processes.(to appear) in Scand. J. Stat. MR 3199056; reference:[6] Gabriel, E.: Estimating second-order characteristics of inhomogeneous spatio-temporal point processes.Methodol. Comput. Appl. Probab. 16 (2014), 411-431. Zbl 1308.60061, MR 3199055, 10.1007/s11009-013-9358-3; reference:[7] Gabriel, E., Diggle, P. J.: Second-order analysis of inhomogeneous spatio-temporal point process data.Stat. Neerl. 63 (2009), 43-51. MR 2656916, 10.1111/j.1467-9574.2008.00407.x; reference:[8] Guyon, X.: Random Fields on a Network. Modeling, Statistics, and Applications.Probability and Its Applications Springer, New York (1995). Zbl 0839.60003, MR 1344683; reference:[9] Hager, W. W.: Minimizing a quadratic over a sphere.SIAM J. Optim. 12 (2001), 188-208. Zbl 1058.90045, MR 1870591, 10.1137/S1052623499356071; reference:[10] Hellmund, G., Prokešová, M., Jensen, E. B. V.: Lévy-based Cox point processes.Adv. Appl. Probab. 40 (2008), 603-629. Zbl 1149.60031, MR 2454025, 10.1017/S0001867800002718; reference:[11] Kar{á}csony, Z.: A central limit theorem for mixing random fields.Miskolc Math. Notes 7 (2006), 147-160. Zbl 1120.41301, MR 2310274, 10.18514/MMN.2006.151; reference:[12] Motzkin, Th.: From among {$n$} conjugate algebraic integers, {$n-1$} can be approximately given.Bull. Am. Math. Soc. 53 (1947), 156-162. Zbl 0032.24702, MR 0019653, 10.1090/S0002-9904-1947-08772-3; reference:[13] Møller, J.: Shot noise Cox processes.Adv. Appl. Probab. 35 (2003), 614-640. Zbl 1045.60007, MR 1990607, 10.1017/S0001867800012465; reference:[14] Møller, J., Ghorbani, M.: Aspects of second-order analysis of structured inhomogeneous spatio-temporal point processes.Stat. Neerl. 66 (2012), 472-491. MR 2983306, 10.1111/j.1467-9574.2012.00526.x; reference:[15] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes.Monographs on Statistics and Applied Probability 100 Chapman & Hall/CRC, Boca Raton (2004). Zbl 1044.62101, MR 2004226; reference:[16] Prokešová, M., Dvořák, J.: Statistics for inhomogeneous space-time shot-noise Cox processes.Methodol. Comput. Appl. Probab. 16 (2014), 433-449. Zbl 1305.62338, MR 3199056, 10.1007/s11009-013-9324-0; reference:[17] Prokešová, M., Dvořák, J., Jensen, E. B. V.: Two-step estimation procedures for inhomogeneous shot-noise Cox processes.(to appear) in Ann. Inst. Stat. Math.; reference:[18] Ripley, B. D.: Statistical Inference for Spatial Processes.Cambridge University Press, Cambridge (1988). Zbl 0705.62090, MR 0971986; reference:[19] Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic Geometry and Its Applications.Wiley Series in Probability and Mathematical Statistics John Wiley & Sons, Chichester (1995). Zbl 0838.60002, MR 0895588; reference:[20] Vaart, A. W. van der: Asymptotic Statistics.Cambridge Series in Statistical and Probabilistic Mathematics 3 Cambridge University Press, Cambridge (1998). MR 1652247; reference:[21] Waagepetersen, R., Guan, Y.: Two-step estimation for inhomogeneous spatial point processes.J. R. Stat. Soc., Ser. B, Stat. Methodol. 71 (2009), 685-702. Zbl 1250.62047, MR 2749914, 10.1111/j.1467-9868.2008.00702.x

  9. 9
    Academic Journal

    المؤلفون: Heinrich, Lothar

    وصف الملف: application/pdf

    Relation: mr:MR3532253; zbl:Zbl 06644006; reference:[1] Biscio, C. A. N., Lavancier, F.: Brillinger mixing of determinantal point processes and statistical applications.Electron. J. Stat. (electronic only) 10 582-607 (2016), arXiv: 1507.06506v1 [math ST] (2015). MR 3471989, 10.1214/16-EJS1116; reference:[2] Camilier, I., Decreusefond, L.: Quasi-invariance and integration by parts for determinantal and permanental processes.J. Funct. Anal. 259 (2010), 268-300. Zbl 1203.60050, MR 2610387, 10.1016/j.jfa.2010.01.007; reference:[3] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods.Probability and Its Applications Springer, New York (2003). Zbl 1026.60061, MR 1950431; reference:[4] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure.Probability and Its Applications Springer, New York (2008). Zbl 1159.60003, MR 2371524; reference:[5] Georgii, H.-O., Yoo, H. J.: Conditional intensity and Gibbsianness of determinantal point processes.J. Stat. Phys. 118 (2005), 55-84. Zbl 1130.82016, MR 2122549, 10.1007/s10955-004-8777-5; reference:[6] Heinrich, L.: Asymptotic Gaussianity of some estimators for reduced factorial moment measures and product densities of stationary Poisson cluster processes.Statistics 19 (1988), 87-106. Zbl 0666.62032, MR 0921628, 10.1080/02331888808802075; reference:[7] Heinrich, L.: Gaussian limits of empirical multiparameter $K$-functions of homogeneous Poisson processes and tests for complete spatial randomness.Lith. Math. J. 55 (2015), 72-90. Zbl 1319.60068, MR 3323283, 10.1007/s10986-015-9266-z; reference:[8] Heinrich, L.: On the Brillinger-mixing property of stationary point processes.Submitted (2015), 12 pages.; reference:[9] Heinrich, L., Klein, S.: Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes.Stat. Risk Model. 28 (2011), 359-387. Zbl 1277.60085, MR 2877571, 10.1524/strm.2011.1094; reference:[10] Heinrich, L., Klein, S.: Central limit theorems for empirical product densities of stationary point processes.Stat. Inference Stoch. Process. 17 (2014), 121-138. Zbl 1306.60008, MR 3219525, 10.1007/s11203-014-9094-5; reference:[11] Heinrich, L., Prokešová, M.: On estimating the asymptotic variance of stationary point processes.Methodol. Comput. Appl. Probab. 12 (2010), 451-471. Zbl 1197.62122, MR 2665270, 10.1007/s11009-008-9113-3; reference:[12] Heinrich, L., Schmidt, V.: Normal convergence of multidimensional shot noise and rates of this convergence.Adv. Appl. Probab. 17 (1985), 709-730. Zbl 0609.60036, MR 0809427, 10.1017/S0001867800015378; reference:[13] Hough, J. B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes.University Lecture Series 51 American Mathematical Society, Providence (2009). Zbl 1190.60038, MR 2552864; reference:[14] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns.Statistics in Practice John Wiley & Sons, Chichester (2008). Zbl 1197.62135, MR 2384630; reference:[15] Jolivet, E.: Central limit theorem and convergence of empirical processes for stationary point processes.Point Processes and Queuing Problems, Keszthely, 1978 Colloq. Math. Soc. János Bolyai 24 North-Holland, Amsterdam (1981), 117-161. Zbl 0474.60040, MR 0617406; reference:[16] Karr, A. F.: Estimation of Palm measures of stationary point processes.Probab. Theory Relat. Fields 74 (1987), 55-69. MR 0863718, 10.1007/BF01845639; reference:[17] Karr, A. F.: Point Processes and Their Statistical Inference.Probability: Pure and Applied 7 Marcel Dekker, New York (1991). Zbl 0733.62088, MR 1113698; reference:[18] Lavancier, F., Møller, J., Rubak, E.: Determinantal point process models and statistical inference.J. R. Stat. Soc., Ser. B, Stat. Methodol. 77 (2015), 853-877 arXiv: 1205.4818v1-v5 [math ST] (2012-2014). MR 3382600, 10.1111/rssb.12096; reference:[19] Lenard, A.: States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures.Arch. Rational Mech. Anal. 59 (1975), 241-256. MR 0391831, 10.1007/BF00251602; reference:[20] Leonov, V. P., Shiryaev, A. N.: On a method of calculation of semi-invariants.Theory Probab. Appl. 4 319-329 (1960), translation from Teor. Veroyatn. Primen. 4 342-355 (1959), Russian 342-355. Zbl 0087.33701, MR 0123345; reference:[21] Macchi, O.: The coincidence approach to stochastic point processes.Adv. Appl. Probab. 7 (1975), 83-122. Zbl 0366.60081, MR 0380979, 10.1017/S0001867800040313; reference:[22] Press, S. J.: Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference.Robert E. Krieger Publishing Company, Malabar (1982). Zbl 0519.62041; reference:[23] Rao, A. R., Bhimasankaram, P.: Linear Algebra.Texts and Readings in Mathematics 19 Hindustan Book Agency, New Delhi (2000). Zbl 0982.15001, MR 1781860; reference:[24] Soshnikov, A.: Determinantal random point fields.Russ. Math. Surv. 55 923-975 (2000), translation from Usp. Mat. Nauk 55 107-160 (2000), Russian. Zbl 0991.60038, MR 1799012, 10.1070/RM2000v055n05ABEH000321; reference:[25] Soshnikov, A.: Gaussian limit for determinantal random point fields.Ann. Probab. 30 (2002), 171-187. Zbl 1033.60063, MR 1894104, 10.1214/aop/1020107764; reference:[26] Statulevičius, V. A.: On large deviations.Z. Wahrscheinlichkeitstheorie Verw. Geb. 6 (1966), 133-144. Zbl 0158.36207, MR 0221560, 10.1007/BF00537136

  10. 10
    Academic Journal

    المؤلفون: Večeřa, Jakub

    وصف الملف: application/pdf

    Relation: mr:MR3532252; zbl:Zbl 06644005; reference:[1] Beneš, V., M.Zikmundová: Functionals of spatial point processes having a density with respect to the Poisson process.Kybernetika 50 896-913 (2014). MR 3301778; reference:[2] Billingsley, P.: Probability and Measure.John Wiley & Sons, New York (1995). Zbl 0822.60002, MR 1324786; reference:[3] Georgii, H.-O., Yoo, H. J.: Conditional intensity and Gibbsianness of determinantal point processes.J. Stat. Phys. 118 55-84 (2005). Zbl 1130.82016, MR 2122549, 10.1007/s10955-004-8777-5; reference:[4] Last, G., Penrose, M. D.: Poisson process Fock space representation, chaos expansion and covariance inequalities.Probab. Theory Relat. Fields 150 663-690 (2011). Zbl 1233.60026, MR 2824870, 10.1007/s00440-010-0288-5; reference:[5] Last, G., Penrose, M. D., Schulte, M., Thäle, C.: Moments and central limit theorems for some multivariate Poisson functionals.Adv. Appl. Probab. 46 (2014), 348-364. Zbl 1350.60020, MR 3215537, 10.1017/S0001867800007126; reference:[6] Peccati, G., Taqqu, M. S.: Wiener chaos: Moments, Cumulants and Diagrams. A survey with computer implementation.Bocconi University Press, Milano; Springer, Milan (2011). Zbl 1231.60003, MR 2791919; reference:[7] Reitzner, M., Schulte, M.: Central limit theorems for $U$-statistics of Poisson point processes.Ann. Probab. 41 (2013), 3879-3909. Zbl 1293.60061, MR 3161465, 10.1214/12-AOP817; reference:[8] Schreiber, T., Yukich, J. E.: Limit theorems for geometric functionals of Gibbs point processes.Ann. Inst. Henri Poincaré, Probab. Stat. 49 (2013), 1158-1182. Zbl 1308.60064, MR 3127918, 10.1214/12-AIHP500; reference:[9] Večeřa, J., Beneš, V.: Interaction processes for unions of facets, the asymptotic behaviour with increasing intensity.Methodol. Comput. Appl. Probab. DOI-10.1007/s11009-016-9485-8 (2016). Zbl 1370.60015, MR 3564860, 10.1007/s11009-016-9485-8

  11. 11
    Academic Journal

    المؤلفون: Jeulin, Dominique

    وصف الملف: application/pdf

    Relation: mr:MR3532249; zbl:Zbl 06644002; reference:[1] Delisée, Ch., Jeulin, D., Michaud, F.: Caractérisation morphologique et porosité en 3D de matériaux fibreux cellulosiques.C.R. Académie des Sciences de Paris, t. 329, Série II b French (2001), 179-185.; reference:[2] Dirrenberger, J., Forest, S., Jeulin, D.: Towards gigantic RVE sizes for 3D stochastic fibrous networks.Int. J. Solids Struct. 51 (2014), 359-376. 10.1016/j.ijsolstr.2013.10.011; reference:[3] Faessel, M., Jeulin, D.: 3D multiscale vectorial simulations of random models.Proceedings of ICS13 (2011), 19-22.; reference:[4] Jeulin, D.: Modèles Morphologiques de Structures Aléatoires et de Changement d'Echelle.Thèse de Doctorat d'Etat è s Sciences Physiques, Université de Caen (1991).; reference:[5] Jeulin, D.: Modèles de Fonctions Aléatoires multivariables.Sci. Terre French 30 (1991), 225-256.; reference:[6] Jeulin, D.: Random structure models for composite media and fracture statistics.Advances in Mathematical Modelling of Composite Materials (1994), 239-289.; reference:[7] Jeulin, D.: Random structure models for homogenization and fracture statistics.Mechanics of Random and Multiscale Microstructures D. Jeulin, M. Ostoja-Starzewski CISM Courses Lect. 430, Springer, Wien (2001), 33-91. Zbl 1010.74004, 10.1007/978-3-7091-2780-3_2; reference:[8] Jeulin, D.: Morphology and effective properties of multi-scale random sets.A review, C. R. Mecanique 340 (2012), 219-229. 10.1016/j.crme.2012.02.004; reference:[9] Jeulin, D.: Boolean random functions.Stochastic Geometry, Spatial Statistics and Random Fields. Models and Algorithms V. Schmidt Lecture Notes in Mathematics 2120, Springer, Cham (2015), 143-169. Zbl 1366.60013, MR 3330575; reference:[10] Jeulin, D.: Power laws variance scaling of Boolean random varieties.Methodol. Comput. Appl. Probab. (2015), 1-15, DOI:10.1007/s11009-015-9464-5. MR 3564853, 10.1007/s11009-015-9464-5; reference:[11] Maier, R., Schmidt, V.: Stationary iterated tessellations.Adv. Appl. Probab. 35 (2003), 337-353. Zbl 1041.60012, MR 1970476, 10.1017/S000186780001226X; reference:[12] Matheron, G.: Random Sets and Integral Geometry.Wiley Series in Probability and Mathematical Statistics John Wiley & Sons, New York (1975). Zbl 0321.60009, MR 0385969; reference:[13] Nagel, W., Weiss, V.: Limits of sequences of stationary planar tessellations.Adv. Appl. Probab. 35 (2003), 123-138. Zbl 1023.60015, MR 1975507, 10.1017/S0001867800012118; reference:[14] Schladitz, K., Peters, S., Reinel-Bitzer, D., Wiegmann, A., Ohser, J.: Design of acoustic trim based on geometric modeling and flow simulation for non-woven.Computational Materials Science 38 (2006), 56-66. 10.1016/j.commatsci.2006.01.018

  12. 12

    المؤلفون: Emmanuel Schertzer, Amaury Lambert

    المساهمون: Lambert, Amaury, Centre interdisciplinaire de recherche en biologie (CIRB), Labex MemoLife, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), CIRB - Collège de France, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)

    المصدر: Bernoulli 25, no. 1 (2019), 148-173

    وصف الملف: application/pdf

  13. 13
  14. 14
    Report

    المساهمون: Centre interdisciplinaire de recherche en biologie (CIRB), Labex MemoLife, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Collège de France (CdF (institution))-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), CIRB - Collège de France

    المصدر: https://hal.science/hal-01394651 ; 2016.

    Relation: info:eu-repo/semantics/altIdentifier/arxiv/1611.01323; ARXIV: 1611.01323

  15. 15
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3301778; zbl:Zbl 06416866; reference:[1] Baddeley, A.: Spatial point processes and their applications. Stochastic geometry.Lecture Notes in Math. 1892 (2007), 1-75. MR 2327290, 10.1007/978-3-540-38175-4_1; reference:[2] Decreusefond, L., Flint, I.: Moment formulae for general point processes.C. R. Acad. Sci. Paris, Ser. I (2014), 352, 357-361. Zbl 1297.60031, MR 3186927; reference:[3] Kaucky, J.: Combinatorial Identities (in Czech).Veda, Bratislava 1975.; reference:[4] Last, G., Penrose, M. D.: Poisson process Fock space representation, chaos expansion and covariance inequalities.Probab. Theory Relat. Fields 150 (2011), 663-690. Zbl 1233.60026, MR 2824870, 10.1007/s00440-010-0288-5; reference:[5] Last, G., Penrose, M. D., Schulte, M., Thäle, Ch.: Moments and central limit theorems for some multivariate Poisson functionals.Adv. Appl. Probab. 46 (2014), 2, 348-364. MR 3215537, 10.1239/aap/1401369698; reference:[6] Møller, J., Helisová, K.: Power diagrams and interaction processes for unions of disc.Adv. Appl. Probab. 40 (2008), 321-347. MR 2431299, 10.1239/aap/1214950206; reference:[7] Møller, J., Waagepetersen, R.: Statistical Inference and Simulation for Spatial Point Processes.Chapman and Hall/CRC, Boca Raton 2004. MR 2004226; reference:[8] Peccati, G., Taqqu, M. S.: Wiener Chaos: Moments, Cumulants and Diagrams.Bocconi Univ. Press, Springer, Milan 2011. Zbl 1231.60003, MR 2791919; reference:[9] Peccati, G., Zheng, C.: Multi-dimensional Gaussian fluctuations on the Poisson space.Electron. J. Probab. 15 (2010), 48, 1487-1527. Zbl 1228.60031, MR 2727319; reference:[10] Reitzner, M., Schulte, M.: Central limit theorems for $U$-statistics of Poisson point processes.Ann. Probab. 41 (2013), 3879-3909. Zbl 1293.60061, MR 3161465, 10.1214/12-AOP817; reference:[11] Schneider, R., Weil, W.: Stochastic and Integral Geometry.Springer, Berlin 2008. Zbl 1175.60003, MR 2455326

  16. 16
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3086866; reference:[1] Baddeley, A. J., Turner, R.: Practical maximum pseudolikelihood for spatial point processes.Aust. N. Z. J. Statist. 42 (2000), 283-322. MR 1794056, 10.1111/1467-842X.00128; reference:[2] Baddeley, A. J., Turner, R.: Spatstat: an R package for analyzing spatial point patterns.J. Statist. Softw. 12 (2005), 1-42.; reference:[3] Brix, A.: Generalized gamma measures and shot-noise Cox processes.Adv. in Appl. Probab. 31 (1999), 929-953. Zbl 0957.60055, MR 1747450, 10.1239/aap/1029955251; reference:[4] Cox, D. R.: Some statistical models related with series of events.J. Roy. Statist. Soc. Ser. B 17 (1955), 129-164. MR 0092301; reference:[5] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume 1: Elementary Theory and Methods.Second edition. Springer Verlag, New York 2003. MR 1950431; reference:[6] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume 2: General Theory and Structure.Second edition. Springer Verlag, New York 2008. MR 2371524; reference:[7] Diggle, P. J.: Statistical Analysis of Spatial Point Patterns.Academic Press, London 1983. Zbl 1021.62076, MR 0743593; reference:[8] Diggle, P. J.: Statistical Analysis of Spatial Point Patterns.Second edition. Oxford University Press, New York 2003. Zbl 1021.62076, MR 0743593; reference:[9] Dvořák, J., Prokešová, M.: Moment estimation methods for stationary spatial Cox processes - a simulation study.Preprint (2011), \url{http://www.karlin.mff.cuni.cz/ dvorak/CoxEstimation/CoxEstimation_SimulationStudy.pdf}.; reference:[10] Guan, Y.: A composite likelihood approach in fitting spatial point process models.J. Amer. Statist. Assoc. 101 (2006), 1502-1512. Zbl 1171.62348, MR 2279475, 10.1198/016214506000000500; reference:[11] Guan, Y., Sherman, M.: On least squares fitting for stationary spatial point processes.J. Roy. Statist. Soc. Ser. B 69 (2007), 31-49. MR 2301498, 10.1111/j.1467-9868.2007.00575.x; reference:[12] Heinrich, L.: Minimum contrast estimates for parameters of spatial ergodic point processes.In: Trans. 11th Prague Conference on Random Processes, Information Theory and Statistical Decision Functions. Academic Publishing House, Prague 1992.; reference:[13] Hellmund, G., Prokešová, M., Jensen, E. B. Vedel: Lévy-based Cox point processes.Adv. in Appl. Probab. 40 (2008), 603-629. MR 2454025, 10.1239/aap/1222868178; reference:[14] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns.John Wiley and Sons, Chichester 2008. Zbl 1197.62135, MR 2384630; reference:[15] Jensen, A. T.: Statistical Inference for Doubly Stochastic Poisson Processes.Ph.D. Thesis, Department of Applied Mathematics and Statistics, University of Copenhagen 2005.; reference:[16] Lindsay, B. G.: Composite likelihood methods.Contemp. Math. 80 (1988), 221-239. Zbl 0672.62069, MR 0999014, 10.1090/conm/080/999014; reference:[17] Matérn, B.: Doubly stochastic Poisson processes in the plane.In: Statistical Ecology. Volume 1. Pennsylvania State University Press, University Park 1971.; reference:[18] Møller, J., Syversveen, A. R., Waagepetersen, R. P.: Log-Gaussian Cox processes.Scand. J. Statist. 25 (1998), 451-482. MR 1650019, 10.1111/1467-9469.00115; reference:[19] Møller, J.: Shot noise Cox processes.Adv. in Appl. Probab. (SGSA) 35 (2003), 614-640. MR 1990607, 10.1239/aap/1059486821; reference:[20] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes.Chapman and Hall/CRC, Florida 2003.; reference:[21] Møller, J., Waagepetersen, R. P.: Modern statistics for spatial point processes.Scand. J. Statist. 34 (2007), 643-684. MR 2392447; reference:[22] Prokešová, M., Jensen, E. B. Vedel: Asymptotic Palm likelihood theory for stationary spatial point processes.Accepted to Ann. Inst. Statist. Math. (2012).; reference:[23] Tanaka, U., Ogata, Y., Stoyan, D.: Parameter estimation and model selection for Neyman-Scott point processes.Biometrical J. 49 (2007), 1-15. MR 2414637

  17. 17
  18. 18
    Academic Journal

    المؤلفون: Pawlas, Zbyněk

    وصف الملف: application/pdf

    Relation: mr:MR2907848; zbl:Zbl 1250.62042; reference:[1] Baddeley, A. J., Gill, R.: Kaplan-Meier estimators of distance distributions for spatial point processes.Ann. Statist. 25 (1997), 263-292. Zbl 0870.62028, MR 1429925, 10.1214/aos/1034276629; reference:[2] Baddeley, A. J., Moyeed, R. A., Howard, C. V., Boyde, A.: Analysis of a three-dimensional point pattern with replication.J. Roy. Statist. Soc. Ser. C 42 (1993), 641-668. Zbl 0825.62476, MR 1234146; reference:[3] Bell, M. L., Grunwald, G. K.: Mixed models for the analysis of replicated spatial point patterns.Biostatistics 5 (2004), 633-648. Zbl 1069.62055, 10.1093/biostatistics/kxh014; reference:[4] Diggle, P. J.: Statistical Analysis of Spatial Point Patterns.2nd edition. Arnold, London 2003. Zbl 1021.62076, MR 0743593; reference:[5] Diggle, P. J., Lange, N., Beneš, F. M.: Analysis of variance for replicated spatial point patterns in clinical neuroanatomy.J. Amer. Statist. Assoc. 86 (1991), 618-625. 10.1080/01621459.1991.10475087; reference:[6] Diggle, P. J., Mateu, J., Clough, H. E.: A comparison between parametric and non-parametric approaches to the analysis of replicated spatial point patterns.Adv. in Appl. Probab. (SGSA) 32 (2000), 331-343. Zbl 1052.60009, MR 1778567, 10.1239/aap/1013540166; reference:[7] Hanisch, K.-H.: Some remarks on estimators of the distribution function of nearest neighbour distance in stationary spatial point patterns.Statistics 15 (1984), 409-412. MR 0756346; reference:[8] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modeling of Spatial Point Patterns.John Wiley & Sons, Chichester 2008. MR 2384630; reference:[9] Philimonenko, A. A., Janáček, J., Hozák, P.: Statistical evaluation of colocalization patterns in immunogold labeling experiments.J. Struct. Biol. 132 (2000), 201-210. 10.1006/jsbi.2000.4326; reference:[10] R Development Core Team: R: A Language and Environment for Statistical Computing.R Foundation for Statistical Computing, Vienna 2010. URL: http://www.R-project.org.; reference:[11] Stoyan, D.: On estimators of the nearest neighbour distance distribution function for stationary point processes.Metrika 64 (2006), 139-150. Zbl 1100.62082, MR 2259218, 10.1007/s00184-006-0040-4; reference:[12] Wager, C. G., Coull, B. A., Lange, N.: Modelling spatial intensity for replicated inhomogeneous point patterns in brain imaging.J. R. Statist. Soc. B 66 (2004), 429-446. Zbl 1062.62221, MR 2062386, 10.1046/j.1369-7412.2003.05285.x

  19. 19
    Academic Journal

    المؤلفون: Prokešová, Michaela

    وصف الملف: application/pdf

    Relation: mr:MR2850456; zbl:Zbl 1238.62098; reference:[1] S. Böhm, L. Heinrich, V. Schmidt: Kernel estimation of the spectral density of stationary random closed sets.Austral. & New Zealand J. Statist. 46 (2004), 41-52. Zbl 1061.62057, MR 2060951, 10.1111/j.1467-842X.2004.00310.x; reference:[2] K. L. Chung: A Course in Probability Theory.Second edition. Harcourt Brace Jovanovich, New York 1974. Zbl 0345.60003, MR 0346858; reference:[3] D. J. Daley, D. Vere-Jones: An Introduction to the Theory of Point Processes.Second edition. Vol I and II, Springer, New York 2003, 2008. Zbl 1026.60061, MR 0950166; reference:[4] S. David: Central Limit Theorems for Empirical Product Densities of Stationary Point Processes.Phd. Thesis, Augsburg Universität 2008.; reference:[5] L. Heinrich: Asymptotic gaussianity of some estimators for reduced factorial moment measures and product densities of stationary Poisson cluster processes.Statistics 19 (1988), 87-106. Zbl 0666.62032, MR 0921628, 10.1080/02331888808802075; reference:[6] L. Heinrich: Normal approximation for some mean-value estimates of absolutely regular tesselations.Math. Methods Statist. 3 (1994), 1-24. MR 1272628; reference:[7] L. Heinrich: Asymptotic goodness-of-fit tests for point processes based on scaled empirical K-functions.Submitted.; reference:[8] L. Heinrich, E. Liebscher: Strong convergence of kernel estimators for product densities of absolutely regular point processes.J. Nonparametric Statist. 8 (1997), 65-96. Zbl 0884.60041, MR 1658113, 10.1080/10485259708832715; reference:[9] L. Heinrich, M. Prokešová: On estimating the asymptotic variance of stationary point processes.Methodology Comput. in Appl. Probab. 12 (2010), 451-471. Zbl 1197.62122, MR 2665270, 10.1007/s11009-008-9113-3; reference:[10] L. Heinrich, V. Schmidt: Normal convergence of multidimensional shot noise and rates of this convergence.Adv. in Appl. Probab. 17 (1985), 709-730. Zbl 0609.60036, MR 0809427, 10.2307/1427084; reference:[11] J. Illian, A. Penttinen, H. Stoyan, D. Stoyan: Statistical Analysis and Modelling of Spatial Point Patterns.John Wiley and Sons, Chichester 2008. Zbl 1197.62135, MR 2384630; reference:[12] E. Jolivet: Central limit theorem and convergence of empirical processes of stationary point processes.In: Point Processes and Queueing Problems (P. Bartfai and J. Tomko, eds.), North-Holland, New York 1980, pp. 117-161. MR 0617406; reference:[13] S. Mase: Asymptotic properties of stereological estimators for stationary random sets.J. Appl. Probab. 19 (1982), 111-126. MR 0644424, 10.2307/3213921; reference:[14] D. N. Politis: Subsampling.Springer, New York 1999. Zbl 1072.62551, MR 1707286; reference:[15] D. N. Politis, M. Sherman: Moment estimation for statistics from marked point processes.J. Roy. Statist. Soc. Ser. B 63 (2001), 261-275. Zbl 0979.62074, MR 1841414, 10.1111/1467-9868.00284; reference:[16] M. Prokešová, E. B. Vedel-Jensen: Asymptotic Palm likelihood theory for stationary point processes.Submitted.; reference:[17] B. D. Ripley: Statistical Inference for Spatial Processes.Cambridge University Press, Cambridge 1988. Zbl 0716.62100, MR 0971986; reference:[18] D. Stoyan, W. S. Kendall, J. Mecke: Stochastic Geometry and its Applications.Second edition. J. Wiley & Sons, Chichester 1995. Zbl 0838.60002, MR 0895588; reference:[19] J. C. Taylor: An Introduction to Measure and Probability.Springer, New York 1997. MR 1420194; reference:[20] L. Zhengyan, L. Chuanrong: Limit Theory for Mixing Dependent Random Variables.Kluwer Academic Publishers, Dordrecht 1996. Zbl 0889.60001, MR 1486580

  20. 20
    Academic Journal

    المؤلفون: Thäle, Christoph

    وصف الملف: application/pdf

    Relation: mr:MR2741883; zbl:Zbl 1224.60015; reference:[1] Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.Dover, New York, 1965, online version under http://www.math.ucla.edu/ cbm/aands/index.htm. Zbl 0643.33001, MR 1225604; reference:[2] Mecke J., Nagel W., Weiss V.: Length distributions of edges in planar stationary and isotropic STIT tessellations.J. Contemp. Math. Anal. 42 (2007), 28–43. Zbl 1155.60005, MR 2361580, 10.3103/S1068362307010025; reference:[3] Mecke J., Nagel W., Weiss V.: Some distributions for I-segments of planar random homogeneous STIT tessellations.Math. Nachr. (2010)(to appear). MR 2832660; reference:[4] Nagel W., Weiss V.: Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration.Adv. in Appl. Probab. 37 (2005), 859–883. Zbl 1098.60012, MR 2193987, 10.1239/aap/1134587744; reference:[5] Schneider R., Weil W.: Stochastic and Integral Geometry.Springer, Berlin, 2008. Zbl 1175.60003, MR 2455326; reference:[6] Schreiber T., Thäle C.: Typical geometry, second-order properties and central limit theory for iteration stable tessellations.arXiv:1001.0990 [math.PR] (2010). MR 2796670; reference:[7] Thäle C.: Moments of the length of line segments in homogeneous planar STIT tessellations.Image Anal. Stereol. 28 (2009), 69–76. MR 2538063, 10.5566/ias.v28.p69-76