يعرض 1 - 20 نتائج من 31 نتيجة بحث عن '"msc:60E15"', وقت الاستعلام: 0.72s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Sharma, Akash, Kundu, Chanchal

    وصف الملف: application/pdf

    Relation: reference:[1] kan, E. Arı: Varentropy decreases under polar transform.IEEE Trans. Inf. Theory 62 (2016), 3390-3400. Zbl 1359.94292, MR 3506740, 10.1109/TIT.2016.2555841; reference:[2] Barlow, R. E., Proschan, F.: Statistical Theory of Reliability and Life Testing.Holt, Rinehart and Winston, New York (1975). Zbl 0379.62080, MR 0438625; reference:[3] Bobkov, S., Madiman, M.: Concentration of the information in data with log-concave distributions.Ann. Probab. 39 (2011), 1528-1543. Zbl 1227.60043, MR 2857249, 10.1214/10-AOP592; reference:[4] Buono, F., Longobardi, M., Pellerey, F.: Varentropy of past lifetimes.Math. Methods Stat. 31 (2022), 57-73. Zbl 07595983, MR 4491117, 10.3103/S106653072202003X; reference:[5] Burnham, K. P., Anderson, D. R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach.Springer, New York (2002). Zbl 1005.62007, MR 1919620, 10.1007/b97636; reference:[6] Cover, T. M., Thomas, J. A.: Elements of Information Theory.Wiley Series in Telecommunications. John Wiley & Sons, New York (1991). Zbl 0762.94001, MR 1122806, 10.1002/0471200611; reference:[7] Crescenzo, A. Di, Longobardi, M.: Entropy-based measure of uncertainty in past lifetime distributions.J. Appl. Probab. 39 (2002), 434-440. Zbl 1003.62087, MR 1908960, 10.1239/jap/1025131441; reference:[8] Crescenzo, A. Di, Paolillo, L.: Analysis and applications of the residual varentropy of random lifetimes.Probab. Eng. Inf. Sci. 35 (2021), 680-698. Zbl 07620594, MR 4276539, 10.1017/S0269964820000133; reference:[9] Crescenzo, A. Di, Paolillo, L., Suárez-Llorens, A.: Stochastic comparisons, differential entropy and varentropy for distributions induced by probability density functions.Available at https://arxiv.org/abs/2103.11038 (2021), 21 pages. 10.48550/arXiv.2103.11038; reference:[10] Ebrahimi, N., Kirmani, S. N. U. A.: Some results on ordering of survival functions through uncertainty.Stat. Probab. Lett. 29 (1996), 167-176. Zbl 1007.62527, MR 1411415, 10.1016/0167-7152(95)00170-0; reference:[11] Fradelizi, M., Madiman, M., Wang, L.: Optimal concentration of information content for log-concave densities.High Dimensional Probability VII Progress in Probability 71. Birkhäuser, Basel (2016), 45-60. Zbl 1358.60036, MR 3565259, 10.1007/978-3-319-40519-3_3; reference:[12] Kundu, C., Singh, S.: On generalized interval entropy.Commun. Stat., Theory Methods 49 (2020), 1989-2007. Zbl 1511.62012, MR 4070896, 10.1080/03610926.2019.1568480; reference:[13] Liu, J.: Information Theoretic Content and Probability: Ph.D. Thesis.University of Florida, Gainesville (2007). MR 2710407; reference:[14] Maadani, S., Borzadaran, G. R. Mohtashami, Roknabadi, A. H. Rezaei: Varentropy of order statistics and some stochastic comparisons.Commun. Stat., Theory Methods 51 (2022), 6447-6460. Zbl 07571136, MR 4464492, 10.1080/03610926.2020.1861299; reference:[15] Nanda, A. K., Paul, P.: Some properties of past entropy and their applications.Metrika 64 (2006), 47-61. Zbl 1104.94007, MR 2242557, 10.1007/s00184-006-0030-6; reference:[16] Nanda, A. K., Paul, P.: Some results on generalized past entropy.J. Stat. Plann. Inference 136 (2006), 3659-3674. Zbl 1098.94014, MR 2284670, 10.1016/j.jspi.2005.01.006; reference:[17] Rajaram, R., Castellani, B., Wilson, A. N.: Advancing Shannon entropy for measuring diversity in systems.Complexity 2017 (2017), Article ID 8715605, 10 pages. Zbl 1407.94059, 10.1155/2017/8715605; reference:[18] Raqab, M. Z., Bayoud, H. A., Qiu, G.: Varentropy of inactivity time of a random variable and its related applications.IMA J. Math. Control Inf. 39 (2022), 132-154. Zbl 1492.94041, MR 4388735, 10.1093/imamci/dnab033; reference:[19] Shaked, M., Shanthikumar, J. G.: Stochastic Orders.Springer Series in Statistics. Springer, New York (2007). Zbl 1111.62016, MR 2265633, 10.1007/978-0-387-34675-5; reference:[20] Shanker, R., Fesshaye, H., Selvaraj, S.: On modeling of lifetimes data using exponential and lindley distributions.Biometrics Biostat. Int. J. 2 (2015), 140-147. 10.15406/bbij.2015.02.00042; reference:[21] Shannon, C. E.: A mathematical theory of communication.Bell Syst. Tech. J. 27 (1948), 379-423. Zbl 1154.94303, MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x; reference:[22] Shannon, C. E.: A mathematical theory of communication.Bell Syst. Tech. J. 27 (1948), 623-656. Zbl 1154.94303, MR 0026286, 10.1002/j.1538-7305.1948.tb00917.x; reference:[23] Sharma, A., Kundu, C.: Varentropy of doubly truncated random variable.Probab. Eng. Inf. Sci. 37 (2023), 852-871. MR 4604154, 10.1017/S0269964822000225; reference:[24] Song, K.-S.: Rényi information, loglikelihood and an intrinsic distribution measure.J. Stat. Plann. Inference 93 (2001), 51-69. Zbl 0997.62003, MR 1822388, 10.1016/S0378-3758(00)00169-5; reference:[25] Zacks, S.: Introduction to Reliability Analysis: Probability Models and Statistical Methods.Springer Texts in Statistics. Springer, New York (1992). Zbl 0743.62096, MR 1138468, 10.1007/978-1-4612-2854-7

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4299884; zbl:07396177; reference:[1] Asadi, M., Zohrevand, Y.: On the dynamic cumulative residual entropy.J. Stat. Plann. Inference 137 (2007), 1931-1941. Zbl 1118.62006, MR 2323874, 10.1016/j.jspi.2006.06.035; reference:[2] Cacoullos, T.: On upper and lower bounds for the variance of the function of a random variable.Ann. Probab. 10 (1982), 799-809. Zbl 0492.60021, MR 0659549, 10.1214/aop/1176993788; reference:[3] Cacoullos, T., Papathanasiou, V.: On upper bounds for the variance of functions of random variables.Stat. Probab. Lett. 3 (1985), 175-184. Zbl 0572.60021, MR 0801687, 10.1016/0167-7152(85)90014-8; reference:[4] Cacoullos, T., Papathanasiou, V.: Characterizations of distributions by variance bounds.Stat. Probab. Lett. 7 (1989), 351-356. Zbl 0677.62012, MR 1001133, 10.1016/0167-7152(89)90050-3; reference:[5] Cacoullos, T., Papathanasiou, V.: A generalization of covariance identity and related characterization.Math. Methods Stat. 4 (1995), 106-113. Zbl 0831.62013, MR 1324694; reference:[6] Cacoullos, T., Papathanasiou, V.: Characterizations of distributions by generalizations of variance bounds and simple proofs of the CLT.J. Stat. Plann. Inference 63 (1997), 157-171. Zbl 0922.62009, MR 1491576, 10.1016/S0378-3758(97)00008-6; reference:[7] Chen, L. H. Y.: An inequality for the multivariate normal distribution.J. Multivariate Anal. 12 (1982), 306-315. Zbl 0483.60011, MR 0661566, 10.1016/0047-259X(82)90022-7; reference:[8] Chernoff, H.: A note on an inequality involving the normal distribution.Ann. Probab. 9 (1981), 533-535. Zbl 0457.60014, MR 0614640, 10.1214/aop/1176994428; reference:[9] Crescenzo, A. Di, Paolillo, L.: Analysis and applications of the residual varentropy of random lifetimes.(to appear) in Probab. Eng. Inf. Sci. MR 4276539, 10.1017/S0269964820000133; reference:[10] Fisher, R. A.: The effects of methods of ascertainment upon the estimation of frequencies.Ann. Eugenics 6 (1934), 13-25. 10.1111/j.1469-1809.1934.tb02105.x; reference:[11] Goodarzi, F., Amini, M., Borzadaran, G. R. Mohtashami: On upper bounds for the variance of functions of random variables with weighted distributions.Lobachevskii J. Math. 37 (2016), 422-435. Zbl 1347.62030, MR 3528019, 10.1134/S1995080216040089; reference:[12] Goodarzi, F., Amini, M., Borzadaran, G. R. Mohtashami: Characterizations of continuous distributions through inequalities involving the expected values of selected functions.Appl. Math., Praha 62 (2017), 493-507. Zbl 06819518, MR 3722901, 10.21136/AM.2017.0182-16; reference:[13] Goodarzi, F., Amini, M., Borzadaran, G. R. Mohtashami: Some results on upper bounds for the variance of functions of the residual life random variables.J. Comput. Appl. Math. 320 (2017), 30-42. Zbl 1368.60021, MR 3624716, 10.1016/j.cam.2017.01.001; reference:[14] Borzadaran, G. R. Mohtashami: A note on continuous exponential families.Thai J. Math. 8 (2010), 555-563. Zbl 1229.62011, MR 2763677; reference:[15] Borzadaran, G. R. Mohtashami, Shanbhag, D. N.: Further results based on Chernoff-type inequalities.Stat. Probab. Lett. 39 (1998), 109-117. Zbl 1094.62503, MR 1652512, 10.1016/S0167-7152(98)00036-4; reference:[16] Nair, N. U., Sudheesh, K. K.: Characterization of continuous distributions by variance bound and its implications to reliability modeling and catastrophe theory.Commun. Stat., Theory Methods 35 (2006), 1189-1199. Zbl 1105.62016, MR 2328470, 10.1080/03610920600629443; reference:[17] Nair, N. U., Sudheesh, K. K.: Characterization of continuous distributions by properties of conditional variance.Stat. Methodol. 7 (2010), 30-40. Zbl 1232.62038, MR 2744442, 10.1016/j.stamet.2009.08.003; reference:[18] Nanda, A. K., Singh, H., Misra, N., Paul, P.: Reliability properties of reversed residual lifetime.Commun. Stat., Theory Methods 32 (2003), 2031-2042. Zbl 1156.62360, MR 2002004, 10.1081/STA-120023264; reference:[19] Navarro, J., Aguila, Y. del, Asadi, M.: Some new results on the cumulative residual entropy.J. Stat. Plann. Inference 140 (2010), 310-322. Zbl 1177.62005, MR 2568141, 10.1016/j.jspi.2009.07.015; reference:[20] Psarrakos, G., Navarro, J.: Generalized cumulative residual entropy and record values.Metrika 76 (2013), 623-640. Zbl 1307.62011, MR 3078811, 10.1007/s00184-012-0408-6; reference:[21] Rao, C. R.: On discrete distributions arising out of methods of ascertainment.Classical and Contagious Discrete Distributions Statistical Publishing Society, Calcutta (1965), 320-332. Zbl 0212.21903, MR 0214205; reference:[22] Rao, M., Chen, Y., Vemuri, B. C., Wang, F.: Cumulative residual entropy: A new measure of information.IEEE Trans. Inf. Theory 50 (2004), 1220-1228. Zbl 1302.94025, MR 2094878, 10.1109/TIT.2004.828057; reference:[23] Shaked, M., Shanthikumar, J. G.: Stochastic Orders.Springer Series in Statistics. Springer, New York (2007). Zbl 1111.62016, MR 2265633, 10.1007/978-0-387-34675-5

  3. 3
    Academic Journal

    المؤلفون: Ghosh, Amit, Kundu, Chanchal

    وصف الملف: application/pdf

    Relation: mr:MR3795245; zbl:Zbl 06890304; reference:[1] Abbasnejad, M.: Some characterization results based on dynamic survival and failure entropies.Commun. Stat. Appl. Methods 18 (2011), 787-798. 10.5351/ckss.2011.18.6.787; reference:[2] Ahmadi, J., Crescenzo, A. Di, Longobardi, M.: On dynamic mutual information for bivariate lifetimes.Adv. Appl. Probab. 47 (2015), 1157-1174. Zbl 1355.94022, MR 3433300, 10.1239/aap/1449859804; reference:[3] Akaike, H.: Information measures and model selection.Bull. Int. Stat. Inst. 50 (1983), 277-290. Zbl 0578.62059, MR 0820726; reference:[4] Baratpour, S., Rad, A. H.: Testing goodness-of-fit for exponential distribution based on cumulative residual entropy.Commun. Stat., Theory Methods 41 (2012), 1387-1396. Zbl 1319.62095, MR 2902993, 10.1080/03610926.2010.542857; reference:[5] Burnham, K. P., Anderson, D. R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach.Springer, New York (2002). Zbl 1005.62007, MR 1919620, 10.1007/b97636; reference:[6] Cahill, N. D., Schnabel, J. A., Noble, J. A., Hawkes, D. J.: Overlap invariance of cumulative residual entropy measures for multimodal image alignment.Medical Imaging 2009 J. P. W. Pluim, B. M. Dawant Proceedings of SPIE 7259, Society of Photo-Optical Instrumentation Engineers, Washington (2009), Article ID 72590I. 10.1117/12.811585; reference:[7] Choe, Y.: Information criterion for minimum cross-entropy model selection.Available at https://arxiv.org/abs/1704.04315 (2017), 32 pages.; reference:[8] Crescenzo, A. Di, Longobardi, M.: On cumulative entropies.J. Stat. Plann. Inference 139 (2009), 4072-4087. Zbl 1172.94543, MR 2558351, 10.1016/j.jspi.2009.05.038; reference:[9] Crescenzo, A. Di, Longobardi, M.: Stochastic comparisons of cumulative entropies.Stochastic Orders in Reliability and Risk H. Li, X. Li Lecture Notes in Statistics 208, Springer, New York (2013), 167-182. Zbl 1312.62011, MR 3156874, 10.1007/978-1-4614-6892-9_8; reference:[10] Crescenzo, A. Di, Longobardi, M.: Some properties and applications of cumulative \hbox{Kullback}-Leibler information.Appl. Stoch. Models Bus. Ind. 31 (2015), 875-891. MR 3445978, 10.1002/asmb.2116; reference:[11] Ebrahimi, N., Soofi, E. S., Soyer, R.: Information measures in perspective.Int. Stat. Rev. 78 (2010), 383-412. MR 2665834, 10.1111/j.1751-5823.2010.00105.x; reference:[12] Fraser, D. A. S.: On information in statistics.Ann. Math. Stat. 36 (1965), 890-896. Zbl 0141.35501, MR 0176550, 10.1214/aoms/1177700061; reference:[13] Ghosh, A., Kundu, C.: Bivariate extension of (dynamic) cumulative residual and past inaccuracy measures.(to appear) in Stat. Pap. MR 3795245, 10.1007/s00362-017-0917-5; reference:[14] Ghosh, A., Kundu, C.: Chernoff distance for conditionally specified models.(to appear) in Stat. Pap. 10.1007/s00362-016-0804-5; reference:[15] Ghosh, A., Kundu, C.: On some dynamic generalized measures of information for conditionally specified models in past life.Statistics 51 (2017), 1398-1418. Zbl 06825550, MR 3734030, 10.1080/02331888.2017.1335315; reference:[16] Gumbel, E. J.: Bivariate logistic distributions.J. Am. Stat. Assoc. 56 (1961), 335-349. Zbl 0099.14502, MR 0158451, 10.2307/2282259; reference:[17] Jurafsky, D., Martin, J. H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition.Prentice-Hall, Englewood Cliffs (2009).; reference:[18] Kayal, S., Sunoj, S. M.: Generalized Kerridge's inaccuracy measure for conditionally specified models.Commun. Stat., Theory Methods 46 (2017), 8257-8268. Zbl 06790749, MR 3660053, 10.1080/03610926.2016.1177083; reference:[19] Kent, J. T.: Robust properties of likelihood ratio tests.Biometrika 69 (1982), 19-27. Zbl 0485.62031, MR 0655667, 10.1093/biomet/69.1.19; reference:[20] Kent, J. T.: Information gain and a general measure of correlation.Biometrika 70 (1983), 163-173. Zbl 0521.62003, MR 0742986, 10.1093/biomet/70.1.163; reference:[21] Kerridge, D. F.: Inaccuracy and inference.J. R. Stat. Soc., Ser. B 23 (1961), 184-194. Zbl 0112.10302, MR 0123375; reference:[22] Kotz, S., Balakrishnan, N., Johnson, N. L.: Continuous Multivariate Distributions. Vol. 1: Models and Applications.Wiley, New York (2000). Zbl 0946.62001, MR 1788152, 10.1002/0471722065; reference:[23] Kullback, S., Leibler, R. A.: On information and sufficiency.Ann. Math. Stat. 22 (1951), 79-86. Zbl 0042.38403, MR 0039968, 10.1214/aoms/1177729694; reference:[24] Kundu, C., Crescenzo, A. Di, Longobardi, M.: On cumulative residual (past) inaccuracy for truncated random variables.Metrika 79 (2016), 335-356. Zbl 1333.94025, MR 3473632, 10.1007/s00184-015-0557-5; reference:[25] Kundu, A., Kundu, C.: Bivariate extension of (dynamic) cumulative past entropy.Commun. Stat., Theory Methods 46 (2017), 4163-4180. Zbl 1368.62012, MR 3599701, 10.1080/03610926.2015.1080838; reference:[26] Kundu, A., Kundu, C.: Bivariate extension of generalized cumulative past entropy.Commun. Stat., Theory Methods 47 (2018), 1962-1977. MR 3757723, 10.1080/03610926.2017.1335412; reference:[27] Kundu, A., Nanda, A. K.: On study of dynamic survival and cumulative past entropies.Commun. Stat., Theory Methods 45 (2016), 104-122. Zbl 1338.60055, MR 3440373, 10.1080/03610926.2013.824591; reference:[28] Lawless, J. F.: Statistical Models and Methods for Lifetime Data.Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York (1982). Zbl 0541.62081, MR 0640866; reference:[29] Nair, N. U., Asha, G.: Some characterizations based on bivariate reversed mean residual life.ProbStat Forum 1 (2008), 1-14. Zbl 05633231; reference:[30] Nath, P.: Inaccuracy and coding theory.Metrika 13 (1968), 123-135. Zbl 0162.51101, MR 0238439, 10.1007/BF02613380; reference:[31] Navarro, J., Aguila, Y. del, Asadi, M.: Some new results on the cumulative residual entropy.J. Stat. Plann. Inference 140 (2010), 310-322. Zbl 1177.62005, MR 2568141, 10.1016/j.jspi.2009.07.015; reference:[32] Navarro, J., Sunoj, S. M., Linu, N. N.: Characterizations of bivariate models using some dynamic conditional information divergence measures.Commun. Stat., Theory Methods 43 (2014), 1939-1948. Zbl 06302741, MR 3196235, 10.1080/03610926.2012.677925; reference:[33] Park, S., Kim, I.: On cumulative residual entropy of order statistics.Stat. Probab. Lett. 94 (2014), 170-175. Zbl 1301.62047, MR 3257376, 10.1016/j.spl.2014.07.020; reference:[34] Park, S., Rao, M., Shin, D. W.: On cumulative residual Kullback-Leibler information.Stat. Probab. Lett. 82 (2012), 2025-2032. Zbl 1312.62012, MR 2970308, 10.1016/j.spl.2012.06.015; reference:[35] Psarrakos, G., Toomaj, A.: On the generalized cumulative residual entropy with applications in actuarial science.J. Comput. Appl. Math. 309 (2017), 186-199. Zbl 06626242, MR 3539777, 10.1016/j.cam.2016.06.037; reference:[36] Rao, M., Chen, Y., Vemuri, B. C., Wang, F.: Cumulative residual entropy: a new measure of information.IEEE Trans. Inf. Theory 50 (2004), 1220-1228. Zbl 1302.94025, MR 2094878, 10.1109/TIT.2004.828057; reference:[37] Rényi, A.: On measures of entropy and information.Proc. 4th Berkeley Symp. Math. Stat. Probab. 1 Univ. California Press, Berkeley (1961), 547-561. Zbl 0106.33001, MR 0132570; reference:[38] Roy, D.: A characterization of model approach for generating bivariate life distributions using reversed hazard rates.J. Jpn. Stat. Soc. 32 (2002), 239-245. Zbl 1047.62050, MR 1960368, 10.14490/jjss.32.239; reference:[39] Sankaran, P. G., Kundu, D.: A bivariate Pareto model.Statistics 48 (2014), 241-255. Zbl 1367.62282, MR 3175768, 10.1080/02331888.2012.719521; reference:[40] Shaked, M., Shanthikumar, J. G.: Stochastic Orders.Springer Series in Statistics, Springer, New York (2007). Zbl 1111.62016, MR 2265633, 10.1007/978-0-387-34675-5; reference:[41] Shannon, C. E.: A mathematical theory of communication.Bell Syst. Tech. J. 27 (1948), 379-423, 623-656. Zbl 1154.94303, MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x; reference:[42] Shi, J., Cai, Y., Zhu, J., Zhong, J., Wang, F.: SEMG-based hand motion recognition using cumulative residual entropy and extreme learning machine.Medical & Biological Engineering & Computing 51 (2013), 417-427. 10.1007/s11517-012-1010-9; reference:[43] Sunoj, S. M., Linu, M. N.: Dynamic cumulative residual Rényi's entropy.Statistics 46 (2012), 41-56. Zbl 1307.62240, MR 2889011, 10.1080/02331888.2010.494730; reference:[44] Toomaj, A., Sunoj, S. M., Navarro, J.: Some properties of the cumulative residual entropy of coherent and mixed systems.J. Appl. Probab. 54 (2017), 379-393. MR 3668472, 10.1017/jpr.2017.6; reference:[45] Wang, F., Vemuri, B. C., Rao, M., Chen, Y.: A new & robust information theoretic measure and its application to image alignment.Information Processing in Medical Imaging C. Taylor, J. A. Noble Lecture Notes in Computer Science 2732, Springer, Berlin (2003), 388-400. 10.1007/978-3-540-45087-0_33

  4. 4
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3763982; zbl:Zbl 06861542; reference:[1] Arnold, B. C.: Majorization: Here, there and everywhere.Stat. Sci. 22 (2007), 407-413. Zbl 1246.01010, MR 2416816, 10.1214/0883423060000000097; reference:[2] Balakrishnan, N., Haidari, A., Masoumifard, K.: Stochastic comparisons of series and parallel systems with generalized exponential components.IEEE Trans. Reliab. 64 (2015), 333-348. 10.1109/tr.2014.2354192; reference:[3] Balakrishnan, N., (eds.), C. R. Rao: Order Statistics: Applications.Handbook of Statistics 17, North-Holland, Amsterdam (1998). Zbl 0897.00016, MR 1672283, 10.1016/S0169-7161(98)17001-3; reference:[4] Balakrishnan, N., Zhao, P.: Hazard rate comparison of parallel systems with heterogeneous gamma components.J. Multivariate Anal. 113 (2013), 153-160. Zbl 1253.60022, MR 2984362, 10.1016/j.jmva.2011.05.001; reference:[5] Barmalzan, G., Najafabadi, A. T. Payandeh, Balakrishnan, N.: Likelihood ratio and dispersive orders for smallest order statistics and smallest claim amounts from heterogeneous Weibull sample.Stat. Probab. Lett. 110 (2016), 1-7. Zbl 06572266, MR 3474731, 10.1016/j.spl.2015.11.009; reference:[6] Bourguignon, M., Saulo, H., Fernandez, R. Nobre: A new Pareto-type distribution with applications in reliability and income data.Physica A: Statistical Mechanics and its Applications 457 (2016), 166-175. MR 3493327, 10.1016/j.physa.2016.03.043; reference:[7] David, H. A., Nagaraja, H. N.: Order Statistics.Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester (2003). Zbl 1053.62060, MR 1994955, 10.1002/0471722162; reference:[8] Dykstra, R., Kochar, S., Rojo, J.: Stochastic comparisons of parallel systems of heterogeneous exponential components.J. Stat. Plann. Inference 65 (1997), 203-211. Zbl 0915.62044, MR 1622774, 10.1016/S0378-3758(97)00058-X; reference:[9] Fang, L., Balakrishnan, N.: Likelihood ratio order of parallel systems with heterogeneous Weibull components.Metrika 79 (2016), 693-703. Zbl 1373.62494, MR 3518582, 10.1007/s00184-015-0573-5; reference:[10] Fang, L., Balakrishnan, N.: Ordering results for the smallest and largest order statistics from independent heterogeneous exponential-Weibull random variables.Statistics 50 (2016), 1195-1205. Zbl 06673721, MR 3552988, 10.1080/02331888.2016.1142545; reference:[11] Fang, L., Wang, Y.: Comparing lifetimes of series and parallel systems with heterogeneous Fréchet components.Symmetry 9 (2017), Paper No. 10, 9 pages. MR 3618925, 10.3390/sym9010010; reference:[12] Fang, L., Zhang, X.: New results on stochastic comparison of order statistics from heterogeneous Weibull populations.J. Korean Stat. Soc. 41 13-16 (2012). Zbl 1296.62106, MR 2933211, 10.1016/j.jkss.2011.05.004; reference:[13] Fang, L., Zhang, X.: Stochastic comparisons of parallel systems with exponentiated Weibull components.Stat. Probab. Lett. 97 (2015), 25-31. Zbl 1314.60063, MR 3299747, 10.1016/j.spl.2014.10.017; reference:[14] Fang, L., Zhu, X., Balakrishnan, N.: Stochastic comparisons of parallel and series systems with heterogeneous Birnbaum-Saunders components.Stat. Probab. Lett. 112 131-136 (2016). Zbl 1338.60051, MR 3475497, 10.1016/j.spl.2016.01.021; reference:[15] Gupta, N., Patra, L. K., Kumar, S.: Stochastic comparisons in systems with Frèchet distributed components.Oper. Res. Lett. 43 612-615 (2015). MR 3423556, 10.1016/j.orl.2015.09.009; reference:[16] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities.University Press, Cambridge (1934). Zbl 0010.10703, MR 0944909; reference:[17] Khaledi, B.-E., Farsinezhad, S., Kochar, S. C.: Stochastic comparisons of order statistics in the scale model.J. Stat. Plann. Inference 141 (2011), 276-286. Zbl 1207.62108, MR 2719493, 10.1016/j.jspi.2010.06.006; reference:[18] Khaledi, B.-E., Kochar, S.: Stochastic orderings of order statistics of independent random variables with different scale parameters.Commun. Stat., Theory Methods 36 (2007), 1441-1449. Zbl 1119.60013, MR 2405269, 10.1080/03610920601077212; reference:[19] Marshall, A. W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications.Mathematics in Science and Engineering 143, Academic Press, New York (1979). Zbl 0437.26007, MR 0552278, 10.1016/c2009-0-22048-4; reference:[20] Nadarajah, S., Jiang, X., Chu, J.: Comparisons of smallest order statistics from Pareto distributions with different scale and shape parameters.Ann. Oper. Res. 254 191-209 (2017). Zbl 06764423, MR 3665743, 10.1007/s10479-017-2444-0; reference:[21] Pečarić, J. E., Proschan, F., Tong, Y. L.: Convex Functions, Partial Orderings, and Statistical Applications.Mathematics in Science and Engineering 187, Academic Press, Boston (1992). Zbl 0749.26004, MR 1162312, 10.1016/s0076-5392(08)x6162-4; reference:[22] Shaked, M., Shanthikumar, J. G.: Stochastic Orders.Springer Series in Statistics, New York (2007). Zbl 1111.62016, MR 2265633, 10.1007/978-0-387-34675-5; reference:[23] Zhao, P., Balakrishnan, N.: Dispersive ordering of fail-safe systems with heterogeneous exponential components.Metrika 74 203-210 (2011). Zbl 05963332, MR 2822156, 10.1007/s00184-010-0297-5

  5. 5
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3750113; zbl:Zbl 06861634; reference:[1] Arnold, B. C., Balakrishnan, N., Nagaraja, H. N.: A First Course in Order Statistics.Wiley and Sons, New York 1992. MR 1178934, 10.1137/1.9780898719062; reference:[2] Asadi, M.: A new measure of association between random variables. 10.1007/s00184-017-0620-5; reference:[3] Bagai, L., Kochar, S. C.: On tail ordering and comparison of failure rates.Comm. Stat. Theor. Meth. 15 (1986), 1377-1388. MR 0836602, 10.1080/03610928608829189; reference:[4] Baratpour, S.: Characterizations based on cumulative residual entropy of first-order statistics.Comm. Stat. Theor. Meth. 39 (2010), 3645-3651. MR 2747631, 10.1080/03610920903324841; reference:[5] Barlow, R. E., Proschan, F.: Statistical Theory of Reliability and Life Testing.Holt, Rinehart and Winston, New York 1975. MR 0438625; reference:[6] Bartoszewicz, J.: On a representation of weighted distributions.Stat. Prob. Lett. 79 (2009), 1690-1694. MR 2547939, 10.1016/j.spl.2009.04.007; reference:[7] Baxter, L. A.: Reliability applications of the relevation transform.Nav. Res. Logist. Q. 29 (1982), 323-330. MR 0681055, 10.1002/nav.3800290212; reference:[8] Block, H. W., Savits, T. H., Singh, H.: The reversed hazard rate function.Probab. Engrg. Inform. Sci. 12 (1998), 69-90. MR 1492141, 10.1017/s0269964800005064; reference:[9] Burkschat, M., Navarro, J.: Asymptotic behavior of the hazard rate in systems based on sequential order statistics.Metrika 77 (2014), 965-994. MR 3268630, 10.1007/s00184-013-0481-5; reference:[10] Chandler, K. N.: The distribution and frequency of record values.J. Royal Stat. Soc. B 14 (1952), 220-228. MR 0053463; reference:[11] Chandra, N. K., Roy, D.: Some results on reversed hazard rate.Probab. Engrg. Inform. Sci. 15 (2001), 95-102. MR 1825537, 10.1017/s0269964801151077; reference:[12] Crescenzo, A. Di: A probabilistic analogue of the mean value theorem and its applications to reliability theory.J. Appl. Prob. 36 (1999), 706-719. MR 1737047, 10.1239/jap/1029349973; reference:[13] Crescenzo, A. Di, Longobardi, M.: Entropy-based measure of uncertainty in past lifetime distributions.J. Appl. Prob. 39 (2002), 434-440. MR 1908960, 10.1239/jap/1025131441; reference:[14] Crescenzo, A. Di, Longobardi, M.: On cumulative entropies.J. Stat. Plan. Infer. 139 (2009), 4072-4087. MR 2558351, 10.1016/j.jspi.2009.05.038; reference:[15] Crescenzo, A. Di, Martinucci, B., Mulero, J.: A quantile-based probabilistic mean value theorem.Probab. Engrg. Inform. Sci. 30 (2016), 261-280. MR 3478845, 10.1017/s0269964815000376; reference:[16] Crescenzo, A. Di, Toomaj, A.: Extensions of the past lifetime and its connections to the cumulative entropy.J. Appl. Prob. 52 (2015), 1156-1174. MR 3439178, 10.1239/jap/1450802759; reference:[17] Hwang, J. S., Lin, G. D.: On a generalized moment problem II.Proc. Amer. Math. Soc. 91 (1984), 577-580. MR 0746093, 10.1090/s0002-9939-1984-0746093-4; reference:[18] Kamps, U.: Characterizations of distributions by recurrence relations and identities for moments of order statistics.In: Order Statistics: Theory and Methods. Handbook of Statistics 16 (N. Balakrishnan and C. R. Rao, eds.), Elsevier, Amsterdam 1998, pp. 291-311. MR 1668749, 10.1016/s0169-7161(98)16012-1; reference:[19] Kapodistria, S., Psarrakos, G.: Some extensions of the residual lifetime and its connection to the cumulative residual entropy,.Probab. Engrg. Inform. Sci. 26 (2012), 129-146. MR 2880265, 10.1017/s0269964811000271; reference:[20] Kayal, S.: On generalized cumulative entropies.Probab. Engrg. Inform. Sci. 30 (2016), 640-662. MR 3569139, 10.1017/s0269964816000218; reference:[21] Kayal, S.: On weighted generalized cumulative residual entropy of order $n$.Meth. Comp. Appl. Prob., online first (2017). 10.1007/s11009-017-9569-0; reference:[22] Klein, I., Mangold, B., Doll, M.: Cumulative paired $\phi$-entropy.Entropy 18 (2016), 248. MR 3550258, 10.3390/e18070248; reference:[23] Krakowski, M.: The relevation transform and a generalization of the Gamma distribution function.Rev. Française Automat. Informat. Recherche Opérationnelle 7 (1973), 107-120. MR 0329175, 10.1051/ro/197307v201071; reference:[24] Li, Y., Yu, L., Hu, T.: Probability inequalities for weighted distributions.J. Stat. Plan. Infer. 142 (2012), 1272-1278. MR 2879771, 10.1016/j.jspi.2011.11.023; reference:[25] Muliere, P., Parmigiani, G., Polson, N.: A note on the residual entropy function.Probab. Engrg. Inform. Sci. 7 (1993), 413-420. 10.1017/s0269964800003016; reference:[26] Navarro, J., Aguila, Y. del, Asadi, M.: Some new results on the cumulative residual entropy.J. Stat. Plan. Infer. 140 (2010), 310-322. MR 2568141, 10.1016/j.jspi.2009.07.015; reference:[27] Navarro, J., Psarrakos, G.: Characterizations based on generalized cumulative residual entropy functions.Comm. Stat. Theor. Meth. 46 (2017), 1247-1260. MR 3565622, 10.1080/03610926.2015.1014111; reference:[28] Navarro, J., Rubio, R.: Comparisons of coherent systems with non-identically distributed components.J. Stat. Plann. Infer. 142 (2012), 1310-1319. MR 2891483, 10.1016/j.jspi.2011.12.008; reference:[29] Navarro, J., Sunoj, S. M., Linu, M. N.: Characterizations of bivariate models using dynamic Kullback-Leibler discrimination measures.Stat. Prob. Lett. 81 (2011), 1594-1598. MR 2832917, 10.1016/j.spl.2011.05.016; reference:[30] Psarrakos, G., Navarro, J.: Generalized cumulative residual entropy and record values.Metrika 76 (2013), 623-640. MR 3078811, 10.1007/s00184-012-0408-6; reference:[31] Psarrakos, G., Toomaj, A.: On the generalized cumulative residual entropy with applications in actuarial science.J. Comput. Appl. Math. 309 (2017), 186-199. MR 3539777, 10.1016/j.cam.2016.06.037; reference:[32] Rao, M.: More on a new concept of entropy and information.J. Theoret. Probab. 18 (2005), 967-981. MR 2289942, 10.1007/s10959-005-7541-3; reference:[33] Rao, M., Chen, Y., Vemuri, B., Fei, W.: Cumulative residual entropy: a new measure of information.IEEE Trans. Inform. Theory 50 (2004), 1220-1228. MR 2094878, 10.1109/tit.2004.828057; reference:[34] Rezaei, M., Gholizadeh, B., Izadkhah, S.: On relative reversed hazard rate order.Comm. Stat. Theor. Meth. 44 (2015), 300-308. MR 3292595, 10.1080/03610926.2012.745559; reference:[35] Shaked, M., Shanthikumar, J. G.: Stochastic Orders and Their Applications.Academic Press, San Diego 2007. MR 1278322; reference:[36] Shannon, C. E.: A mathematical theory of communication.Bell. Syst. Tech. J. 27 (1948), 379-423 and 623-656. Zbl 1154.94303, MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x; reference:[37] Sordo, M., Suarez-Llorens, A.: Stochastic comparisons of distorted variability measures.Insur. Math. Econ. 49 (2011), 11-17. MR 2811889, 10.1016/j.insmatheco.2011.01.014; reference:[38] Toomaj, A., Crescenzo, A. Di, Doostparast, M.: Some results on information properties of coherent systems.Appl. Stoch. Mod. Bus. Ind., online first (2017). 10.1002/asmb.2277

  6. 6
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3722901; zbl:Zbl 06819518; reference:[1] Asadi, M., Berred, A.: Properties and estimation of the mean past lifetime.Statistics 46 (2012), 405-417. Zbl 1241.62140, MR 2929163, 10.1080/02331888.2010.540666; reference:[2] Asadi, M., Zohrevand, Y.: On the dynamic cumulative residual entropy.J. Stat. Plann. Inference 137 (2007), 1931-1941. Zbl 1118.62006, MR 2323874, 10.1016/j.jspi.2006.06.035; reference:[3] Bhattacharjee, M. C.: The class of mean residual lives and some consequences.SIAM J. Algebraic Discrete Methods 3 (1982), 56-65. Zbl 0495.60091, MR 0644957, 10.1137/0603006; reference:[4] Bhattacharjee, S., Nanda, A. K., Misra, S. K.: Inequalities involving expectations to characterize distributions.Stat. Probab. Lett. 83 (2013), 2113-2118. Zbl 1285.60010, MR 3079054, 10.1016/j.spl.2013.05.022; reference:[5] Cacoullos, T., Papathanasiou, V.: On upper bounds for the variance of functions of random variables.Stat. Probab. Lett. 3 (1985), 175-184. Zbl 0572.60021, MR 0801687, 10.1016/0167-7152(85)90014-8; reference:[6] Cacoullos, T., Papathanasiou, V.: Characterizations of distributions by variance bounds.Stat. Probab. Lett. 7 (1989), 351-356. Zbl 0677.62012, MR 1001133, 10.1016/0167-7152(89)90050-3; reference:[7] Chandra, N. K., Roy, D.: Some results on reversed hazard rate.Probab. Eng. Inf. Sci. 15 (2001), 95-102. Zbl 1087.62510, MR 1825537, 10.1017/S0269964801151077; reference:[8] Fradelizi, M., Madiman, M., Wang, L.: Optimal concentration of information content for log-concave densities.High Dimensional Probability VII Progress in Probability 71, Birkhäuser, Springer C. Houdré, et al. (2016), 45-60. Zbl 1358.60036, MR 3565259, 10.1007/978-3-319-40519-3_3; reference:[9] Guess, F., Proschan, F.: Mean residual life: Theory and applications.P. R. Krishnaiah, et al. Handbook of Statistics 7 Elsevier Science Publishers, Atlanta 215-224 (1988). 10.1016/S0169-7161(88)07014-2; reference:[10] Gupta, R. C.: On the mean residual life function in survival studies.Statistical Distributions in Scientific Work, Vol. 5 (Trieste, 1980) Proc. NATO Adv. Study Inst. (Trieste 1980), Reidel, Dordrecht (1981), 327-334. Zbl 0474.62092, MR 0656346, 10.1007/978-94-009-8552-0_26; reference:[11] Gupta, R. C., Kirmani, S. N. U. A.: Some characterization of distributions by functions of failure rate and mean residual life.Commun. Stat., Theory Methods 33 (2004), 3115-3131. Zbl 1087.62014, MR 2138677, 10.1081/STA-200039060; reference:[12] Gupta, R. C., Warren, R.: Determination of change points of non-monotonic failure rates.Commun. Stat., Theory Methods 30 (2001), 1903-1920. Zbl 0991.62085, MR 1861623, 10.1081/STA-100105704; reference:[13] Gut, A.: Probability: A Graduate Course.Springer Texts in Statistics, Springer, New York (2013). Zbl 1267.60001, MR 2977961, 10.1007/978-1-4614-4708-5; reference:[14] Hall, W. J., Wellner, J. A.: Mean residual life.Statistics and Related Topics M. Csörgö, et al. Proc. Int. Symp. (Ottawa 1980), North Holland Publishing, Amsterdam 169-184 (1981). Zbl 0481.62078, MR 0665274; reference:[15] Iwińska, M., Szymkowiak, M.: Characterizations of distributions through selected functions of reliability theory.Commun. Stat., Theory Methods 46 (2017), 69-74. Zbl 06708605, MR 3553015, 10.1080/03610926.2014.985837; reference:[16] Jiang, R., Ji, P., Xiao, X.: Aging property of unimodal failure rate models.Reliab. Eng. Syst. Saf. 79 (2003), 113-116. 10.1016/S0951-8320(02)00175-8; reference:[17] Johnson, O.: Information Theory and the Central Limit Theorem.Imperial College Press, London (2004). Zbl 1061.60019, MR 2109042; reference:[18] Kundu, C., Ghosh, A.: Inequalities involving expectations of selected functions in reliability theory to characterize distributions.Commun. Stat., Theory Methods 46 (2017), 8468-8478. MR 3680770, 10.1080/03610926.2016.1183784; reference:[19] Kundu, C., Nanda, A. K., Maiti, S. S.: Some distributional results through past entropy.J. Stat. Plann. Inference 140 (2010), 1280-1291. Zbl 1186.60012, MR 2581130, 10.1016/j.jspi.2009.11.011; reference:[20] Nanda, A. K.: Characterization of distributions through failure rate and mean residual life functions.Stat. Probab. Lett. 80 (2010), 752-755. Zbl 1185.62031, MR 2608812, 10.1016/j.spl.2010.01.006; reference:[21] Navarro, J., Aguila, Y. del, Asadi, M.: Some new results on the cumulative residual entropy.J. Stat. Plann. Inference 140 (2010), 310-322. Zbl 1177.62005, MR 2568141, 10.1016/j.jspi.2009.07.015; reference:[22] Wang, L.: Heat Capacity Bound, Energy Fluctuations and Convexity.Ph.D. Thesis, Yale University (2014). MR 3337578

  7. 7
    Academic Journal

    المؤلفون: Harremoës, Peter

    وصف الملف: application/pdf

    Relation: mr:MR3607856; zbl:Zbl 06707382; reference:[1] Alfers, D., Dinges, H.: A normal approximation for beta and gamma tail probabilities.Z. Wahrscheinlichkeitstheory verw. Geb. 65 (1984), 3, 399-420. Zbl 0506.62011, MR 0731229, 10.1007/bf00533744; reference:[2] Bahadur, R. R.: Some approximations to the binomial distribution function.Ann. Math. Statist. 31 (1960), 43-54. Zbl 0092.35203, MR 0120675, 10.1214/aoms/1177705986; reference:[3] Bahadur, R. R., Rao, R. R.: On deviation of the sample mean.Ann. Math. Statist. 31 (1960), 4, 1015-1027. MR 0117775, 10.1214/aoms/1177705674; reference:[4] Barndorff-Nielsen, O. E.: A note on the standardized signed log likelihood ratio.Scand. J. Statist. 17 (1990), 2, 157-160. Zbl 0716.62021, MR 1085928; reference:[5] Györfi, L., Harremoës, P., Tusnády, G.: Gaussian approximation of large deviation probabilities.http://www.harremoes.dk/Peter/ITWGauss.pdf, 2012.; reference:[6] Harremoës, P.: Mutual information of contingency tables and related inequalities.In: Proc. ISIT 2014, IEEE 2014, pp. 2474-2478. 10.1109/isit.2014.6875279; reference:[7] Harremoës, P., Tusnády, G.: Information divergence is more $\chi^2$-distributed than the $\chi^2$-statistic.In: International Symposium on Information Theory (ISIT 2012) (Cambridge, Massachusetts), IEEE 2012, pp. 538-543. 10.1109/isit.2012.6284247; reference:[8] Letac, G., Mora, M.: Natural real exponential families with cubic variance functions.Ann. Stat. 18 (1990), 1, 1-37. Zbl 0714.62010, MR 1041384, 10.1214/aos/1176347491; reference:[9] Morris, C.: Natural exponential families with quadratic variance functions.Ann. Statist. 10 (1982), 65-80. Zbl 0521.62014, MR 0642719, 10.1214/aos/1176345690; reference:[10] Reiczigel, J., Rejtő, L., Tusnády, G.: A sharpning of Tusnády's inequality.arXiv: 1110.3627v2, 2011.; reference:[11] Zubkov, A. M., Serov, A. A.: A complete proof of universal inequalities for the distribution function of the binomial law.Theory Probab. Appl. 57 (2013), 3, 539-544. Zbl 1280.60016, MR 3196787, 10.1137/s0040585x97986138

  8. 8
    Academic Journal

    المؤلفون: Salehi, Ebrahim

    وصف الملف: application/pdf

    Relation: mr:MR3547762; zbl:Zbl 06644012; reference:[1] Aki, S., Hirano, K.: Lifetime distribution and estimation problems of consecutive $k$-out-of-$n$:F systems.Ann. Inst. Stat. Math. 48 (1996), 185-199. Zbl 0857.62094, MR 1392525, 10.1007/BF00049298; reference:[2] Asadi, M.: On the mean past lifetime of the components of a parallel system.J. Stat. Plann. Inference 136 (2006), 1197-1206. Zbl 1088.62120, MR 2253758, 10.1016/j.jspi.2004.08.021; reference:[3] Asadi, M., Bayramoglu, I.: The mean residual life function of a $k$-out-of-$n$ structure at the system level.IEEE Trans. Reliab. 55 (2006), 314-318. MR 2412846, 10.1109/TR.2006.874934; reference:[4] Bairamov, I., Ahsanullah, M., Akhundov, I.: A residual life function of a system having parallel or series structures.J. Stat. Theory Appl. 1 (2002), 119-131. MR 1952705; reference:[5] Bairamov, I., Gurler, S., Ucer, B.: On the mean remaining strength of the {$k$}-out-of-{$n$}:{$F$} system with exchangeable components.Commun. Stat., Simulation Comput. 44 (2015), 1-13. Zbl 1325.62187, MR 3238547, 10.1080/03610918.2013.763979; reference:[6] Boland, P. J., Samaniego, F. J.: Stochastic ordering results for consecutive $k$-out-of-$n$:F systems.IEEE Trans. Reliab. 53 (2004), 7-10. MR 2182122, 10.1109/TR.2004.824830; reference:[7] Chang, G. J., Cui, L., Hwang, F. K.: Reliabilities of consecutive-{$k$} systems.Network Theory and Applications 4 Kluwer Academic Publishers, Dordrecht (2000). Zbl 0988.90010, MR 1813954; reference:[8] Chen, R. W., Hwang, F. K.: Failure distributions of consecutive-$k$-out-of-$n$:F systems.IEEE Trans. Reliab. 34 (1985), 338-341. Zbl 0588.62181, 10.1109/TR.1985.5222180; reference:[9] Eryılmaz, S.: On the lifetime distribution of consecutive $k$-out-of-$n$:F system.IEEE Trans. Reliab. 56 (2007), 35-39. MR 2749971, 10.1109/TR.2006.890902; reference:[10] Eryılmaz, S.: Reliability properties of consecutive $k$-out-of-$n$ systems of arbitrarily dependent components.Reliab. Eng. Syst. Saf. 94 (2009), 350-356. MR 2749971, 10.1016/j.ress.2008.03.027; reference:[11] Eryılmaz, S.: Conditional lifetimes of consecutive $k$-out-of-$n$ systems.IEEE Trans. Reliab. 59 (2010), 178-182. MR 2987530, 10.1109/TR.2010.2040775; reference:[12] Eryılmaz, S.: Circular consecutive {$k$}-out-of-{$n$} systems with exchangeable dependent components.J. Stat. Plann. Inference 141 (2011), 725-733. Zbl 1214.62103, MR 2732943, 10.1016/j.jspi.2010.07.014; reference:[13] Jia, X., Cui, L., Yan, J.: A study on the reliability of consecutive {$k$}-out-of-{$n$}: G systems based on copula.Comm. Stat., Theory Methods 39 (2010), 2455-2472. Zbl 1201.62109, MR 2755631, 10.1080/03610921003778134; reference:[14] Khaledi, B.-E., Shaked, M.: Ordering conditional lifetimes of coherent systems.J. Stat. Plann. Inference 137 (2007), 1173-1184. Zbl 1111.60012, MR 2301471, 10.1016/j.jspi.2006.01.012; reference:[15] Kochar, S., Xu, M.: On residual lifetimes of {$k$}-out-of-{$n$} systems with nonidentical components.Probab. Eng. Inf. Sci. 24 (2010), 109-127. Zbl 1190.90060, MR 2575845, 10.1017/S0269964809990167; reference:[16] Koutras, M. V., Triantafyllou, I. S., Eryılmaz, S.: Stochastic comparisons between lifetimes of reliability systems with exchangeable components.Methodol. Comput. Appl. Probab. 22 (2014), DOI 10.1007/s11009-014-9433-4. MR 3564854, 10.1007/s11009-014-9433-4; reference:[17] Kuo, W., Zuo, M. J.: Optimal Reliability Modeling: Principles and Applications.John Wiley & Sons (2003).; reference:[18] Li, X., Zhang, Z.: Some stochastic comparisons of conditional coherent systems.Appl. Stoch. Models Bus. Ind. 24 (2008), 541-549. MR 2473025, 10.1002/asmb.715; reference:[19] Li, X., Zhao, P.: Stochastic comparison on general inactivity time and general residual life of {$k$}-out-of-{$n$} systems.Commun. Stat., Simulation Comput. 37 (2008), 1005-1019. Zbl 1162.60307, MR 2744074, 10.1080/03610910801943784; reference:[20] Navarro, J., Balakrishnan, N., Samaniego, F. J.: Mixture representations of residual lifetimes of used systems.J. Appl. Probab. 45 (2008), 1097-1112. Zbl 1155.60305, MR 2484164, 10.1017/S0021900200005003; reference:[21] Navarro, J., Eryılmaz, S.: Mean residual lifetimes of consecutive-{$k$}-out-of-{$n$} systems.J. Appl. Probab. 44 (2007), 82-98. Zbl 1135.62084, MR 2312989, 10.1239/jap/1175267165; reference:[22] Navarro, J., Rubio, R.: A note on necessary and sufficient conditions for ordering properties of coherent systems with exchangeable components.Nav. Res. Logist. 58 (2011), 478-489. Zbl 1218.90068, MR 2857517, 10.1002/nav.20463; reference:[23] Navarro, J., Ruiz, J. M., Sandoval, C. J.: Properties of coherent systems with dependent components.Commun. Stat., Theory Methods 36 (2007), 175-191. Zbl 1121.60015, MR 2391869, 10.1080/03610920600966316; reference:[24] Navarro, J., Spizzichino, F.: Comparisons of series and parallel systems with components sharing the same copula.Appl. Stoch. Models Bus. Ind. 26 (2010), 775-791. Zbl 1226.90031, MR 2752386, 10.1002/asmb.819; reference:[25] Rezapour, M., Salehi, E. T., Alamatsaz, M. H.: Stochastic comparison of residual and past lifetimes of {$(n-k+1)$}-out-of-{$n$} systems with dependent components.Commun. Stat., Theory Methods 42 (2013), 2185-2199. Zbl 1282.60025, MR 3053319, 10.1080/03610926.2011.606484; reference:[26] Sadegh, M. K.: Mean past and mean residual life functions of a parallel system with nonidentical components.Commun. Stat., Theory Methods 37 (2008), 1134-1145. Zbl 1138.62065, MR 2408294, 10.1080/03610920701713278; reference:[27] Sadegh, M. K.: A note on the mean residual life function of a coherent system with exchangeable or nonidentical components.J. Stat. Plann. Inference 141 (2011), 3267-3275. Zbl 1216.62158, MR 2796030, 10.1016/j.jspi.2011.04.013; reference:[28] Salehi, E. T., Asadi, M.: Results on the past lifetime of {$(n-k+1)$}-out-of-{$n$} structures with nonidentical components.Metrika 75 (2012), 439-454. Zbl 1300.62103, MR 2922155, 10.1007/s00184-010-0335-3; reference:[29] Salehi, E., Asadi, M., Badia, F. G.: Assessing the reliability and the stochastic properties of the components of consecutive $k$-out-of-$n$ systems.(to appear) in J. Appl. Stat. Sci. (2016).; reference:[30] Salehi, E. T., Asadi, M., Eryılmaz, S.: Reliability analysis of consecutive {$k$}-out-of-{$n$} systems with non-identical components lifetimes.J. Stat. Plann. Inference 141 (2011), 2920-2932. Zbl 1213.62163, MR 2787755, 10.1016/j.jspi.2011.03.014; reference:[31] Salehi, E. T., Asadi, M., Eryılmaz, S.: On the mean residual lifetime of consecutive {$k$}-out-of-{$n$} systems.Test 21 (2012), 93-115. Zbl 1262.90055, MR 2912973, 10.1007/s11749-011-0237-3; reference:[32] Sfakianakis, M. E., Papastavridis, S. G.: Reliability of a general consecutive-$k$-out-of-$n$:F system.IEEE Trans. Reliab. 42 (1993), 491-496. Zbl 0800.90480, 10.1109/24.257837; reference:[33] Shaked, M., Shanthikumar, J. G.: Stochastic Orders and Their Applications.Probability and Mathematical Statistics Academic Press, Boston (1994). Zbl 0806.62009, MR 1278322; reference:[34] Shanthikumar, J. G.: Lifetime distribution of consecutive-$k$-out-of-$n$:F systems with exchangeable lifetimes.IEEE Trans. Reliab. 34 (1985), 480-483. Zbl 0588.62180, 10.1109/TR.1985.5222236; reference:[35] Tavangar, M., Asadi, M.: A study on the mean past lifetime of the components of {$(n-k+1)$}-out-of-{$n$} system at the system level.Metrika 72 (2010), 59-73. Zbl 1189.62161, MR 2658206, 10.1007/s00184-009-0241-8; reference:[36] Tavangar, M., Asadi, M.: The inactivity time of exchangeable components of {$k$}-out-of-{$n$} structures.Sankhy$\bar a$, Ser. B 77 (2015), 141-164. Zbl 1312.60013, MR 3337568; reference:[37] Zhang, Z.: Ordering conditional general coherent systems with exchangeable components.J. Stat. Plann. Inference 140 (2010), 454-460. Zbl 1229.62137, MR 2558377, 10.1016/j.jspi.2009.07.029; reference:[38] Zhao, P., Li, X., Balakrishnan, N.: Conditional ordering of {$k$}-out-of-{$n$} systems with independent but nonidentical components.J. Appl. Probab. 45 (2008), 1113-1125. Zbl 1155.60309, MR 2484165, 10.1239/jap/1231340237

  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3547764; zbl:Zbl 06644014; reference:[1] Barlow, R. E., Proschan, F.: Statistical Theory of Reliability and Life Testing.International Series in Decision Processes. Holt, Rinehart and Winston, New York (1975). Zbl 0379.62080, MR 0438625; reference:[2] Behboodian, J.: Covariance inequality and its applications.Int. J. Math. Educ. Sci. Technol. 25 (1994), 643-647. Zbl 0822.60015, MR 1295325, 10.1080/0020739940250503; reference:[3] Chen, Y. Q., Cheng, S.: Semiparametric regression analysis of mean residual life with censored survival data.Biometrika 92 (2005), 19-29. Zbl 1068.62044, MR 2158607; reference:[4] Chen, Y. Q., Jewell, N. P., Lei, X., Cheng, S. C.: Semiparametric estimation of proportional mean residual life model in presence of censoring.Biometrics 61 (2005), 170-178. Zbl 1077.62079, MR 2135857, 10.1111/j.0006-341X.2005.030224.x; reference:[5] Gupta, R. C.: Mean residual life function for additive and multiplicative hazard rate models.Probab. Eng. Inf. Sci. 30 (2016), 281-297. Zbl 1373.62496, MR 3478846, 10.1017/S0269964815000388; reference:[6] Gupta, R. C., Kirmani, S. N. U. A.: On the proportional mean residual life model and its implications.Statistics 32 (1998), 175-187. Zbl 0916.62064, MR 1708121, 10.1080/02331889808802660; reference:[7] Karlin, S.: Total Positivity. Vol. I.Stanford University Press, Stanford (1968). MR 0230102; reference:[8] Kayid, M., Izadkhah, S.: A new extended mixture model of residual lifetime distributions.Oper. Res. Lett. 43 (2015), 183-188. MR 3319482, 10.1016/j.orl.2015.01.011; reference:[9] Kayid, M., Izadkhah, S., ALmufarrej, D.: Random effect additive mean residual life model.IEEE Trans. Reliab. 65 (2016), 860-866. 10.1109/TR.2015.2491600; reference:[10] Lai, C.-D., Xie, M.: Stochastic Ageing and Dependence for Reliability.Springer, New York (2006). Zbl 1098.62130, MR 2223811; reference:[11] Maguluri, G., Zhang, C.-H.: Estimation in the mean residual life regression model.J. R. Stat. Soc., Ser. B 56 (1994), 477-489. Zbl 0803.62083, MR 1278221; reference:[12] Mansourvar, Z., Martinussen, T., Scheike, T. H.: Semiparametric regression for restricted mean residual life under right censoring.J. Appl. Stat. 42 (2015), 2597-2613. MR 3428833, 10.1080/02664763.2015.1043871; reference:[13] Nanda, A. K., Bhattacharjee, S., Alam, S. S.: Properties of proportional mean residual life model.Stat. Probab. Lett. 76 (2006), 880-890. Zbl 1089.62120, MR 2268431, 10.1016/j.spl.2005.10.019; reference:[14] Nanda, A. K., Bhattacharjee, S., Balakrishnan, N.: Mean residual life function, associated orderings and properties.IEEE Trans. Reliab. 59 (2010), 55-65. 10.1109/TR.2009.2035791; reference:[15] Nanda, A. K., Das, S., Balakrishnan, N.: On dynamic proportional mean residual life model.Probab. Eng. Inf. Sci. 27 (2013), 553-588. Zbl 1282.90058, MR 3150113, 10.1017/S0269964813000259; reference:[16] Nelsen, R. B.: An Introduction to Copulas.Springer Series in Statistics Springer, New York (2006). Zbl 1152.62030, MR 2197664; reference:[17] Oakes, D., Dasu, T.: Inference for the proportional mean residual life model.Crossing Boundaries: Statistical Essays in Honor of J. Hall IMS Lecture Notes Monogr. Ser. 43 Inst. Math. Statist., Beachwood (2003), 105-116. Zbl 1255.62314, MR 2125050, 10.1214/lnms/1215092393; reference:[18] Shaked, M., Shanthikumar, J. G.: Stochastic Orders.Springer Series in Statistics Springer, New York (2007). MR 2265633; reference:[19] Zahedi, H.: Proportional mean remaining life model.J. Stat. Plann. Inference 29 (1991), 221-228. MR 1133703, 10.1016/0378-3758(92)90135-F; reference:[20] Zhao, W., Elsayed, E. A.: Modelling accelerated life testing based on mean residual life.Int. J. Syst. Sci. 36 (2005), 689-696. Zbl 1087.90020, MR 2171201, 10.1080/00207720500160084

  10. 10
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3396474; zbl:Zbl 06486920; reference:[1] Ahmad, I., Kayid, M.: Reversed preservation of stochastic orders for random minima and maxima with applications.Stat. Pap. 48 (2007), 283-293. Zbl 1114.60017, MR 2295816, 10.1007/s00362-006-0331-x; reference:[2] Barlow, R. E., Proschan, F.: Statistical Theory of Reliability and Life Testing.International Series in Decision Processes Holt, Rinehart and Winston, New York (1975). Zbl 0379.62080, MR 0438625; reference:[3] Bartoszewicz, J.: On a representation of weighted distributions.Stat. Probab. Lett. 79 (2009), 1690-1694. Zbl 1170.60009, MR 2547939, 10.1016/j.spl.2009.04.007; reference:[4] Bartoszewicz, J., Skolimowska, M.: Preservation of classes of life distributions and stochastic orders under weighting.Stat. Probab. Lett. 76 (2006), 587-596. Zbl 1088.62017, MR 2255787, 10.1016/j.spl.2005.09.003; reference:[5] Błażej, P.: Preservation of classes of life distributions under weighting with a general weight function.Stat. Probab. Lett. 78 (2008), 3056-3061. Zbl 1158.62010, MR 2474397, 10.1016/j.spl.2008.05.028; reference:[6] Izadkhah, S., Rezaei, A. H., Amini, M., Borzadaran, G. R. Mohtashami: A general approach for preservation of some aging classes under weighting.Commun. Stat., Theory Methods 42 (2013), 1899-1909. MR 3045360, 10.1080/03610926.2011.598998; reference:[7] Izadkhah, S., Roknabadi, A. H. Rezaei, Borzadaran, G. R. Mohtashami: On properties of reversed mean residual life order for weighted distributions.Commun. Stat., Theory Methods 42 (2013), 838-851. MR 3028980, 10.1080/03610926.2011.586484; reference:[8] Jain, K., Singh, H., Bagai, I.: Relations for reliability measures of weighted distributions.Commun. Stat., Theory Methods 18 (1989), 4393-4412. Zbl 0707.62197, MR 1046715, 10.1080/03610928908830162; reference:[9] Karlin, S.: Total Positivity. Vol. I.Stanford University Press, Stanford, California (1968). MR 0230102; reference:[10] Kochar, S. C., Gupta, R. P.: Some results on weighted distributions for positive-valued random variables.Probab. Eng. Inf. Sci. 1 (1987), 417-423. Zbl 1134.60315, 10.1017/S0269964800000498; reference:[11] Misra, N., Gupta, N., Dhariyal, I. D.: Preservation of some aging properties and stochastic orders by weighted distributions.Commun. Stat., Theory Methods 37 (2008), 627-644. Zbl 1136.62065, MR 2392347, 10.1080/03610920701499506; reference:[12] Nanda, A. K., Jain, K.: Some weighted distribution results on univariate and bivariate cases.J. Stat. Plann. Inference 77 (1999), 169-180. Zbl 0924.62018, MR 1687954, 10.1016/S0378-3758(98)00190-6; reference:[13] Nanda, A. K., Singh, H., Misra, N., Paul, P.: Reliability properties of reversed residual lifetime.Commun. Stat., Theory Methods 32 (2003), 2031-2042. Zbl 1156.62360, MR 2002004, 10.1081/STA-120023264; reference:[14] Navarro, J., Aguila, Y. del, Ruiz, J. M.: Characterizations through reliability measures from weighted distributions.Stat. Pap. 42 (2001), 395-402. MR 1860754, 10.1007/s003620100066; reference:[15] Pakes, A. G., Navarro, J., Ruiz, J. M., Aguila, Y. del: Characterizations using weighted distributions.J. Stat. Plann. Inference 116 (2003), 389-420. MR 2000091, 10.1016/S0378-3758(02)00357-9; reference:[16] Patil, G. P., Rao, C. R.: Weighted distributions and size-biased sampling with applications to wildlife populations and human families.Biometrics 34 (1978), 179-189. Zbl 0384.62014, MR 0507202, 10.2307/2530008; reference:[17] Rao, C. R.: On discrete distributions arising out of methods of ascertainment.Sankhy\=a, Ser. A 27 (1965), 311-324. Zbl 0212.21903, MR 0208736; reference:[18] Shaked, Shanthikumar, J. G.: Stochastic Orders.Springer Series in Statistics Springer, New York (2007). MR 2265633

  11. 11
    Academic Journal

    المؤلفون: Agahi, Hamzeh, Mesiar, Radko

    وصف الملف: application/pdf

    Relation: mr:MR3301862; zbl:Zbl 06410705; reference:[1] Choquet, G.: Theory of capacities.Ann. Inst. Fourier 5 (1954), 131-295. Zbl 0679.01011, MR 0080760, 10.5802/aif.53; reference:[2] Denneberg, D.: Non-additive Measure and Integral.Kluwer Academic Publishers, Dordrecht 1994. Zbl 0968.28009, MR 1320048; reference:[3] Dvoretzky, A.: On the strong stability of a sequence of events.Ann. Math. Statist. 20 (1949), 2, 296-299. Zbl 0033.38402, MR 0031675, 10.1214/aoms/1177730039; reference:[4] Kim, T. S., Kim, H. C.: On the exponential inequality for negatively dependent sequence.Korean Math. Soc. Commun. 22 (2007), 2, 315-321. MR 2313454, 10.4134/CKMS.2007.22.2.315; reference:[5] Lehmann, E.: Some concepts of dependence.Ann. Math. Statist. 37 (1966), 1137-1153. Zbl 0146.40601, MR 0202228, 10.1214/aoms/1177699260; reference:[6] Li, J., Yasuda, M., Jiang, Q., Suzuki, H., Wang, Z., Klir, G. J.: Convergence of sequence of measurable functions on fuzzy measure spaces.Fuzzy Sets and Systems 87 (1997), 317-323. Zbl 0915.28014, MR 1449484; reference:[7] Mesiar, R., Li, J., Pap, E.: The Choquet integral as Lebesgue integral and related inequalities.Kybernetika 46 (2010), 1098-1107. Zbl 1210.28025, MR 2797430; reference:[8] Nooghabi, H. J., Azarnoosh, H. A.: Exponential inequality for negatively associated random variables.Statist. Papers 50 (2009), 419-428. Zbl 1247.60039, MR 2476199, 10.1007/s00362-007-0081-4; reference:[9] Oliveira, P. D.: An exponential inequality for associated variables.Statist. Probab. Lett. 73 (2005), 189-197. Zbl 1070.60019, MR 2159254, 10.1016/j.spl.2004.11.023; reference:[10] Pap, E.: Null-additive Set Functions.Kluwer, Dordrecht 1995. Zbl 1265.28002, MR 1368630; reference:[11] Petrov, V. V.: Sums of Independent Random Variables.Springer-Verlag, Berlin 1975. Zbl 1125.60024, MR 0388499; reference:[12] Varošanec, S.: On h-convexity.J. Math. Anal. Appl. 326 (2007), 303-311. Zbl 1111.26015, MR 2277784, 10.1016/j.jmaa.2006.02.086; reference:[13] Wang, X., Hu, S., Shen., A., Yang, W.: An exponential inequality for a NOD sequence and a strong law of large numbers.Appl. Math. Lett. 24 (2011), 219-223. MR 2735145, 10.1016/j.aml.2010.09.007; reference:[14] Wang, Z., Klir, G. J.: Generalized Measure Theory.Springer, New York 2009. Zbl 1184.28002, MR 2453907; reference:[15] Xing, G., Yang, S.: An exponential inequality for strictly stationary and negatively associated random variables.Commun. Statistics-Theory and Methods 39 (2010), 340-349. Zbl 1187.60022, MR 2654882, 10.1080/03610920902750053; reference:[16] Xing, G. D., Yang, S. C., Liu, A. L., Wang, X. P.: A remark on the exponential inequality for negatively associated random variables.J. Korean Statist. Soc. 38 (2009), 53-57. Zbl 1293.60042, MR 2492379, 10.1016/j.jkss.2008.06.005

  12. 12
    Academic Journal

    المؤلفون: Kundu, Chanchal

    وصف الملف: application/pdf

    Relation: mr:MR3277734; zbl:Zbl 06391457; reference:[1] Arnold, B. C.: Pareto Distributions.Statistical Distributions in Scientific Work 5 International Co-operative Publishing House, Burtonsville (1983). Zbl 1169.62307, MR 0751409; reference:[2] Azlarov, T. A., Volodin, N. A.: Characterization Problems Associated with the Exponential Distribution. Transl. from the Russian.Springer, New York (1986). Zbl 0624.62020, MR 0841073; reference:[3] Cox, D. R.: The analysis of exponentially distributed life-times with two types of failure.J. R. Stat. Soc., Ser. B 21 411-421 (1959). Zbl 0093.15704, MR 0114280; reference:[4] Cox, D. R.: Renewal Theory.Methuen’s Monographs on Applied Probability and Statistics Methuen, London; John Wiley, New York (1962). Zbl 0103.11504, MR 0153061; reference:[5] Cox, D. R.: Regression models and life-tables.J. R. Stat. Soc., Ser. B 34 187-220 (1972). Zbl 0243.62041, MR 0341758; reference:[6] Crescenzo, A. Di: Some results on the proportional reversed hazards model.Stat. Probab. Lett. 50 313-321 (2000). Zbl 0967.60016, MR 1802225, 10.1016/S0167-7152(00)00127-9; reference:[7] Crescenzo, A. Di, Longobardi, M.: On weighted residual and past entropies.Sci. Math. Jpn. 64 255-266 (2006). Zbl 1106.62114, MR 2254144; reference:[8] Ebrahimi, N., Kirmani, S. N. U. A.: A characterisation of the proportional hazards model through a measure of discrimination between two residual life distributions.Biometrika 83 233-235 (1996). Zbl 0865.62075, MR 1399168, 10.1093/biomet/83.1.233; reference:[9] Furman, E., Zitikis, R.: Weighted premium calculation principles.Insur. Math. Econ. 42 459-465 (2008). Zbl 1141.91509, MR 2392102, 10.1016/j.insmatheco.2007.10.006; reference:[10] Galambos, J., Kotz, S.: Characterizations of Probability Distributions. A Unified Approach with an Emphasis on Exponential and Related Models.Lecture Notes in Mathematics 675 Springer, Berlin (1978). Zbl 0381.62011, MR 0513423, 10.1007/BFb0069530; reference:[11] Gupta, R. C., Gupta, R. D.: Proportional reversed hazard rate model and its applications.J. Stat. Plann. Inference 137 3525-3536 (2007). Zbl 1119.62098, MR 2363274, 10.1016/j.jspi.2007.03.029; reference:[12] Gupta, R. C., Gupta, P. L., Gupta, R. D.: Modeling failure time data by Lehman alternatives.Commun. Stat., Theory Methods 27 887-904 (1998). Zbl 0900.62534, MR 1613497, 10.1080/03610929808832134; reference:[13] Gupta, R. C., Han, W.: Analyzing survival data by PRH models.International Journal of Reliability and Applications 2 (2001), 203-216.; reference:[14] Gupta, R. C., Kirmani, S. N. U. A.: The role of weighted distributions in stochastic modeling.Commun. Stat., Theory Methods 19 3147-3162 (1990). Zbl 0734.62093, MR 1089242, 10.1080/03610929008830371; reference:[15] Jain, K., Singh, H., Bagai, I.: Relations for reliability measures of weighted distributions.Commun. Stat., Theory Methods 18 4393-4412 (1989). Zbl 0707.62197, MR 1046715, 10.1080/03610928908830162; reference:[16] Kerridge, D. F.: Inaccuracy and inference.J. R. Stat. Soc., Ser. B 23 184-194 (1961). Zbl 0112.10302, MR 0123375; reference:[17] Kullback, S., Leibler, R. A.: On information and sufficiency.Ann. Math. Stat. 22 79-86 (1951). Zbl 0042.38403, MR 0039968, 10.1214/aoms/1177729694; reference:[18] Kumar, V., Taneja, H. C.: On length biased dynamic measure of past inaccuracy.Metrika 75 73-84 (2012). Zbl 1241.62014, MR 2878109, 10.1007/s00184-010-0315-7; reference:[19] Kumar, V., Taneja, H. C., Srivastava, R.: Length biased weighted residual inaccuracy measure.Metron 68 (2010), 153-160. Zbl 1301.62104, MR 3038412, 10.1007/BF03263532; reference:[20] Kumar, V., Taneja, H. C., Srivastava, R.: A dynamic measure of inaccuracy between two past lifetime distributions.Metrika 74 1-10 (2011). Zbl 1216.62156, MR 2804725, 10.1007/s00184-009-0286-8; reference:[21] Nair, N. U., Gupta, R. P.: Characterization of proportional hazard models by properties of information measures.International Journal of Statistical Sciences 6 (2007), Special Issue, 223-231.; reference:[22] Nair, K. R. M., Rajesh, G.: Geometric vitality function and its applications to reliability.IAPQR Trans. 25 1-8 (2000). Zbl 1277.62236, MR 1949414; reference:[23] Nanda, A. K., Jain, K.: Some weighted distribution results on univariate and bivariate cases.J. Stat. Plann. Inference 77 169-180 (1999). Zbl 0924.62018, MR 1687954, 10.1016/S0378-3758(98)00190-6; reference:[24] Patil, G. P., Ord, J. K.: On size-biased sampling and related form-invariant weighted distributions.Sankhy\=a, Ser. B 38 48-61 (1976). Zbl 0414.62015, MR 0652546; reference:[25] Rao, C. R.: Linear Statistical Inference and Its Applications.John Wiley & Sons, New York (1965). Zbl 0137.36203, MR 0221616; reference:[26] Sengupta, D., Singh, H., Nanda, A. K.: The proportional reversed hazard model.Technical Report 1999, Indian Statistical Institute, Calcutta.; reference:[27] Shannon, C. E.: A mathematical theory of communication.Bell Syst. Tech. J. 27 379-423, 623-656 (1948). Zbl 1154.94303, MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x; reference:[28] Smitha, S.: A Study on the Kerridge's Inaccuracy Measure and Related Concepts.Doctoral Dissertation 2010, CUSAT.; reference:[29] Taneja, H. C., Kumar, V., Srivastava, R.: A dynamic measure of inaccuracy between two residual lifetime distributions.Int. Math. Forum 4 1213-1220 (2009). Zbl 1185.62032, MR 2545115; reference:[30] Wallis, G.: Using spatio-temporal correlations to learn invariant object recognition.Neural Netw. 9 1513-1519 (1996). 10.1016/S0893-6080(96)00041-X

  13. 13
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3216990; zbl:Zbl 1302.60010; reference:[1] Yaghlane, B. Ben, Smets, P., Mellouli, K.: About conditional belief function independence.Lect. Notes in Comput. Sci. 2143 (2001), 340-349. MR 1909832, 10.1007/3-540-44652-4_30; reference:[2] Bernardi, S., Coletti, G.: A Rational conditional utility model in a coherent framework.Lect. Notes in Comput. Sci. 2143 (2001), 108-119. Zbl 1001.68531, 10.1007/3-540-44652-4_11; reference:[3] Blume, L., Brandenburger, A., Dekel, E.: Lexicographic probabilities and choice under uncertainty.Econometrica 59 (1991), 1, 61-79. Zbl 0732.90005, MR 1085584, 10.2307/2938240; reference:[4] Capotorti, A., Coletti, G., Vantaggi, B.: Non-additive ordinal relations representable by lower or upper probabilities.Kybernetika 34 (1998), 10, 79-90. Zbl 1274.68518, MR 1619057; reference:[5] Capotorti, A., Coletti, G., Vantaggi, B.: Preferences representable by a lower expectation: some characterizations.Theory and Decision 64 (2008), 119-146. Zbl 1136.91392, MR 2399934, 10.1007/s11238-007-9052-4; reference:[6] Chateauneuf, A., Jaffray, J. Y.: Archimedean qualitative probabilities.J. Math. Psychol. 28 (1984), 191-204. Zbl 0558.60003, MR 0763783, 10.1016/0022-2496(84)90026-9; reference:[7] Coletti, G.: Coherent qualitative probability.J. Math. Psychol. 34 (1990), 297-310. Zbl 0713.60003, MR 1068441, 10.1016/0022-2496(90)90034-7; reference:[8] Coletti, G.: Coherent numerical and ordinal probabilistic assessments.IEEE Tras. Systems, Man, and Cybernetics 24 (1994), 12, 1747-1754. MR 1302033, 10.1109/21.328932; reference:[9] Coletti, G., Mastroleo, M.: Conditional belief functions: a comparison among different definitions.In: Proc. 7th Workshop on Uncertainty Processing (WUPES), 2006.; reference:[10] Coletti, G., Scozzafava, R.: Toward a general theory of conditional beliefs.Internat. J. of Intelligent Systems 21 (2006), 229-259. Zbl 1160.68582, 10.1002/int.20133; reference:[11] Coletti, G., Scozzafava, R., Vantaggi, B.: Integrated likelihood in a finitely additive setting.Lect. Notes in Computer Science LNAI 5590 (2009), 554-565. Zbl 1245.62012, MR 2893315, 10.1007/978-3-642-02906-6_48; reference:[12] Coletti, G., Vantaggi, B.: Representability of ordinal relations on a set of conditional events.Theory and Decision 60 (2006), 137-174. Zbl 1119.91029, MR 2226911, 10.1007/s11238-005-4570-4; reference:[13] Coletti, G., Vantaggi, B.: A view on conditional measures through local representability of binary relations.Internat. J. Approximate Reasoning 60 (2006), 137-174. Zbl 1184.68500, MR 2226911; reference:[14] Coletti, G., Vantaggi, B.: Conditional not-additive measures and fuzzy sets.In: Proc. ISIPTA 2013, pp. 67-76.; reference:[15] Finetti, B. de: Sul significato soggettivo delle probabilità.Fundam. Mat. 17 (1931), 293-329.; reference:[16] Finetti, B. de: La prevision: Ses lois logiques, ses sources subjectives.Ann. Inst. Henri Poincaré, Section B 7 (1937), l-68. Zbl 0017.07602; reference:[17] Finetti, B. de: Teoria della Probabilità.Einaudi, Torino 1970 (Engl. transl.) Theory of Probability, Wiley and Sons, London 1974.; reference:[18] Dempster, A. P.: Upper and lower probabilities induced by a multivalued mapping.Ann. Math. Statist. 38 (1967), 325-339. Zbl 0168.17501, MR 0207001, 10.1214/aoms/1177698950; reference:[19] Dempster, A. P.: A generalization of Bayesian inference.The Royal Stat. Soc. B 50 (1968), 205-247. Zbl 0169.21301, MR 0238428; reference:[20] Denoeux, T., Smets, P.: classification using belief functions: The relationship between the case-based and model-based approaches.IEEE Trans. on Systems, Man and Cybernetics B 36 (2006), 6, 1395-1406. 10.1109/TSMCB.2006.877795; reference:[21] Dubins, L. E.: Finitely additive conditional probabilities, conglomerability and disintegration.Ann. Probab. 3 (1975), 89-99. MR 0358891, 10.1214/aop/1176996451; reference:[22] Dubois, D., Fargier, H., Vantaggi, B.: An axiomatization of conditional possibilistic preference functionals.Lect. Notes LNAI 4724 (2007), 803-815. Zbl 1148.68511; reference:[23] Fenchel, W.: Convex Cones Sets and Functions.Lectures at Princeton University, Princeton 1951. Zbl 0053.12203; reference:[24] Fagin, R., Halpern, J. Y., Megido, N.: A logic for reasoning about probabilities.Information and Computation 87 (1990), 78-128. MR 1055950, 10.1016/0890-5401(90)90060-U; reference:[25] Halpern, J .Y.: Lexicographic probability, conditional probability, and nonstandard probability.Games and Economic Behavior 68 (2010), 1, 155-179. Zbl 1208.60005, MR 2577384, 10.1016/j.geb.2009.03.013; reference:[26] Ghirardato, P.: Revisiting savage in a conditional world.Economic Theory 20 (2002), 83-92. Zbl 1030.91017, MR 1920674, 10.1007/s001990100188; reference:[27] Holzer, S.: On coherence and conditional prevision.Bollettino UMI, Serie VI-C IV (1985), 1, 441-460. Zbl 0584.60001, MR 0805231; reference:[28] Jaffray, J. Y.: Bayesian updating and belief functions.IEEE Trans. on Systems, Man, and Cybernetics 22 (1992), 1144-1152. Zbl 0769.62001, MR 1202571, 10.1109/21.179852; reference:[29] Koopman, B. O.: The axioms and algebra of intuitive probability.Ann. Math. 41 (1940), 269-292. Zbl 0024.05001, MR 0001474, 10.2307/1969003; reference:[30] Kraft, C., Pratt, J., Seidenberg, A.: Intuitive probability on finite sets.Ann. Math. Statist. 30 (1959), 408-419. Zbl 0173.19606, MR 0102850, 10.1214/aoms/1177706260; reference:[31] Krauss, P. H.: Representation of conditional probability measures on Boolean algebras.Acta Mathematica Academiae Sceintiarum Hungaricae 19 (1068), 3-4, 229-241. Zbl 0174.49001, MR 0236080; reference:[32] Lehmann, D.: Generalized qualitative probability: Savage revisited.In: Proc. UAI'96, pp. 381-388. MR 1617222; reference:[33] Narens, L.: Minimal conditions for additive conjoint measurement and qualitative probability.J. Math. Psychol. 11 (1974), 404-430. Zbl 0307.02038, MR 0363541, 10.1016/0022-2496(74)90030-3; reference:[34] Paris, J.: A note on the Dutch Book method.In: Proc. Second International Symposium on Imprecise Probabilities and their Applications (G. De Cooman, T. Fine, and T. Seidenfeld, eds.), ISIPTA 2001, Shaker Publishing Company, Ithaca, pp. 301-306.; reference:[35] Rényi, A.: On conditional probability spaces generated by a dimensionally ordered set of measures.Theor. Probab. Appl. 1 (1956), 61-71. Zbl 0073.12302, MR 0085639, 10.1137/1101005; reference:[36] Regazzini, E.: Finitely additive conditional probabilities.Rendiconti Sem. Mat. Fis. Milano 55 (1985), 69-89. Zbl 0683.60005, MR 0933711, 10.1007/BF02924866; reference:[37] Regoli, G.: Rational comparisons and numerical representation.In: Decision Theory and Decision Analysis: Trends and Challenges, Academic Press, New York 1994.; reference:[38] Robinson, A.: Non-Standard Analysis.North Holland, Amsterdam 1966. Zbl 0843.26012, MR 0205854; reference:[39] Savage, L. J.: The Foundations of Statistics.Wiley, New York 1954. Zbl 0276.62006, MR 0063582; reference:[40] Shafer, G.: Allocations of probability.Ann. Probab. 7 (1979), 827-839. Zbl 0414.60002, MR 0542132, 10.1214/aop/1176994941; reference:[41] Vantaggi, B.: Incomplete preferences on conditional random quantities: representability by conditional previsions.Math. Soc. Sci. 60 (2010), 104-112. Zbl 1232.91160, MR 2663973, 10.1016/j.mathsocsci.2010.06.002; reference:[42] Walley, P.: Belief function representations of statistical evidence.Ann. Statist. 4 (1987), 1439-1465. Zbl 0645.62003, MR 0913567, 10.1214/aos/1176350603; reference:[43] Walley, P.: Statistical Reasoning with Imprecise Probabilities.Chapman and Hall, London 1991. Zbl 0732.62004, MR 1145491; reference:[44] Williams, P. M.: Notes on Conditional Previsions.Working Paper School of Mathematical and Physical Sciences, The University of Sussex, 1975. Zbl 1114.60005, MR 2295423; reference:[45] Wong, S. K. M., Tao, Y. Y., Bollmann, P., Burger, H. C.: Axiomatization of qualitative belief structure.IEEE Trans. Systems, Man, and Cybernet. 21 (1991), 726-734. MR 1143669, 10.1109/21.108290

  14. 14
    Academic Journal

    المؤلفون: Foschi, Rachele

    وصف الملف: application/pdf

    Relation: reference:[1] Bassan, B., Spizzichino, F.: Dependence and multivariate aging: the role of level sets of the survival function.In: System and Bayesian Reliability, Series on Quality, Reliability and Engineering Statistics, vol. 5, World Scientific Publishing, River Edge, NJ 2001, pp. 229-242. MR 1896784, 10.1142/9789812799548_0013; reference:[2] Bassan, B., Spizzichino, F.: On some properties of dependence and aging for residual lifetimes in the exchangeable case.In: Mathematical and Statistical Methods in Reliability (Trondheim, 2002), Series on Quality, Reliability and Engineering Statistics, vol. 7, World Scientific Publishing, River Edge, NJ 2003, pp. 235-249. MR 2031077; reference:[3] Bassan, B., Spizzichino, F.: Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes.J. Multivariate Anal. 93 (2005), 2, 313-339. Zbl 1070.60015, MR 2162641, 10.1016/j.jmva.2004.04.002; reference:[4] Durante, F., Foschi, R., Sarkoci, P.: Distorted copulas: constructions and tail dependence.Comm. Statist. 39 (2010), 2288-2301. Zbl 1194.62075, MR 2755652, 10.1080/03610920903039506; reference:[5] Durante, F., Foschi, R., Spizzichino, F.: Threshold copulas and dependence properties.Statist. Probab. Lett. 78 (2008), 2902-2909. MR 2474379, 10.1016/j.spl.2008.04.013; reference:[6] Durante, F., Foschi, R., Spizzichino, F.: Ageing functions and multivariate notions of NBU and IFR.Probab. Engrg. Inform. Sci. 24 (2010), 2, 263-278. MR 2602143, 10.1017/S026996480999026X; reference:[7] Durante, F., Ricci, R. Ghiselli: Supermigrative copulas and positive dependence.Adv. in Statist. Anal. 96 (2012), 327-342. MR 2956371, 10.1007/s10182-011-0165-2; reference:[8] Durante, F., Quesada-Molina, J., Sempi, C.: Semicopulas: characterizations and applicability.Kybernetika 42 (2006), 3, 287-302. Zbl 1249.60016, MR 2253390; reference:[9] Durante, F., Sempi, C.: Copula and semicopula transforms.Internat. J. Math. and Math. Sci. 4 (2005), 645-655. Zbl 1078.62055, MR 2172400, 10.1155/IJMMS.2005.645; reference:[10] Durante, F., Sempi, C.: Semicopulae.Kybernetika 41 (2005), 3, 315-328. Zbl 1249.26021, MR 2181421; reference:[11] Foschi, R.: Evolution of Conditional Dependence of Residual Lifetimes.Ph.D. Thesis, Università degli Studi di Roma La Sapienza - Dipartimento di Matematica G. Castelnuovo, 2010.; reference:[12] Foschi, R., Spizzichino, F.: Semigroups of semicopulas and evolution of dependence at increase of age.Mathware and Soft Computing XV (2008), 1, 95-111. MR 2459040; reference:[13] Jacobson, N.: Basic Algebra. I.W. H. Freeman and Company, New York 1985. Zbl 0557.16001, MR 0780184; reference:[14] Joe, H.: Multivariate Models and Dependence Concepts.Chapman and Hall, London 1997. Zbl 0990.62517, MR 1462613; reference:[15] Joe, H.: An Introduction to Copulas. Second edition.Springer Series in Statistics, Springer, New York 2006. MR 2197664

  15. 15
    Academic Journal

    المؤلفون: Huan, Nguyen Van, Quang, Nguyen Van

    وصف الملف: application/pdf

    Relation: mr:MR2954324; reference:[1] P. Assouad: Espaces $p$-lisses et $q$-convexes, inégalités de Burkholder.Séminaire Maurey-Schwartz 1975. Zbl 0318.46023, MR 0407963; reference:[2] R. Cairoli, J. B. Walsh: Stochastic integrals in the plane.Acta Math. 134 (1975), 111-183. Zbl 0334.60026, MR 0420845, 10.1007/BF02392100; reference:[3] A. Gut: Probability: A Graduate Course.Springer, New York 2005. Zbl 1151.60300, MR 2125120; reference:[4] J. O. Howell, R. L. Taylor: Marcinkiewicz-Zygmund Weak Laws of Large Numbers for Unconditional Random Elements in Banach Spaces, Probability in Banach Spaces.Springer, Berlin - New York 1981. MR 0647964; reference:[5] N. V. Huan, N. V. Quang, A. Volodin: Strong laws for blockwise martingale difference arrays in Banach spaces.Lobachevskii J. Math. 31 (2010), 326-335. MR 2745742, 10.1134/S1995080210040037; reference:[6] H. C. Kim: The Hájek-Rényi inequality for weighted sums of negatively orthant dependent random variables.Internat. J. Contemporary Math. Sci. 1 (2006), 297-303. MR 2289035; reference:[7] Z. A. Lagodowski: Strong laws of large numbers for $\mathbb B$-valued random fields.Discrete Dynamics in Nature and Society (2009). MR 2504837; reference:[8] F. Móricz: Strong limit theorems for quasi-orthogonal random fields.J. Multivariate Anal. 30 (1989), 255-278. Zbl 0798.60033, MR 1015372, 10.1016/0047-259X(89)90039-0; reference:[9] F. Móricz, U. Stadtmüller, M. Thalmaier: Strong laws for blockwise $\mathcal M$-dependent random fields.J. Theoret. Probab. 21 (2008), 660-671. MR 2425363, 10.1007/s10959-007-0127-5; reference:[10] F. Móricz, K. L. Su, R. L. Taylor: Strong laws of large numbers for arrays of orthogonal random elements in Banach spaces.Acta Math. Hungar. 65 (1994), 1-16. Zbl 0806.60002, MR 1275656, 10.1007/BF01874465; reference:[11] C. Noszály, T. Tómács: A general approach to strong laws of large numbers for fields of random variables.Ann. Univ. Sci. Budapest. Sect. Math. 43 (2001), 61-78. Zbl 0993.60029, MR 1847869; reference:[12] N. V. Quang, N. V. Huan: On the strong law of large numbers and $\mathcal L_p$-convergence for double arrays of random elements in $p$-uniformly smooth Banach spaces.Stat. Probab. Lett. 79 (2009), 1891-1899. MR 2567447, 10.1016/j.spl.2009.05.014; reference:[13] N. V. Quang, N. V. Huan: A characterization of $p$-uniformly smooth Banach spaces and weak laws of large numbers for $d$-dimensional adapted arrays.Sankhyā 72 (2010), 344-358. Zbl 1213.60086, MR 2746116, 10.1007/s13171-010-0020-7; reference:[14] N. V. Quang, N. V. Huan: A Hájek-Rényi type maximal inequality and strong laws of large numbers for multidimensional arrays.J. Inequalities Appl. 2010. Zbl 1215.60022, MR 2765284; reference:[15] A. Rosalsky, L. V. Thanh: On almost sure and mean convergence of normed double sums of Banach space valued random elements.Stochastic Analysis and Applications 25 (2007), 895-911. Zbl 1124.60007, MR 2335071, 10.1080/07362990701420142; reference:[16] A. Rosalsky, L. V. Thanh: On the strong law of large numbers for sequences of blockwise independent and blockwise $p$-orthoganal random element in rademacher type $p$ banach spaces.Probab. Math. Statist. 27 (2007), 205-222. MR 2445993; reference:[17] Q. M. Shao: A comparison theorem on moment inequalities between negatively associated and independent random variables.J. Theor. Probab. 13 (2000), 343-356. Zbl 0971.60015, MR 1777538, 10.1023/A:1007849609234; reference:[18] R. T. Smythe: Strong laws of large numbers for $r$-dimensional arrays of random variables.Ann. Probab. 1 (1973), 164-170. Zbl 0258.60026, MR 0346881, 10.1214/aop/1176997031; reference:[19] L. V. Thanh: On the strong law of large numbers for $d$-dimensional arrays of random variables.Electron. Comm. Probab. 12 (2007), 434-441. Zbl 1128.60023, MR 2365645; reference:[20] W. A. Woyczyński: On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence.Probab. Math. Statist. 1 (1981), 117-131. Zbl 0502.60006, MR 0626306; reference:[21] W. A. Woyczyński: Asymptotic Behavior of Martingales in Banach Spaces, Martingale Theory in Harmonic Analysis and Banach Spaces.Springer, Berlin - New York 1982. MR 0451394

  16. 16
    Academic Journal

    المؤلفون: Rastegin, Alexey

    وصف الملف: application/pdf

    Relation: mr:MR2954323; reference:[1] L. Baladová: Minimum of average conditional entropy for given minimum probability of error.Kybernetika 2 (1966), 416-422. Zbl 0199.21502, MR 0215641; reference:[2] T. Cover, J. Thomas: Elements of Information Theory.John Wiley & Sons, New York 1991. Zbl 1140.94001, MR 1122806; reference:[3] I. Csiszár: Axiomatic characterizations of information measures.Entropy 10 (2008), 261-273. Zbl 1179.94043, 10.3390/e10030261; reference:[4] Z. Daróczy: Generalized information functions.Inform. and Control 16 (1970), 36-51. Zbl 0205.46901, MR 0272528, 10.1016/S0019-9958(70)80040-7; reference:[5] M. H. DeGroot: Optimal Statistical Decisions.McGraw-Hill, New York 1970. Zbl 1136.62011, MR 0356303; reference:[6] D. Erdogmus, J. C. Principe: Lower and upper bounds for misclassification probability based on Rényi's information.J. VLSI Signal Process. 37 (2004), 305-317. Zbl 1073.94507, 10.1023/B:VLSI.0000027493.48841.39; reference:[7] R. M. Fano: Transmission of Information: A Statistical Theory of Communications.MIT Press and John Wiley & Sons, New York 1961. Zbl 0151.24402, MR 0134389; reference:[8] M. Feder, N. Merhav: Relations between entropy and error probability.IEEE Trans. Inform. Theory 40 (1994), 259-266. Zbl 0802.94004, 10.1109/18.272494; reference:[9] S. Furuichi: Information theoretical properties of Tsallis entropies.J. Math. Phys. 47 (2006), 023302. Zbl 1111.94008, MR 2208160, 10.1063/1.2165744; reference:[10] M. Gell-Mann, C. Tsallis, eds.: Nonextensive Entropy - Interdisciplinary Applications.Oxford University Press, Oxford 2004. Zbl 1127.82004, MR 2073730; reference:[11] G. H. Hardy, J. E. Littlewood, G. Polya: Inequalities.Cambridge University Press, London 1934. Zbl 0634.26008; reference:[12] J. Havrda, F. Charvát: Quantification methods of classification processes: concept of structural $\alpha$-entropy.Kybernetika 3 (1967), 30-35. MR 0209067; reference:[13] P. Jizba, T. Arimitsu: The world according to Rényi: thermodynamics of multifractal systems.Ann. Phys. 312 (2004), 17-59. Zbl 1044.82001, MR 2067083, 10.1016/j.aop.2004.01.002; reference:[14] R. Kamimura: Minimizing $\alpha$-information for generalization and interpretation.Algorithmica 22 (1998), 173-197. Zbl 0910.68173, MR 1637503, 10.1007/PL00013828; reference:[15] A. Novikov: Optimal sequential procedures with Bayes decision rules.Kybernetika 46 (2010), 754-770. Zbl 1201.62095, MR 2722099; reference:[16] A. Perez: Information-theoretic risk estimates in statistical decision.Kybernetika 3 (1967), 1-21. Zbl 0153.48403, MR 0208775; reference:[17] A. E. Rastegin: Rényi formulation of the entropic uncertainty principle for POVMs.J. Phys. A: Math. Theor. 43 (2010), 155302. Zbl 1189.81012, MR 2608279, 10.1088/1751-8113/43/15/155302; reference:[18] A. E. Rastegin: Entropic uncertainty relations for extremal unravelings of super-operators.J. Phys. A: Math. Theor. 44 (2011), 095303. Zbl 1211.81021, MR 2771869, 10.1088/1751-8113/44/9/095303; reference:[19] A. E. Rastegin: Continuity estimates on the Tsallis relative entropy.E-print arXiv:1102.5154v2 [math-ph] (2011). MR 2841748; reference:[20] A. E. Rastegin: Fano type quantum inequalities in terms of $q$-entropies.Quantum Information Processing (2011), doi 10.1007/s11128-011-0347-6.; reference:[21] A. Rényi: On measures of entropy and information.In: Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley - Los Angeles 1961, pp. 547-561. Zbl 0106.33001, MR 0132570; reference:[22] A. Rényi: On the amount of missing information in a random variable concerning an event.J. Math. Sci. 1 (1966), 30-33. MR 0210263; reference:[23] A. Rényi: Statistics and information theory.Stud. Sci. Math. Hung. 2 (1967), 249-256. Zbl 0155.27602, MR 0212964; reference:[24] A. Rényi: On some basic problems of statistics from the point of view of information theory.In: Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley - Los Angeles 1967, pp. 531-543. Zbl 0201.51905, MR 0212963; reference:[25] B. Schumacher: Sending entanglement through noisy quantum channels.Phys. Rev. A 54 (1996), 2614-2628. 10.1103/PhysRevA.54.2614; reference:[26] C. Tsallis: Possible generalization of Boltzmann-Gibbs statistics.J. Stat. Phys. 52 (1988), 479-487. Zbl 1082.82501, MR 0968597, 10.1007/BF01016429; reference:[27] I. Vajda: On the statistical decision problem with discrete paprameter space.Kybernetika 3 (1967), 110-126. MR 0215428; reference:[28] I. Vajda: Bounds of the minimal error probability on checking a finite or countable number of hypotheses.Problemy Peredachii Informacii 4 (1968), 9-19 (in Russian); translated as Problems of Information Transmission 4 (1968), 6-14. MR 0267685; reference:[29] K. Życzkowski: Rényi extrapolation of Shannon entropy.Open Sys. Inform. Dyn. 10 (2003), 297-310; corrigendum in the e-print version arXiv:quant-ph/0305062v2. Zbl 1030.94022, MR 1998623

  17. 17
    Academic Journal

    المؤلفون: Kopa, Miloš

    وصف الملف: application/pdf

    Relation: mr:MR2676085; zbl:Zbl 1193.91140; reference:[1] Dentcheva, D., Henrion, R., Ruszczyński, A.: Stability and sensitivity of optimization problems with first order stochastic dominance constraints.SIAM J. Optim. 18 (2007), 322–333. MR 2299687, 10.1137/060650118; reference:[2] Dentcheva, D., Ruszczyński, A.: Optimization with stochastic dominance constraints.SIAM J. Optim. 14 (2003), 548–566. MR 2048155, 10.1137/S1052623402420528; reference:[3] Dentcheva, D., Ruszczyński, A.: Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints.Math. Programming 99 (2004), 329–350. MR 2039044, 10.1007/s10107-003-0453-z; reference:[4] Dentcheva, D., Ruszczyński, A.: Portfolio optimization with stochastic dominance constraints.J. Banking and Finance 30 (2006), 2, 433–451. 10.1016/j.jbankfin.2005.04.024; reference:[5] Rudolf, G., Ruszczyński, A.: Optimization problems with second order stochastic dominance constraints: duality, compact formulations, and cut generation methods.SIAM J. Optim. 19 (2008), 3, 1326–1343. MR 2460744, 10.1137/070702473; reference:[6] Hadar, J., Russell, W. R.: Rules for ordering uncertain prospects.Amer. Econom. Rev. 59 (1969), 1, 25–34.; reference:[7] Hanoch, G., Levy, H.: The efficiency analysis of choices involving risk.Rev. Econom. Stud. 36 (1969), 335–346. Zbl 0184.45202, 10.2307/2296431; reference:[8] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities.Cambridge University Press, Cambridge 1934. Zbl 0634.26008; reference:[9] Kopa, M., Chovanec, P.: A second-order stochastic dominance portfolio efficiency measure.Kybernetika 44 (2008), 2, 243–258. Zbl 1154.91456, MR 2428222; reference:[10] Kopa, M., Post, T.: A portfolio optimality test based on the first-order stochastic dominance criterion.J. Financial and Quantitative Analysis 44 (2009), 5, 1103–1124. 10.1017/S0022109009990251; reference:[11] Kopa, M.: An efficient LP test for SSD portfolio efficiency.Working paper, available at: http://ssrn.com/abstract=1340863.; reference:[12] Kuosmanen, T.: Efficient diversification according to stochastic dominance criteria.Management Sci. 50 (2004), 10, 1390–1406. 10.1287/mnsc.1040.0284; reference:[13] Levy, H.: Stochastic Dominance: Investment Decision Making Under Uncertainty.Second edition. Springer Science, New York 2006. Zbl 1109.91037, MR 2239375; reference:[14] Luedtke, J.: New formulations for optimization under stochastic dominance constraints.SIAM J. Optim. 19 (2008), 3, 1433–1450. Zbl 1180.90215, MR 2466178, 10.1137/070707956; reference:[15] Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean-risk models.SIAM J. Optim. 13 (2002), 60–78. MR 1922754, 10.1137/S1052623400375075; reference:[16] Pflug, G. Ch.: Some remarks on the value-at-risk and the conditional value-at-risk.In: Probabilistic Constrained Optimization: Methodology and Applications (S. Uryasev, ed.), Kluwer Academic Publishers, Norwell MA 2000, pp. 278–287. Zbl 0994.91031, MR 1819417; reference:[17] Post, T.: Empirical tests for stochastic dominance efficiency.J. Finance 58 (2003), 1905–1932. 10.1111/1540-6261.00592; reference:[18] Roman, D., Darby-Dowman, K., Mitra, G.: Portfolio construction based on stochastic dominance and target return distributions.Math. Programming, Series B 108 (2006), 541–569. Zbl 1138.91476, MR 2238714, 10.1007/s10107-006-0722-8; reference:[19] Römisch, W.: Stability of stochastic programming problems.In: Stochastic Programming. Handbooks in Operations Research and Management Science 10 (A. Ruszczyński and A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 483–554. MR 2052760; reference:[20] Rothschild, M., Stiglitz, J. E.: Rules for ordering uncertain prospects.J. Economic Theory 2 (1969), 225–243.; reference:[21] Ruszczyński, A., Vanderbei, R. J.: Frontiers of stochastically nondominated portfolios.Econometrica 71 (2003), 4, 1287–1297. MR 1995832, 10.1111/1468-0262.t01-1-00448; reference:[22] Uryasev, S., Rockafellar, R. T.: Conditional value-at-risk for general loss distributions.J. Banking and Finance 26 (2002), 1443–1471. 10.1016/S0378-4266(02)00271-6; reference:[23] Whitmore, G. A.: Third degree stochastic dominance.Amer. Econom. Rev. 60 (1970), 457–459.

  18. 18
    Academic Journal

    المؤلفون: Kagan, Abram, Yu, Tinghui

    وصف الملف: application/pdf

    Relation: mr:MR2411124; zbl:Zbl 1186.62009; reference:[1] Carlen, E. A.: Superadditivity of Fisher's information and logarithmic Sobolev inequalities.J. Funct. Anal. 101 (1991), 194-211. Zbl 0732.60020, MR 1132315, 10.1016/0022-1236(91)90155-X; reference:[2] Ibragimov, I. A., Khas'minskij, R. Z.: Statistical Estimation. Asymptotic Theory.Springer New York (1981). Zbl 0467.62026, MR 0620321; reference:[3] Kagan, A., Landsman, Z.: Statistical meaning of Carlen's superadditivity of the Fisher information.Statist. Probab. Lett. 32 (1997), 175-179. Zbl 0874.60002, MR 1436863, 10.1016/S0167-7152(96)00070-3; reference:[4] Kagan, A.: An inequality for the Pitman estimators related to the Stam inequality.Sankhya A64 (2002), 282-292. Zbl 1192.62099, MR 1981759; reference:[5] Kagan, A., Shepp, L. A.: A sufficiency paradox: an insufficient statistic preserving the Fisher information.Amer. Statist. 59 (2005), 54-56. MR 2113195, 10.1198/000313005X21041; reference:[6] Kagan, A., Yu, T., Barron, A., Madiman, M.: Contribution to the theory of Pitman estimators.Submitted.; reference:[7] Madiman, M., Barron, A.: The monotonicity of information in the central limit theorem and entropy power inequalities.Preprint Dept. of Statistics, Yale University (2006). MR 2128239; reference:[8] Shao, J.: Mathematical Statistics, 2nd ed.Springer New York (2003). Zbl 1018.62001, MR 2002723; reference:[9] Stam, A. J.: Some inequalities satisfied by the quantities of information of Fisher and Shannon.Inform. and Control 2 (1959), 101-112. Zbl 0085.34701, MR 0109101, 10.1016/S0019-9958(59)90348-1; reference:[10] Zamir, R.: A proof of the Fisher information inequality via a data processing argument.IEEE Trans. Inf. Theory 44 (1998), 1246-1250. Zbl 0901.62005, MR 1616672, 10.1109/18.669301

  19. 19
    Academic Journal

    المؤلفون: Charpentier, Arthur

    وصف الملف: application/pdf

    Relation: mr:MR2488904; zbl:Zbl 1196.62054; reference:[1] Ali M., Mikhail, N., Haq N. S.: A class of bivariate distribution including the bivariate logistic given margins.J. Multivariate Anal. 8 (1978), 405–412 MR 0512610, 10.1016/0047-259X(78)90063-5; reference:[2] Bandeen-Roche K. J., Liang K. Y.: Modeling failure-time associations in data with multiple levels of clustering.Biometrika 83 (1996), 29–39 MR 1399153, 10.1093/biomet/83.1.29; reference:[3] Charpentier J., Juri A.: Limiting dependence structures for tail events, with applications to credit derivatives.J. Appl. Probab. 44 (2006), 563–586 Zbl 1117.62049, MR 2248584, 10.1239/jap/1152413742; reference:[4] Charpentier A., Segers J.: Lower tail dependence for Archimedean copulas: Characterizations and pitfalls.Insurance Math. Econom. 40 (2007), 525–532 Zbl 1183.62086, MR 2311548, 10.1016/j.insmatheco.2006.08.004; reference:[5] Charpentier A., Segers J.: Convergence of Archimedean copulas.Prob. Statist. Lett. 78 (2008), 412–419 Zbl 1139.62303, MR 2396414, 10.1016/j.spl.2007.07.014; reference:[6] Charpentier A., Segers J.: Tails of Archimedean copulas.Submitted; reference:[7] Clayton D. G.: A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence.Biometrika 65 (1978), 141–151 Zbl 0394.92021, MR 0501698, 10.1093/biomet/65.1.141; reference:[8] Colangelo A., Scarsini, M., Shaked M.: Some positive dependence stochastic orders.J. Multivariate Anal. 97 (2006), 46–78 Zbl 1086.62009, MR 2208843, 10.1016/j.jmva.2004.11.006; reference:[9] Cooper R.: A note on certain inequalities.J. London Math. Soc. 2 (1927), 159–163 MR 1574413, 10.1112/jlms/s1-2.3.159; reference:[10] Cooper R.: The converse of the Cauchy–Holder inequality and the solutions of the inequality $g(x + y) \le g(x) + g(y)$.Proc. London Math. Soc. 2 (1927), 415–432 MR 1576944; reference:[11] Durante F., Sempi C.: Copula and semicopula transforms.Internat. J. Math. Math. Sci. 4 (2005), 645–655 Zbl 1078.62055, MR 2172400, 10.1155/IJMMS.2005.645; reference:[12] Durante F., Foschi, F., Spizzichino F.: Threshold copulas and positive dependence.Statist. Probab. Lett., to appear Zbl 1148.62032, MR 2474379; reference:[13] Feller W.: An Introduction to Probability Theory and Its Applications.Volume 2. Wiley, New York 1971 Zbl 0598.60003, MR 0270403; reference:[14] Geluk J. L., Vries C. G. de: Weighted sums of subexponential random variables and asymptotic dependence between returns on reinsurance equities.Insurance Math. Econom. 38 (2006), 39–56 Zbl 1112.62011, MR 2197302, 10.1016/j.insmatheco.2005.06.010; reference:[15] Genest C.: The joy of copulas: bivariate distributions with uniform marginals.Amer. Statist. 40 (1086), 4, 280–283 MR 0866908; reference:[16] Genest C., MacKay R. J.: Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données.La revue canadienne de statistique 14 (1986), 145–159 Zbl 0605.62049, MR 0849869; reference:[17] Genest C., Rivest L. P.: On the multivariate probability integral transformation.Statist. Probab. Lett. 53 (2001), 391–399 Zbl 0982.62056, MR 1856163, 10.1016/S0167-7152(01)00047-5; reference:[18] Gumbel E. J.: Bivariate logistic distributions.J. Amer. Statist. Assoc. 56 (1961), 335–349 Zbl 0099.14502, MR 0158451, 10.1080/01621459.1961.10482117; reference:[19] Joe H.: Multivariate Models and Dependence Concepts.Chapman&Hall, London 1997 Zbl 0990.62517, MR 1462613; reference:[20] Junker M., Szimayer, S., Wagner N.: Nonlinear term structure dependence: Copula functions, empirics, and risk implications.J. Banking & Finance 30 (2006), 1171–1199 10.1016/j.jbankfin.2005.05.014; reference:[21] Juri A., Wüthrich M. V.: Copula convergence theorems for tail events.Insurance Math. Econom. 30 (2002), 411–427 Zbl 1039.62043, MR 1921115, 10.1016/S0167-6687(02)00121-X; reference:[22] Juri A., Wüthrich M. V.: Tail dependence from a distributional point of view.Extremes 6 (2003), 213–246 Zbl 1049.62055, MR 2081852, 10.1023/B:EXTR.0000031180.93684.85; reference:[23] Klement E. P., Mesiar, R., Pap E.: Transformations of copulas.Kybernetika 41 (2005), 425–434 MR 2180355; reference:[24] Lehmann E. L.: Some concepts of dependence.Ann. Math. Statist. 37 (1966), 1137–1153 Zbl 0146.40601, MR 0202228, 10.1214/aoms/1177699260; reference:[25] Ling C. M.: Representation of associative functions.Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575; reference:[26] McNeil A. J., Neslehova J.: Multivariate Archimedean copulas, D-monotone functions and L1-norm symmetric distributions.Ann. Statist. To appear; reference:[27] Morillas P. M.: A method to obtain new copulas from a given one.Metrika 61 (2005), 169–184 Zbl 1079.62056, MR 2159414, 10.1007/s001840400330; reference:[28] Nelsen R.: An Introduction to Copulas.Springer, New York 1999 Zbl 1152.62030, MR 1653203; reference:[29] Oakes D.: Bivariate survival models induced by frailties.J. Amer. Statist. Assoc. 84 (1989), 487–493 Zbl 0677.62094, MR 1010337, 10.1080/01621459.1989.10478795; reference:[30] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North-Holland, Amsterdam 1959 Zbl 0546.60010, MR 0790314; reference:[31] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. de l’Institut de Statistique de l’Université de Paris 8 (1959), 229–231 MR 0125600; reference:[32] Wang S., Nelsen, R., Valdez E. A.: Distortion of multivariate distributions: adjustment for uncertainty in aggregating risks.Mimeo 2005; reference:[33] Zheng M., Klein J. P.: Estimates of marginal survival for dependent competing risks based on an assumed copula.Biometrika 82 (1995), 127–138 Zbl 0823.62099, MR 1332844, 10.1093/biomet/82.1.127

  20. 20
    Academic Journal

    المؤلفون: Úbeda-Flores, Manuel

    وصف الملف: application/pdf

    Relation: mr:MR2488909; zbl:Zbl 1196.62060; reference:[1] Behboodian J., Dolati A., Úbeda-Flores M.: Measures of association based on average quadrant dependence.J. Probab. Statist. Sci. 3 (2005), 161–173; reference:[2] Capérà P., Fougères A.-L., Genest C.: A stochastic ordering based on a decomposition of Kendall’s tau.In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer, Dordrecht 1997, pp. 81–86; reference:[3] Baets B. De, Meyer, H. De, Úbeda-Flores M.: Constructing copulas with given diagonal and opposite diagonal sections, to appea.; reference:[4] Durante F., Kolesárová A., Mesiar, R., Sempi C.: Copulas with given diagonal sections: novel constructions and applications.Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 15 (2007), 397–410 Zbl 1158.62324, MR 2362234, 10.1142/S0218488507004753; reference:[5] Fredricks G. A., Nelsen R. B.: Copulas constructed from diagonal sections.In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136 Zbl 0906.60022, MR 1614666; reference:[6] Fredricks G. A., Nelsen R. B.: The Bertino family of copulas.In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91 Zbl 1135.62334, MR 2058982; reference:[7] Genest C., Rivest L.-P.: On the multivariate probability integral transformation.Statist. Probab. Lett. 53 (2001), 391–399 Zbl 0982.62056, MR 1856163, 10.1016/S0167-7152(01)00047-5; reference:[8] Gini C.: L’Ammontare e la composizione della ricchezza delle nazione.Bocca Torino 1914; reference:[9] Mikusiński P., Sherwood, H., Taylor M. D.: Shuffles of Min.Stochastica 13 (1992), 61–74 Zbl 0768.60017, MR 1197328; reference:[10] Nelsen R. B.: Concordance and Gini’s measure of association.J. Nonparametric Statist. 9 (1998), 227–238 Zbl 0919.62057, MR 1649514, 10.1080/10485259808832744; reference:[11] Nelsen R. B.: An Introduction to Copulas.Second edition. Springer, New York 2006 Zbl 1152.62030, MR 2197664; reference:[12] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Distribution functions of copulas: a class of bivariate probability integral transforms.Statist. Probab. Lett. 54 (2001), 277–282 Zbl 0992.60020, MR 1857942, 10.1016/S0167-7152(01)00060-8; reference:[13] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Kendall distribution functions.Statist. Probab. Lett. 65 (2003), 263–268 Zbl 1183.60006, MR 2018039, 10.1016/j.spl.2003.08.002; reference:[14] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions.J. Multivariate Anal. 90 (2004), 348–358 Zbl 1057.62038, MR 2081783, 10.1016/j.jmva.2003.09.002; reference:[15] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: On the construction of copulas and quasi-copulas with given diagonal sections.Insurance: Math. Econ. 42 (2008), 473–483 Zbl 1152.60311, MR 2404309, 10.1016/j.insmatheco.2006.11.011; reference:[16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Kendall distribution functions and associative copulas.Fuzzy Sets and Systems 160 (2009), 52–57 Zbl 1183.60006, MR 2469430; reference:[17] Sklar A.: Fonctions de répartition à n dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600; reference:[18] Sklar A.: Random variables, joint distributions, and copulas.Kybernetika 9 (1973), 449–460 MR 0345164; reference:[19] Spearman C.: ‘Footrule’ for measuring correlation.British J. Psychology 2 (1906), 89–108