-
1Academic Journal
المؤلفون: Frič, Roman, Papčo, Martin
مصطلحات موضوعية: keyword:Classical probability theory, keyword:upgrading, keyword:quantum phenomenon, keyword:category theory, keyword:D-poset of fuzzy sets, keyword:Łukasiewicz tribe, keyword:observable, keyword:statistical map, keyword:duality, msc:60A05, msc:60A86
وصف الملف: application/pdf
Relation: mr:MR3546805; zbl:Zbl 06670230; reference:[1] Adámek, J.: Theory of Mathematical Structures.1983, Reidel, Dordrecht, MR 0735079; reference:[2] Bugajski, S.: Statistical maps I. Basic properties.Math. Slovaca, 51, 3, 2001, 321-342, Zbl 1088.81021, MR 1842320; reference:[3] Bugajski, S.: Statistical maps II. Operational random variables.Math. Slovaca, 51, 3, 2001, 343-361, Zbl 1088.81022, MR 1842321; reference:[4] Chovanec, F., Frič, R.: States as morphisms.Internat. J. Theoret. Phys., 49, 12, 2010, 3050-3060, Zbl 1204.81011, MR 2738063, 10.1007/s10773-009-0234-4; reference:[5] Chovanec, F., Kôpka, F.: D-posets.Handbook of Quantum Logic and Quantum Structures: Quantum Structures, 2007, 367-428, Elsevier, Amsterdam, Edited by K. Engesser, D. M. Gabbay and D. Lehmann. Zbl 1139.81005, MR 2408886; reference:[6] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.2000, Kluwer Academic Publ. and Ister Science, Dordrecht and Bratislava, MR 1861369; reference:[7] Frič, R.: Łukasiewicz tribes are absolutely sequentially closed bold algebras.Czechoslovak Math. J., 52, 2002, 861-874, Zbl 1016.28013, MR 1940065, 10.1023/B:CMAJ.0000027239.28381.31; reference:[8] Frič, R.: Remarks on statistical maps and fuzzy (operational) random variables.Tatra Mt. Math. Publ, 30, 2005, 21-34, Zbl 1150.60304, MR 2190245; reference:[9] Frič, R.: Extension of domains of states.Soft Comput., 13, 2009, 63-70, Zbl 1166.28006, 10.1007/s00500-008-0293-0; reference:[10] Frič, R.: On D-posets of fuzzy sets.Math. Slovaca, 64, 2014, 545-554, Zbl 1332.06005, MR 3227755, 10.2478/s12175-014-0224-8; reference:[11] Frič, R-, Papčo, M.: A categorical approach to probability.Studia Logica, 94, 2010, 215-230, Zbl 1213.60021, MR 2602573, 10.1007/s11225-010-9232-z; reference:[12] Frič, R., Papčo, M.: Fuzzification of crisp domains.Kybernetika, 46, 2010, 1009-1024, Zbl 1219.60006, MR 2797424; reference:[13] Frič, R., Papčo, M.: On probability domains.Internat. J. Theoret. Phys., 49, 2010, 3092-3100, Zbl 1204.81012, MR 2738067, 10.1007/s10773-009-0162-3; reference:[14] Frič, R., Papčo, M.: On probability domains II.Internat. J. Theoret. Phys., 50, 2011, 3778-3786, Zbl 1254.60009, MR 2860035, 10.1007/s10773-011-0855-2; reference:[15] Frič, R., Papčo, M.: On probability domains III.Internat. J. Theoret. Phys., 54, 2015, 4237-4246, Zbl 1329.81095, MR 3418298, 10.1007/s10773-014-2471-4; reference:[16] Goguen, J. A.: A categorical manifesto.Math. Struct. Comp. Sci., 1, 1991, 49-67, Zbl 0747.18001, MR 1108804, 10.1017/S0960129500000050; reference:[17] Gudder, S.: Fuzzy probability theory.Demonstratio Math., 31, 1998, 235-254, Zbl 0984.60001, MR 1623780; reference:[18] Kolmogorov, A. N.: Grundbegriffe der wahrscheinlichkeitsrechnung.1933, Springer, Berlin, Zbl 0007.21601, MR 0494348; reference:[19] Kôpka, F., Chovanec, F.: D-posets.Math. Slovaca, 44, 1994, 21-34, MR 1290269; reference:[20] Kuková, M., Navara, M.: What observables can be.Theory of Functions, Its Applications, and Related Questions, Transactions of the Mathematical Institute of N.I. Lobachevsky 46, 2013, 62-70, Kazan Federal University; reference:[21] Loève, M.: Probability theory.1963, D. Van Nostrand, Inc., Princeton, New Jersey, Zbl 0108.14202, MR 0203748; reference:[22] Mesiar, R.: Fuzzy sets and probability theory.Tatra Mt. Math. Publ., 1, 1992, 105-123, Zbl 0790.60005, MR 1230469; reference:[23] Navara, M.: Triangular norms and measures of fuzzy sets.Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, 2005, 345-390, Elsevier, Zbl 1073.28015, MR 2165242; reference:[24] Navara, M.: Probability theory of fuzzy events.Fourth Conference of the European Society for Fuzzy Logic and Technology and 11 Rencontres Francophones sur la Logique Floue et ses Applications, 2005, 325-329, Universitat Polit ecnica de Catalunya, Barcelona, Spain; reference:[25] Navara, M.: Tribes revisited.30th Linz Seminar on Fuzzy Set Theory: The Legacy of 30 Seminars, Where Do We Stand and Where Do We Go?, 2009, 81-84, Johannes Kepler University, Linz, Austria; reference:[26] Papčo, M.: On measurable spaces and measurable maps.Tatra Mt. Math. Publ., 28, 2004, 125-140, Zbl 1112.06005, MR 2086282; reference:[27] Papčo, M.: On fuzzy random variables: examples and generalizations.Tatra Mt. Math. Publ., 30, 2005, 175-185, Zbl 1152.60302, MR 2190258; reference:[28] Papčo, M.: On effect algebras.Soft Comput., 12, 2008, 373-379, Zbl 1127.06003, 10.1007/s00500-007-0171-1; reference:[29] Papčo, M.: Fuzzification of probabilistic objects.8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013), doi:10.2991/eusat.2013.10, 2013, 67-71, 10.2991/eusat.2013.10; reference:[30] Riečan, B., Mundici, D.: Probability on MV-algebras.Handbook of Measure Theory, Vol. II, 2002, 869-910, North-Holland, Amsterdam, Zbl 1017.28002, MR 1954631; reference:[31] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering.1997, Kluwer Acad. Publ., Dordrecht-Boston-London, MR 1489521; reference:[32] Zadeh, L. A.: Probability measures of fuzzy events.J. Math. Anal. Appl., 23, 1968, 421-427, Zbl 0174.49002, MR 0230569, 10.1016/0022-247X(68)90078-4; reference:[33] Zadeh, L. A.: Fuzzy probabilities.Inform. Process. Manag., 19, 1984, 148-153, Zbl 0543.60007
-
2Book
المؤلفون: Hykšová, Magdalena
وصف الملف: application/pdf
-
3Book
المؤلفون: Hykšová, Magdalena
وصف الملف: application/pdf
-
4Book
المؤلفون: Hykšová, Magdalena
وصف الملف: application/pdf
-
5Book1.3 Filosofické interpretace pravděpodobnosti ; 1.3 Philosophical interpretations of the probability
المؤلفون: Hykšová, Magdalena
مصطلحات موضوعية: msc:60A05
وصف الملف: application/pdf
-
6Book
المؤلفون: Hykšová, Magdalena
وصف الملف: application/pdf
-
7Book
المؤلفون: Hykšová, Magdalena
وصف الملف: application/pdf
-
8Academic Journal
المؤلفون: Capotorti, Andrea, Coletti, Giulianella, Vantaggi, Barbara
مصطلحات موضوعية: keyword:comparative probability, keyword:comparative plausibilities, keyword:hyperreal field, keyword:representability by nonstandard measures, msc:06A06, msc:60A05, msc:60E15, msc:62C10, msc:91B08
وصف الملف: application/pdf
Relation: mr:MR3216990; zbl:Zbl 1302.60010; reference:[1] Yaghlane, B. Ben, Smets, P., Mellouli, K.: About conditional belief function independence.Lect. Notes in Comput. Sci. 2143 (2001), 340-349. MR 1909832, 10.1007/3-540-44652-4_30; reference:[2] Bernardi, S., Coletti, G.: A Rational conditional utility model in a coherent framework.Lect. Notes in Comput. Sci. 2143 (2001), 108-119. Zbl 1001.68531, 10.1007/3-540-44652-4_11; reference:[3] Blume, L., Brandenburger, A., Dekel, E.: Lexicographic probabilities and choice under uncertainty.Econometrica 59 (1991), 1, 61-79. Zbl 0732.90005, MR 1085584, 10.2307/2938240; reference:[4] Capotorti, A., Coletti, G., Vantaggi, B.: Non-additive ordinal relations representable by lower or upper probabilities.Kybernetika 34 (1998), 10, 79-90. Zbl 1274.68518, MR 1619057; reference:[5] Capotorti, A., Coletti, G., Vantaggi, B.: Preferences representable by a lower expectation: some characterizations.Theory and Decision 64 (2008), 119-146. Zbl 1136.91392, MR 2399934, 10.1007/s11238-007-9052-4; reference:[6] Chateauneuf, A., Jaffray, J. Y.: Archimedean qualitative probabilities.J. Math. Psychol. 28 (1984), 191-204. Zbl 0558.60003, MR 0763783, 10.1016/0022-2496(84)90026-9; reference:[7] Coletti, G.: Coherent qualitative probability.J. Math. Psychol. 34 (1990), 297-310. Zbl 0713.60003, MR 1068441, 10.1016/0022-2496(90)90034-7; reference:[8] Coletti, G.: Coherent numerical and ordinal probabilistic assessments.IEEE Tras. Systems, Man, and Cybernetics 24 (1994), 12, 1747-1754. MR 1302033, 10.1109/21.328932; reference:[9] Coletti, G., Mastroleo, M.: Conditional belief functions: a comparison among different definitions.In: Proc. 7th Workshop on Uncertainty Processing (WUPES), 2006.; reference:[10] Coletti, G., Scozzafava, R.: Toward a general theory of conditional beliefs.Internat. J. of Intelligent Systems 21 (2006), 229-259. Zbl 1160.68582, 10.1002/int.20133; reference:[11] Coletti, G., Scozzafava, R., Vantaggi, B.: Integrated likelihood in a finitely additive setting.Lect. Notes in Computer Science LNAI 5590 (2009), 554-565. Zbl 1245.62012, MR 2893315, 10.1007/978-3-642-02906-6_48; reference:[12] Coletti, G., Vantaggi, B.: Representability of ordinal relations on a set of conditional events.Theory and Decision 60 (2006), 137-174. Zbl 1119.91029, MR 2226911, 10.1007/s11238-005-4570-4; reference:[13] Coletti, G., Vantaggi, B.: A view on conditional measures through local representability of binary relations.Internat. J. Approximate Reasoning 60 (2006), 137-174. Zbl 1184.68500, MR 2226911; reference:[14] Coletti, G., Vantaggi, B.: Conditional not-additive measures and fuzzy sets.In: Proc. ISIPTA 2013, pp. 67-76.; reference:[15] Finetti, B. de: Sul significato soggettivo delle probabilità.Fundam. Mat. 17 (1931), 293-329.; reference:[16] Finetti, B. de: La prevision: Ses lois logiques, ses sources subjectives.Ann. Inst. Henri Poincaré, Section B 7 (1937), l-68. Zbl 0017.07602; reference:[17] Finetti, B. de: Teoria della Probabilità.Einaudi, Torino 1970 (Engl. transl.) Theory of Probability, Wiley and Sons, London 1974.; reference:[18] Dempster, A. P.: Upper and lower probabilities induced by a multivalued mapping.Ann. Math. Statist. 38 (1967), 325-339. Zbl 0168.17501, MR 0207001, 10.1214/aoms/1177698950; reference:[19] Dempster, A. P.: A generalization of Bayesian inference.The Royal Stat. Soc. B 50 (1968), 205-247. Zbl 0169.21301, MR 0238428; reference:[20] Denoeux, T., Smets, P.: classification using belief functions: The relationship between the case-based and model-based approaches.IEEE Trans. on Systems, Man and Cybernetics B 36 (2006), 6, 1395-1406. 10.1109/TSMCB.2006.877795; reference:[21] Dubins, L. E.: Finitely additive conditional probabilities, conglomerability and disintegration.Ann. Probab. 3 (1975), 89-99. MR 0358891, 10.1214/aop/1176996451; reference:[22] Dubois, D., Fargier, H., Vantaggi, B.: An axiomatization of conditional possibilistic preference functionals.Lect. Notes LNAI 4724 (2007), 803-815. Zbl 1148.68511; reference:[23] Fenchel, W.: Convex Cones Sets and Functions.Lectures at Princeton University, Princeton 1951. Zbl 0053.12203; reference:[24] Fagin, R., Halpern, J. Y., Megido, N.: A logic for reasoning about probabilities.Information and Computation 87 (1990), 78-128. MR 1055950, 10.1016/0890-5401(90)90060-U; reference:[25] Halpern, J .Y.: Lexicographic probability, conditional probability, and nonstandard probability.Games and Economic Behavior 68 (2010), 1, 155-179. Zbl 1208.60005, MR 2577384, 10.1016/j.geb.2009.03.013; reference:[26] Ghirardato, P.: Revisiting savage in a conditional world.Economic Theory 20 (2002), 83-92. Zbl 1030.91017, MR 1920674, 10.1007/s001990100188; reference:[27] Holzer, S.: On coherence and conditional prevision.Bollettino UMI, Serie VI-C IV (1985), 1, 441-460. Zbl 0584.60001, MR 0805231; reference:[28] Jaffray, J. Y.: Bayesian updating and belief functions.IEEE Trans. on Systems, Man, and Cybernetics 22 (1992), 1144-1152. Zbl 0769.62001, MR 1202571, 10.1109/21.179852; reference:[29] Koopman, B. O.: The axioms and algebra of intuitive probability.Ann. Math. 41 (1940), 269-292. Zbl 0024.05001, MR 0001474, 10.2307/1969003; reference:[30] Kraft, C., Pratt, J., Seidenberg, A.: Intuitive probability on finite sets.Ann. Math. Statist. 30 (1959), 408-419. Zbl 0173.19606, MR 0102850, 10.1214/aoms/1177706260; reference:[31] Krauss, P. H.: Representation of conditional probability measures on Boolean algebras.Acta Mathematica Academiae Sceintiarum Hungaricae 19 (1068), 3-4, 229-241. Zbl 0174.49001, MR 0236080; reference:[32] Lehmann, D.: Generalized qualitative probability: Savage revisited.In: Proc. UAI'96, pp. 381-388. MR 1617222; reference:[33] Narens, L.: Minimal conditions for additive conjoint measurement and qualitative probability.J. Math. Psychol. 11 (1974), 404-430. Zbl 0307.02038, MR 0363541, 10.1016/0022-2496(74)90030-3; reference:[34] Paris, J.: A note on the Dutch Book method.In: Proc. Second International Symposium on Imprecise Probabilities and their Applications (G. De Cooman, T. Fine, and T. Seidenfeld, eds.), ISIPTA 2001, Shaker Publishing Company, Ithaca, pp. 301-306.; reference:[35] Rényi, A.: On conditional probability spaces generated by a dimensionally ordered set of measures.Theor. Probab. Appl. 1 (1956), 61-71. Zbl 0073.12302, MR 0085639, 10.1137/1101005; reference:[36] Regazzini, E.: Finitely additive conditional probabilities.Rendiconti Sem. Mat. Fis. Milano 55 (1985), 69-89. Zbl 0683.60005, MR 0933711, 10.1007/BF02924866; reference:[37] Regoli, G.: Rational comparisons and numerical representation.In: Decision Theory and Decision Analysis: Trends and Challenges, Academic Press, New York 1994.; reference:[38] Robinson, A.: Non-Standard Analysis.North Holland, Amsterdam 1966. Zbl 0843.26012, MR 0205854; reference:[39] Savage, L. J.: The Foundations of Statistics.Wiley, New York 1954. Zbl 0276.62006, MR 0063582; reference:[40] Shafer, G.: Allocations of probability.Ann. Probab. 7 (1979), 827-839. Zbl 0414.60002, MR 0542132, 10.1214/aop/1176994941; reference:[41] Vantaggi, B.: Incomplete preferences on conditional random quantities: representability by conditional previsions.Math. Soc. Sci. 60 (2010), 104-112. Zbl 1232.91160, MR 2663973, 10.1016/j.mathsocsci.2010.06.002; reference:[42] Walley, P.: Belief function representations of statistical evidence.Ann. Statist. 4 (1987), 1439-1465. Zbl 0645.62003, MR 0913567, 10.1214/aos/1176350603; reference:[43] Walley, P.: Statistical Reasoning with Imprecise Probabilities.Chapman and Hall, London 1991. Zbl 0732.62004, MR 1145491; reference:[44] Williams, P. M.: Notes on Conditional Previsions.Working Paper School of Mathematical and Physical Sciences, The University of Sussex, 1975. Zbl 1114.60005, MR 2295423; reference:[45] Wong, S. K. M., Tao, Y. Y., Bollmann, P., Burger, H. C.: Axiomatization of qualitative belief structure.IEEE Trans. Systems, Man, and Cybernet. 21 (1991), 726-734. MR 1143669, 10.1109/21.108290
-
9Academic Journal
المؤلفون: Biba, Vladislav, Hliněná, Dana
مصطلحات موضوعية: keyword:generated fuzzy implication, keyword:fuzzy preference structure, keyword:fuzzy implications, keyword:t-norm, msc:08A72, msc:28E10, msc:60A05
وصف الملف: application/pdf
Relation: mr:MR2975800; reference:[1] Alsina, C.: On a family of connectives for fuzzy sets.Fuzzy Sets and Systems 16 (1985), 231–235. Zbl 0603.39005, MR 0801264, 10.1016/0165-0114(85)90026-0; reference:[2] Baczyński, M., Jayaram, B.: Fuzzy implications (Studies in Fuzziness and Soft Computing, Vol. 231).Springer, Berlin 2008.; reference:[3] Fodor, J. C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer Academic Publishers, Dordrecht 1994. Zbl 0827.90002, MR 1672363; reference:[4] Hliněná, D., Biba, V.: Generated fuzzy implications and known classes of implications.In: Acta Universitatis Matthiae Belii ser. Mathematics. 1., Matej Bel University, Banská Bystrica 2010, pp. 25–34. Zbl 1205.03035, MR 2771563; reference:[5] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms.Kluwer, Dordrecht 2000. Zbl 1087.20041, MR 1790096; reference:[6] Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions.IEEE Trans. Fuzzy Systems 15 (2007), 6, 1107–1121. 10.1109/TFUZZ.2007.896304; reference:[7] Smutná, D.: On many valued conjunctions and implications.J. Electr. Engrg. 50 (1999), 10/s, 8–10.; reference:[8] Van De Walle, B., De Baets, B., Kerre, E.: A comparative study of completeness conditions in fuzzy preference structures.In: Proc. IFSA'97, vol. III, Prague, pp. 74–79.; reference:[9] Zadeh, L. A.: Similarity relations and fuzzy orderings.Inform. Sci. 3 (1971), 177–200. Zbl 0218.02058, MR 0297650, 10.1016/S0020-0255(71)80005-1
-
10Academic Journal
المؤلفون: Frič, Roman, Papčo, Martin
مصطلحات موضوعية: keyword:domain of probability, keyword:fuzzy random variable, keyword:crisp random event, keyword:fuzzy observable, keyword:fuzzification, keyword:category of $ID$-poset, keyword:epireflection, keyword:simplex-valued domains, msc:60A05, msc:60A86
وصف الملف: application/pdf
Relation: mr:MR2797424; zbl:Zbl 1219.60006; reference:[1] Bugajski, S.: Statistical maps I.Basic properties. Math. Slovaca 51 (2001), 321–342. Zbl 1088.81021, MR 1842320; reference:[2] Bugajski, S.: Statistical maps II.Basic properties. Math. Slovaca 51 (2001), 343–361. Zbl 1088.81022, MR 1842321; reference:[3] Chovanec, F., Frič, R.: States as morphisms.Internat. J. Theoret. Phys. 49 (2010), 3050–3100. Zbl 1204.81011, MR 2738063, 10.1007/s10773-009-0234-4; reference:[4] Chovanec, F., Kôpka, F.: $D$-posets.In: Handbook of Quantum Logic and Quantum Structures: Quantum Structures. (K. Engesser, D. M. Gabbay and D. Lehmann, eds.), Elsevier, Amsterdam 2007, pp. 367–428. Zbl 1139.81005, MR 2408886; reference:[5] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.Kluwer Academic Publ. and Ister Science, Dordrecht and Bratislava 2000. MR 1861369; reference:[6] Frič, R.: Remarks on statistical maps and fuzzy (operational) random variables.Tatra Mt. Math. Publ. 30 (2005), 21–34. Zbl 1150.60304, MR 2190245; reference:[7] Frič, R.: Statistical maps: a categorical approach.Math. Slovaca 57 (2007), 41–57. Zbl 1137.60300, MR 2357806, 10.2478/s12175-007-0013-8; reference:[8] Frič, R.: Extension of domains of states.Soft Comput. 13 (2009), 63–70. Zbl 1166.28006, 10.1007/s00500-008-0293-0; reference:[9] Frič, R.: Simplex-valued probability.Math. Slovaca 60 (2010), 607–614. Zbl 1249.06032, MR 2728526, 10.2478/s12175-010-0035-5; reference:[10] Frič, R.: States on bold algebras: Categorical aspects.J. Logic Comput. (To appear). DOI:10.1093/logcom/exp014 MR 2802938; reference:[11] Frič, R., Papčo, M.: On probability domains.Internat. J. Theoret. Phys. 49 (2010), 3092–3063. Zbl 1204.81012, 10.1007/s10773-009-0162-3; reference:[12] Frič, R., Papčo, M.: A categorical approach to probability theory.Studia Logica 94 (2010), 215–230. Zbl 1213.60021, MR 2602573, 10.1007/s11225-010-9232-z; reference:[13] Gudder, S.: Fuzzy probability theory.Demonstratio Math. 31 (1998), 235–254. Zbl 0984.60001, MR 1623780; reference:[14] Kôpka, F., Chovanec, F.: D-posets.Math. Slovaca 44 (1994), 21–34. MR 1290269; reference:[15] Mesiar, R.: Fuzzy sets and probability theory.Tatra Mt. Math. Publ. 1 (1992), 105–123. Zbl 0790.60005, MR 1230469; reference:[16] Papčo, M.: On measurable spaces and measurable maps.Tatra Mt. Math. Publ. 28 (2004), 125–140. Zbl 1112.06005, MR 2086282; reference:[17] Papčo, M.: On fuzzy random variables: examples and generalizations.Tatra Mt. Math. Publ. 30 (2005), 175–185. Zbl 1152.60302, MR 2190258; reference:[18] Papčo, M.: On effect algebras.Soft Comput. 12 (2007), 26–35. 10.1007/s00500-007-0171-1; reference:[19] Riečan, B., Mundici, D.: Probability on $MV$-algebras.In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), North-Holland, Amsterdam 2002, pp. 869–910. Zbl 1017.28002, MR 1954631; reference:[20] Zadeh, L. A.: Probability measures of fuzzy events.J. Math. Anal. Appl. 23 (1968), 421–427. Zbl 0174.49002, MR 0230569, 10.1016/0022-247X(68)90078-4
-
11Academic Journal
المؤلفون: Charpentier, Arthur
مصطلحات موضوعية: keyword:Archimedean copulas, keyword:Cox model, keyword:dependence, keyword:distorted copulas, keyword:ordering, msc:60A05, msc:60E15, msc:62H05, msc:62N01, msc:62N99, msc:91B30
وصف الملف: application/pdf
Relation: mr:MR2488904; zbl:Zbl 1196.62054; reference:[1] Ali M., Mikhail, N., Haq N. S.: A class of bivariate distribution including the bivariate logistic given margins.J. Multivariate Anal. 8 (1978), 405–412 MR 0512610, 10.1016/0047-259X(78)90063-5; reference:[2] Bandeen-Roche K. J., Liang K. Y.: Modeling failure-time associations in data with multiple levels of clustering.Biometrika 83 (1996), 29–39 MR 1399153, 10.1093/biomet/83.1.29; reference:[3] Charpentier J., Juri A.: Limiting dependence structures for tail events, with applications to credit derivatives.J. Appl. Probab. 44 (2006), 563–586 Zbl 1117.62049, MR 2248584, 10.1239/jap/1152413742; reference:[4] Charpentier A., Segers J.: Lower tail dependence for Archimedean copulas: Characterizations and pitfalls.Insurance Math. Econom. 40 (2007), 525–532 Zbl 1183.62086, MR 2311548, 10.1016/j.insmatheco.2006.08.004; reference:[5] Charpentier A., Segers J.: Convergence of Archimedean copulas.Prob. Statist. Lett. 78 (2008), 412–419 Zbl 1139.62303, MR 2396414, 10.1016/j.spl.2007.07.014; reference:[6] Charpentier A., Segers J.: Tails of Archimedean copulas.Submitted; reference:[7] Clayton D. G.: A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence.Biometrika 65 (1978), 141–151 Zbl 0394.92021, MR 0501698, 10.1093/biomet/65.1.141; reference:[8] Colangelo A., Scarsini, M., Shaked M.: Some positive dependence stochastic orders.J. Multivariate Anal. 97 (2006), 46–78 Zbl 1086.62009, MR 2208843, 10.1016/j.jmva.2004.11.006; reference:[9] Cooper R.: A note on certain inequalities.J. London Math. Soc. 2 (1927), 159–163 MR 1574413, 10.1112/jlms/s1-2.3.159; reference:[10] Cooper R.: The converse of the Cauchy–Holder inequality and the solutions of the inequality $g(x + y) \le g(x) + g(y)$.Proc. London Math. Soc. 2 (1927), 415–432 MR 1576944; reference:[11] Durante F., Sempi C.: Copula and semicopula transforms.Internat. J. Math. Math. Sci. 4 (2005), 645–655 Zbl 1078.62055, MR 2172400, 10.1155/IJMMS.2005.645; reference:[12] Durante F., Foschi, F., Spizzichino F.: Threshold copulas and positive dependence.Statist. Probab. Lett., to appear Zbl 1148.62032, MR 2474379; reference:[13] Feller W.: An Introduction to Probability Theory and Its Applications.Volume 2. Wiley, New York 1971 Zbl 0598.60003, MR 0270403; reference:[14] Geluk J. L., Vries C. G. de: Weighted sums of subexponential random variables and asymptotic dependence between returns on reinsurance equities.Insurance Math. Econom. 38 (2006), 39–56 Zbl 1112.62011, MR 2197302, 10.1016/j.insmatheco.2005.06.010; reference:[15] Genest C.: The joy of copulas: bivariate distributions with uniform marginals.Amer. Statist. 40 (1086), 4, 280–283 MR 0866908; reference:[16] Genest C., MacKay R. J.: Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données.La revue canadienne de statistique 14 (1986), 145–159 Zbl 0605.62049, MR 0849869; reference:[17] Genest C., Rivest L. P.: On the multivariate probability integral transformation.Statist. Probab. Lett. 53 (2001), 391–399 Zbl 0982.62056, MR 1856163, 10.1016/S0167-7152(01)00047-5; reference:[18] Gumbel E. J.: Bivariate logistic distributions.J. Amer. Statist. Assoc. 56 (1961), 335–349 Zbl 0099.14502, MR 0158451, 10.1080/01621459.1961.10482117; reference:[19] Joe H.: Multivariate Models and Dependence Concepts.Chapman&Hall, London 1997 Zbl 0990.62517, MR 1462613; reference:[20] Junker M., Szimayer, S., Wagner N.: Nonlinear term structure dependence: Copula functions, empirics, and risk implications.J. Banking & Finance 30 (2006), 1171–1199 10.1016/j.jbankfin.2005.05.014; reference:[21] Juri A., Wüthrich M. V.: Copula convergence theorems for tail events.Insurance Math. Econom. 30 (2002), 411–427 Zbl 1039.62043, MR 1921115, 10.1016/S0167-6687(02)00121-X; reference:[22] Juri A., Wüthrich M. V.: Tail dependence from a distributional point of view.Extremes 6 (2003), 213–246 Zbl 1049.62055, MR 2081852, 10.1023/B:EXTR.0000031180.93684.85; reference:[23] Klement E. P., Mesiar, R., Pap E.: Transformations of copulas.Kybernetika 41 (2005), 425–434 MR 2180355; reference:[24] Lehmann E. L.: Some concepts of dependence.Ann. Math. Statist. 37 (1966), 1137–1153 Zbl 0146.40601, MR 0202228, 10.1214/aoms/1177699260; reference:[25] Ling C. M.: Representation of associative functions.Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575; reference:[26] McNeil A. J., Neslehova J.: Multivariate Archimedean copulas, D-monotone functions and L1-norm symmetric distributions.Ann. Statist. To appear; reference:[27] Morillas P. M.: A method to obtain new copulas from a given one.Metrika 61 (2005), 169–184 Zbl 1079.62056, MR 2159414, 10.1007/s001840400330; reference:[28] Nelsen R.: An Introduction to Copulas.Springer, New York 1999 Zbl 1152.62030, MR 1653203; reference:[29] Oakes D.: Bivariate survival models induced by frailties.J. Amer. Statist. Assoc. 84 (1989), 487–493 Zbl 0677.62094, MR 1010337, 10.1080/01621459.1989.10478795; reference:[30] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North-Holland, Amsterdam 1959 Zbl 0546.60010, MR 0790314; reference:[31] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. de l’Institut de Statistique de l’Université de Paris 8 (1959), 229–231 MR 0125600; reference:[32] Wang S., Nelsen, R., Valdez E. A.: Distortion of multivariate distributions: adjustment for uncertainty in aggregating risks.Mimeo 2005; reference:[33] Zheng M., Klein J. P.: Estimates of marginal survival for dependent competing risks based on an assumed copula.Biometrika 82 (1995), 127–138 Zbl 0823.62099, MR 1332844, 10.1093/biomet/82.1.127
-
12Academic Journal
المؤلفون: Frič, Roman
مصطلحات موضوعية: msc:60A05
وصف الملف: application/pdf
Relation: mr:MR2357806; zbl:Zbl 1137.60300; reference:[1] ADÁMEK J.: Theory of Mathematical Structures.Reidel, Dordrecht, 1983. MR 0735079; reference:[2] BELTRAMETTI E. G.-BUGAJSKI S.: Correlation and entaglement in probability theory.Internat. J. Theoret. Phуs. 44 (2005), 827-837. MR 2199500; reference:[3] BUGAJSKI S.: Fundamentals of fuzzy probability theory.Internt. J. Theoret. Phуs. 35 (1996), 2229-2244. Zbl 0872.60003, MR 1423402; reference:[4] BUGAJSKI S.: S: tatistical maps I. Basic properties.Math. Slovaca 51 (2001), 321-342. MR 1842320; reference:[5] BUGAJSKI S.: Statistical maps II. Operational random variables.Math. Slovaca 51 (2001), 343-361. Zbl 1088.81022, MR 1842321; reference:[6] DVUREČENSKIJ A.-PULMANNOVÁ S.: New Trends in Quantum Structures.Kluwer Academic Publ./Ister Science, Dordrecht/Bratislava, 2000. Zbl 0987.81005, MR 1861369; reference:[7] FOULIS D. J.-BENNETT M. K.: Effect algebras and unsharp quantum logics.Found. Phуs. 24 (1994), 1331-1352. Zbl 1213.06004, MR 1304942; reference:[8] FRIČ R.: Convergence and duality.Appl. Categ. Structures 10 (2002), 257-266. Zbl 1015.06010, MR 1916158; reference:[9] FRIČ R.: Łukasiewicz tribes are absolutely sequentially closed bold algebras.Czechoslovak Math. J. 52 (2002), 861-874. Zbl 1016.28013, MR 1940065; reference:[10] FRIČ R.: Duality for generalized events.Math. Slovaca 54 (2004), 49-60. Zbl 1076.22004, MR 2074029; reference:[11] FRIČ R.: Coproducts of D-posets and their applications to probability.Internt. J. Theoret. Phys. 43 (2004), 1625-1632. MR 2108299; reference:[12] FRIČ R.: Remarks on statistical maps and fuzzy (operational) random variables.Tatra Mt. Math. Publ. 30 (2005), 21-34. Zbl 1150.60304, MR 2190245; reference:[13] FRIČ R.: Extension of measures: a categorical approach.Math. Bohemica 130 (2005), 397-407. Zbl 1107.54014, MR 2182385; reference:[14] GUDDER S.: Fuzzy probability theory.Demonstratio Math. 31 (1998), 235-254. Zbl 0984.60001, MR 1623780; reference:[15] KÔPKA F.-CHOVANEC F.: D-posets.Math. Slovaca 44 (1994), 21-34. Zbl 0789.03048, MR 1290269; reference:[16] LOÈVE M.: Probability Theory.D. Van Nostrand Companу, Inc, Princeton, 1963. Zbl 0108.14202, MR 0203748; reference:[17] PAPČO M.: On measurable spaces and measurable maps.Tatra Mt. Math. Publ. 28 (2004), 125-140. Zbl 1112.06005, MR 2086282; reference:[18] PAPČO M.: On fuzzy random variables: examples and generalizations.Tatra Mt. Math. Publ. 30 (2005), 175-185. Zbl 1152.60302, MR 2190258; reference:[19] PAPČO M.: On effect algebras.Preprint. Zbl 1127.06003; reference:[20] PURI M. L.-RALESCU D. A.: Fuzzy random variables.J. Math. Anal. Appl. 114 (1986), 409-422. Zbl 0605.60038, MR 0833596; reference:[21] RIEČAN B.-MUNDICI D.: Probability on MV-algebras.In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), North-Holland, Amsterdam, 2002, 869-910. Zbl 1017.28002, MR 1954631
-
13Academic Journal
المؤلفون: Riečan, Beloslav
مصطلحات موضوعية: keyword:probability, keyword:fuzzy sets, keyword:MV-algebra, keyword:IF events, msc:03B50, msc:03G12, msc:06D35, msc:28E10, msc:60A05, msc:60B99
وصف الملف: application/pdf
Relation: mr:MR2377926; zbl:Zbl 1139.06004; reference:[1] Atanassov K.: Intuitionistic Fuzzy Sets: Theory and Applications.Physica–Verlag, New York 1999 Zbl 0939.03057, MR 1718470; reference:[2] Cignoli L. O., D’Ottaviano M. L., Mundici D.: Algebraic Foundations of Many–valued Reasoning.Kluwer, Dordrecht 2000 Zbl 0937.06009; reference:[3] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property I: Basic properties.Kybernetika 41 (2005), 143–160 MR 2138765; reference:[4] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property II: MV-algebras.Kybernetika 41 (2005), 161–176 MR 2138766; reference:[5] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer, Dordrecht 2000 MR 1861369; reference:[6] Gerstenkorn T., Manko J.: Probabilities of intuitionistic fuzzy events.In: Issues in Intelligent Systems: Paradigms (O. Hryniewicz et al., eds.). EXIT, Warszawa, pp. 63–58; reference:[7] Grzegorzewski P., Mrowka E.: Probability of intuitionistic fuzzy events.In: Soft Methods in Probability, Statistics and Data Analysis (P. Grzegorzewski et al., eds.). Physica–Verlag, New York 2002, pp. 105–115 MR 1987681; reference:[8] Halmos P. R.: Measure Theory.Van Nostrand, New York 1950 Zbl 0283.28001, MR 0033869; reference:[9] Kolmogorov A. N.: Foundations of the Theory of Probability.Chelsea Press, New York 1950 (German original appeared in 1933) MR 0032961; reference:[10] Lendelová K.: Measure Theory on Multivalued Logics and its Applications.Ph.D. Thesis. M. Bel University, Banská Bystrica 2005; reference:[11] Lendelová K.: Probability on L-posets.In: Proc. Fourth Conference of the European Society for Fuzzy Logic and Technology and 11 Rencontres Francophones sur la Logique Floue et ses Applications (EUSFLAT-LFA 2005 Joint Conference), Technical University of Catalonia, Barcelona, pp. 320–324; reference:[12] Lendelová K.: A note on invariant observables.Internat. J. Theoret. Physics 45 (2006), 915–923 Zbl 1105.81008, MR 2245606; reference:[13] Lendelová K.: Central Limit Theorem for L-posets.J. Electr. Engrg. 12/S (2005), 56, 7–9 Zbl 1096.60015; reference:[14] Montagna F.: An algebraic approach to propositional fuzzy logic.J. Logic. Lang. Inf. 9 (2000), 91–124 Zbl 0942.06006, MR 1749775; reference:[15] Neumann J. von: Grundlagen der Quantenmechanik.Berlin 1932; reference:[16] Riečan B.: A new approach to some notions of statistical quantum mechanics.BUSEFAL 36 (1988), 4–6; reference:[17] Riečan B.: On the product MV-algebras.Tatra Mt. Math. Publ. 16 (1999), 143–149 Zbl 0951.06013, MR 1725292; reference:[18] Riečan B.: Representation of probabilities on IFS events.In: Advances in Soft Computing, Soft Methodology and Random Information Systems (M. Lopez–Diaz et al., eds.) Springer–Verlag, Berlin 2004, pp. 243–246 Zbl 1061.03058, MR 2118103; reference:[19] Riečan B.: Free products of probability MV-algebras.Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 173–186 Zbl 1072.06007, MR 1910785; reference:[20] Riečan B.: The conjugacy of probability MV-$\sigma $-algebras with the unit interval.Atti Sem. Mat. Fis. Univ. Modena 52 (2004), 241–248 Zbl 1115.28018, MR 2152490; reference:[21] Riečan B.: Kolmogorov–Sinaj entropy on MV-algebras.Internat. J. Theoret. Physics 44 (2005), 1041–1052 Zbl 1119.81302, MR 2199519; reference:[22] Riečan B.: On the probability on IF-sets and MV-algebras.Notes on IFS 11 (2005), 6, 21–25; reference:[23] Riečan B.: On the probability and random variables on IF events.In: Applied Artificial Intelligence (Proc. 7th FLINS Conf. Genova, Da Ruan et al., eds.), World Scientific 2006, pp. 138–145; reference:[24] Riečan B., Jurečková M.: On invariant observables and the individual ergodic theorem.Internat. J. Theoret. Physics 44 (2005), 1587–1597 MR 2198158; reference:[25] Riečan B., Mundici D.: Probability on MV-algebras.In: Handbook on Measure Theory (E. Pap, ed.), Elsevier, Amsterdam 2002 Zbl 1017.28002, MR 1954631; reference:[26] Riečan B., Neubrunn T.: Integral, Measure, and Ordering.Kluwer, Dordrecht 1997 Zbl 0916.28001, MR 1489521; reference:[27] Schmidt E., Kacprzyk J.: Probability of intuitionistic fuzzy events and their applications in decision making.In: Proc. EUSFLAT’99, Palma de Mallorca 1999, pp. 457–460
-
14Academic Journal
المؤلفون: Frič, Roman
وصف الملف: application/pdf
Relation: mr:MR2074029; zbl:Zbl 1076.22004; reference:[1] BUGAJSKI S.: Statistical maps I. Basic properties.Math. Slovaca 51 (2001), 321-342. Zbl 1088.81021, MR 1842320; reference:[2] BUGAJSKI S.: Statistical maps II. Operational random variables.Math. Slovaca 51 (2001), 343-361. Zbl 1088.81022, MR 1842321; reference:[3] CHOVANEC F., KÔPKA F.: Difference posets in the quantum structures background.Internat. J. Theoret. Phys. 39 (2000), 571-583. Zbl 0967.06007, MR 1790895; reference:[4] DVUREČENSKIJ A., PULMANNOVÁ S.: New Trends in Quantum Structures.Kluwer Academic Publ./Ister Science, Dordrecht/Bratislava, 2000. Zbl 0987.81005, MR 1861369; reference:[5] FOULIS D. J.: Algebraic measure theory.Atti. Sem. Mat. Fis. Univ. Modena 48 (2000), 435-461. Zbl 1221.81023, MR 1811545; reference:[6] FOULIS D. J.-BENNETT M. K.: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1331-1352. Zbl 1213.06004, MR 1304942; reference:[7] FRIČ R.: Sequential structures and probability: categorical reflections.In: Mathematik-Arbeitspapiere 48 (H.-E. Porst, ed.), Universität Bremen, 1997, pp. 157-169.; reference:[8] FRIČ R.: A Stone type duality and its applications to probability.Topology Proc. 22 (1999), 125-137. MR 1718934; reference:[9] FRIČ R.: On observables.Internat. J. Theoret. Phys. 39 (2000), 677-686. Zbl 0987.81009, MR 1790904; reference:[10] FRIČ R.: MV-Algebras: convergence and duality.In: Mathematik-Arbeitspapiere 54 (H. Herrlich, H.-E. Porst, eds.), Universität Bremen, 2000, pp. 169-179. MR 1916158; reference:[11] FRIČ R.: Convergence and duality.Appl. Categ. Structures. 10 (2002), 257-266. Zbl 1015.06010, MR 1916158; reference:[12] FRIČ R.: Measures on MV-algebras.Soft Comput. 7 (2002), 130-137. Zbl 1021.28012; reference:[13] FRIČ R.: Łukasiewicz tribes are absolutely sequentially closed bold algebras.Czechoslovak Math. J. 52 (2002), 861-874. Zbl 1016.28013, MR 1940065; reference:[14] FRIČ R.-JAKUBÍK J.: Sequential convergences on Boolean algebras defined by systems of maximal filters.Czechoslovak Math. J. 51 (2001), 261-274. Zbl 0976.54003, MR 1844309; reference:[15] GUDDER S.: Combinations of observables.Internat. J. Theoret. Phys. 31 (2000), 695-704. Zbl 1160.81306, MR 1790906; reference:[16] JENČA G.: Blocks of homogeneous effect algebras.Bull. Austral. Math. Soc. 64 (2001), 81-98. Zbl 0985.03063, MR 1848081; reference:[17] JAKUBÍK J.: Sequential convergence in MV-algebras.Czechoslovak Math. J. 45, (1995), 709-726. MR 1354928; reference:[18] JUREČKOVÁ M.: On the conditional expectation on probability MV-algebras with product.Soft Comput. 5 (2001), 381-385. Zbl 1003.60010; reference:[19] KÔPKA F.-CHOVANEC F.: D-posets.Math. Slovaca 44 (1994), 21-34. Zbl 0789.03048, MR 1290269; reference:[20] MAC LANE S.: Categories for the Working Mathematician.Springer-Verlag, New York-Heildelberg-Berlin, 1988.; reference:[21] MUNDICI D.: Tensor products and the Loomis-Sikorski theorem for MV-algebras.Adv. in Appl. Math. 22 (1999), 227-248. Zbl 0926.06004, MR 1659410; reference:[22] MUNDICI D.-RIEČAN B.: Probability on MV-algebras.In: Handbook of Measure Theory (E. Pap, ed.), North-Holland, Amsterdam, 2002. Zbl 1017.28002, MR 1954631; reference:[23] NOVÁK J.: Über die eindeutigen stetigen Erweiterungen stetiger Funktionen.Czechoslovak Math. J. 8 (1958), 344-355. Zbl 0087.37501, MR 0100826; reference:[24] NOVÁK J.: On sequential envelopes defined by means of certain classes of functions.Czechoslovak Math. J. 18 (1968), 450-456. MR 0232335; reference:[25] PAPČO M.: On measurable spaces and measurable maps.Tatra Mt. Math. Publ. (To appear). Zbl 1112.06005, MR 2086282; reference:[26] PAPČO M.: On effect algebras.Preprint, 2003. Zbl 1127.06003; reference:[27] PETROVIČOVÁ J.: On the entropy of partitions in product MV-algebras.Soft Comput. 4 (2000), 41-44. Zbl 1008.37004; reference:[28] PETROVIČOVÁ J.: On the entropy of dynamical systems in product MV-algebras.Fuzzy Sets and Systems 121 (2001), 347-351. Zbl 0983.37007, MR 1834520; reference:[29] RIEČAN B.-NEUBRUNN T.: Integral, Measure, and Ordering.Kluwer Acad. Publ., Dordrecht-Boston-London, 1997. Zbl 0916.28001, MR 1489521; reference:[30] RIEČANOVÁ Z.: Proper effect algebras admitting no states.Internat. J. Theoret. Phys. 40 (2001), 1683-1691. Zbl 0989.81003, MR 1858217
-
15Academic Journal
المؤلفون: Kramosil, Ivan
مصطلحات موضوعية: keyword:nonstandard probability, keyword:Boolean algebra, msc:60A05, msc:60E05, msc:68T37
وصف الملف: application/pdf
Relation: mr:MR1899844; zbl:Zbl 1265.68268; reference:[1] Dubois D., Prade H.: Théorie de Possibilités – Applications à la Représentation de Connaissances en Informatique.Mason, Paris 1985; reference:[2] Faure R., Heurgon E.: Structures Ordonnées et Algébres de Boole.Gauthier–Villars, Paris 1971 Zbl 0219.06001, MR 0277440; reference:[3] Halmos P. R.: Measure Theory.D. van Nostrand, New York – Toronto – London 1950 Zbl 0283.28001, MR 0033869; reference:[4] Kramosil I.: Believeability and plausibility functions over infinite sets.Internat. J. Gen. Systems 23 (1994), 2, 173–198 10.1080/03081079508908038; reference:[5] Kramosil I.: A probabilistic analysis of Dempster combination rule.In: The Logica Yearbook 1997, Prague 1997, pp. 175–187; reference:[6] Kramosil I.: Probabilistic Analysis of Belief Functions.Kluwer Academic / Plenum Publishers, New York – Boston – Dordrecht – London – Moscow 2001; reference:[7] Shafer G.: A Mathematical Theory of Evidence.Princeton Univ. Press, Princeton 1976 Zbl 0359.62002, MR 0464340; reference:[8] Sikorski R.: Boolean Algebras.Springer–Verlag, Berlin – Göttingen – Heidelberg 1960 Zbl 0191.31505, MR 0126393
-
16Academic Journal
المؤلفون: Gilio, Angelo, Ingrassia, Salvatore
مصطلحات موضوعية: keyword:uncertainty, keyword:total coherence, keyword:set-valued probability, msc:03B48, msc:60A05, msc:68T30, msc:68T35, msc:68T37
وصف الملف: application/pdf
Relation: mr:MR1619051; zbl:Zbl 1274.68525; reference:[1] Adams E. W.: The Logic of Conditionals.D. Reidel, Dordrecht 1975 Zbl 0324.02002, MR 0485189; reference:[2] Capotorti A., Vantaggi B.: The consistency problem in belief and probability assessments.In: Proceedings of the Sixth International Conference on “Information Processing and Management of Uncertainty in Knowledge-Based Systems” (IPMU ’96), Granada 1996, pp. 55–59; reference:[3] Coletti G.: Numerical and qualitative judgements in probabilistic expert systems.In: Proceedings of the International Workshop on “Probabilistic Methods in Expert Systems” (R. Scozzafava, ed.), SIS, Roma 1993, pp. 37–55; reference:[4] Coletti G.: Coherent numerical and ordinal probabilistic assessments.IEEE Trans. Systems Man Cybernet. 24 (1994), 12, 1747–1754 MR 1302033, 10.1109/21.328932; reference:[5] Coletti G., Gilio A., Scozzafava R.: Conditional events with vague information in expert systems.In: Uncertainty in Knowledge Bases (Lecture Notes in Computer Science 521; B. Bouchon–Meunier, R. R. Yager, L. A. Zadeh, eds.), Springer–Verlag, Berlin – Heidelberg 1991, pp. 106–114 Zbl 0800.68922; reference:[6] Coletti G., Gilio A., Scozzafava R.: Comparative probability for conditional events: a new look through coherence.Theory and Decision 35 (1993), 237–258 Zbl 0785.90006, MR 1259282, 10.1007/BF01075200; reference:[7] Coletti G., Scozzafava R.: Learning from data by coherent probabilistic reasoning.In: Proceedings of ISUMA-NAFIPS ’95, College Park 1995, pp. 535–540; reference:[8] Coletti G., Scozzafava R.: Characterization of coherent conditional probabilities as a tool for their assessment and extension.J. Uncertainty, Fuzziness and Knowledge–Based Systems 4 (1996), 2, 103–127 Zbl 1232.03010, MR 1390898, 10.1142/S021848859600007X; reference:[9] Biase G. Di, Maturo A.: Checking the coherence of conditional probabilities in expert systems: remarks and algorithms.In: Mathematical Models for Handling Partial Knowledge in Artificial Intelligence (G. Coletti, D. Dubois and R. Scozzafava, eds.), Plenum Press, New York 1995, pp. 191–200 Zbl 0859.68108, MR 1408211; reference:[10] Doria S., Maturo A.: A hyperstructure of conditional events for Artificial Intelligence.In: Mathematical Models for Handling Partial Knowledge in Artificial Intelligence (G. Coletti, D. Dubois and R. Scozzafava, eds.), Plenum Press, New York 1995, pp. 201–208 Zbl 0859.68098, MR 1408212; reference:[11] Dubois D., Prade H.: Probability in automated reasoning: from numerical to symbolic approaches.In: Probabilistic Methods in Expert Systems, Proc. of the International Workshop (R. Scozzafava, ed.), SIS, Roma 1993, pp. 79–104; reference:[12] Holzer S.: On coherence and conditional prevision.Boll. Un. Mat. Ital. 4 (1985), 4–B, 441–460 Zbl 0584.60001, MR 0805231; reference:[13] Gilio A.: Criterio di penalizzazione e condizioni di coerenza nella valutazione soggettiva della probabilità.Boll. Un. Mat. Ital. 7 (1990), 4–B, 645–660; reference:[14] Gilio A.: Conditional events and subjective probability in management of uncertainty.In: Uncertainty in Intelligent Systems (B. Bouchon–Meunier, L. Valverde and R. R. Yager, eds.), Elsevier Science Publishing B. V., North–Holland, 1993, pp. 109–120; reference:[15] Gilio A.: Probabilistic consistency of conditional probability bounds.In: Advances in Intelligent Computing – IPMU’94 (Lecture Notes in Computer Science 945; B. Bouchon–Meunier, R. R. Yager and L. A. Zadeh, eds.), Springer–Verlag, Berlin – Heidelberg 1995, pp. 200–209; reference:[16] Gilio A.: Algorithms for precise and imprecise conditional probability assessments.In: Mathematical Models for Handling Partial Knowledge in Artificial Intelligence (G. Coletti, D. Dubois and R. Scozzafava, eds.), Plenum Press, New York 1995, pp. 231–254 Zbl 0859.68042, MR 1408214; reference:[17] Gilio A.: Algorithms for conditional probability assessments.In: Bayesian Analysis in Statistics and Econometrics (D. A. Berry, K. M. Chaloner and J. K. Geweke, eds.), J. Wiley, New York 1996, pp. 29–39 MR 1367309; reference:[18] Gilio A., Ingrassia S.: Geometrical aspects in checking coherence of probability assessments.In: Proceedings of the Sixth International Conference on “Information Processing and Management of Uncertainty in Knowledge–Based Systems” (IPMU’96), Granada, 1996, pp. 55–59; reference:[19] Gilio A., Scozzafava R.: Le probabilità condizionate coerenti nei sistemi esperti In: Ricerca Operativa e Intelligenza Artificiale, Atti Giornate di Lavoro A.I.R.O., IBM, Pisa 1988, pp. 317–330; reference:[20] Goodman I. R., Nguyen H. T.: Conditional objects and the modeling of uncertainties.In: Fuzzy Computing Thoery, Hardware and Applications (M. M. Gupta and T. Yamakawa, eds.), North–Holland, New York 1988, pp. 119–138 MR 1018860; reference:[21] Lad F.: Coherent prevision as a linear functional without an underlying measure space: the purely arithmetic structure of logical relations among conditional quantities.In: Mathematical Models for Handling Partial Knowledge in Artificial Intelligence (G. Coletti, D. Dubois and R. Scozzafava, eds.), Plenum Press, New York 1995, pp. 101–111 Zbl 0859.68104, MR 1408206; reference:[22] Regoli G.: Comparative probability assessments and stochastic independence.In: Proceedings of the Sixth International Conference on “Information Processing and Management of Uncertainty in Knowledge–Based Systems” (IPMU’96), Granada 1996, pp. 49–53; reference:[23] Scozzafava R.: How to solve some critical examples by a proper use of coherent probability.In: Uncertainty in Intelligent Systems (B. Bouchon–Meunier, L. Valverde and R. R. Yager, eds.), Elsevier Science Publishing B.V., North–Holland, Amsterdam 1993, pp. 121–132; reference:[24] Scozzafava R.: Subjective probability versus belief functions in artificial intelligence.Internat. J. Gen. Systems 22 (1994), 197–206 Zbl 0795.60002, 10.1080/03081079308935206; reference:[25] Vicig P.: An algorithm for imprecise conditional probability assessments in expert systems.In: Proceedings of the Sixth International Conference on “Information Processing and Management of Uncertainty in Knowledge–Based Systems” (IPMU’96), Granada 1996, pp. 61–66; reference:[26] Walley P.: Statistical Reasoning with Imprecise Probabilities.Chapman and Hall, London 1991 Zbl 0732.62004, MR 1145491
-
17Academic Journal
المؤلفون: Colleti, Giulianella, Scozzafava, Romano
مصطلحات موضوعية: keyword:stochastic independence, keyword:conditional independence, msc:03B48, msc:60A05, msc:60A99
وصف الملف: application/pdf
Relation: mr:MR1619056; zbl:Zbl 1274.03040; reference:[1] Coletti G., Scozzafava R.: Characterization of coherent conditional probabilities as a tool for their assessment and extension.Internat. J. Uncertainty, Fuzziness and Knowledge–Based Systems 4 (1996), 103–127 Zbl 1232.03010, MR 1390898, 10.1142/S021848859600007X; reference:[2] Coletti G., Scozzafava R.: Exploiting zero probabilities.In: Proceedings EUFIT ’97, ELITE Foundation, Aachen, 1997, pp. 1499–1503; reference:[3] Finetti B. de: Les probabilité nulles.Bull. Sci. Math. 60 (1936), 275–288; reference:[4] Scozzafava R.: A survey of some common misunderstandings concerning the role and meaning of finitely additive probabilities in statistical inference.Statistica 44 (1984), 21–45 Zbl 0557.62004, MR 0766688
-
18Academic Journal
المؤلفون: Kramosil, Ivan
وصف الملف: application/pdf
Relation: mr:MR1420126; zbl:Zbl 0906.60003; reference:[1] A. Bundy: Incidence calculus -- a mechanism for probabilistic reasoning.J. Automat. Reason. 1 (1985), 3, 263-283. Zbl 0615.68067, MR 0974923; reference:[2] W. Feller: An Introduction to Probability Theory and its Applications, vol. I.J. Wiley and Sons, New York 1957. MR 0088081; reference:[3] A. N. Kolmogorov: Grundbegriffe der Wahrscheinlichkeitsrechnung.Springer-Verlag, Berlin 1933. Zbl 0007.21601, MR 0494348; reference:[4] I. Kramosil: Expert systems with non-numerical belief functions.Problems Control Inform. Theory 17 (1988), 5, 285-295. Zbl 0668.68095, MR 0967948; reference:[5] I. Kramosil: Extensional processing of probability measures.Internat. J. Gen. Systems 22 (1994), 2, 159-170. Zbl 0797.60002; reference:[6] M. Loève: Probability Theory.Van Nostrand, Princeton 1955. MR 0203748; reference:[7] R. Sikorski: Boolean Algebras.Springer-Verlag, Berlin--Göttingen--Heidelberg--New York 1964. Zbl 0123.01303
-
19Academic Journal
المؤلفون: Studený, Milan
وصف الملف: application/pdf
Relation: mr:MR1014703; reference:[1] I. Kramosil: A note on nonaxiomatizability of independence relations generated by certain probabilistic structure.Kybernetika 24 (1988), 6, 439-446. MR 0975853; reference:[2] F. Matúš: Independence and Radon projections on compact groups.Ph. D. Thesis, Prague 1988. To appear. In Czech.; reference:[3] J. Pearl: Markov and Bayes Networks: a Comparison of Two Graphical Representations of Probabilistic Knowledge.Technical Report CSD 860024, R-46-1, University of California, Los Angeles 1986.; reference:[4] A. Perez, R. Jiroušek: Constructing an intensional expert system INES.In: Medical Decision-making: Diagnostic Strategies and Expert Systems (J. V. van Bemmel, F. Gremy and J. Zvárová, eds.), North-Holland, Amsterdam 1985, pp. 307-315.; reference:[5] M. Studený: Multiinformation and the problem of characterization of conditional-independence relations.Problems Control Inform. Theory 18 (1989), 1, 3-16. MR 0986211
-
20Academic Journal