يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"msc:49N05"', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Kanjanawanishkul, Kiattisin

    وصف الملف: application/pdf

    Relation: mr:MR3333839; zbl:Zbl 06433838; reference:[1] Allgöwer, F., Findeisen, R., Nagy, Z. K.: Nonlinear model predictive control: from theory to application.J. Chin. Inst. Chem. Eng. 35 (2004), 3, 299-315.; reference:[2] Beznos, A. V., Formalsky, A. M., Gurfinkel, E. V., Jicharev, D. N., Lensky, A. V., Savitsky, K. V., Tchesalin, L. S.: Control of autonomous motion of two-wheel bicycle with gyroscopic stabilization.In: Proc. International Conference on Robotics and Automation, Leuven 1998, pp. 2670-2675. 10.1109/robot.1998.680749; reference:[3] Bui, T., Parnichkun, M.: Balancing control of bicyrobo by particle swarm optimization-based structure-specified mixed h2/hinf control.Internat. J. Adv. Robot. Syst. 5 (2008), 4, 395-402. 10.5772/6235; reference:[4] Defoort, M., Murakami, T.: Second order sliding mode control with disturbance observer for bicycle stabilization.In: Proc. International Conference on Intelligent Robots and Systems, Nice 2008, pp. 2822-2827. 10.1109/iros.2008.4650685; reference:[5] Gallaspy, J.: Gyroscopic Stabilization of an Unmanned Bicycle.Master's Thesis, Auburn University, 1999.; reference:[6] Keo, L., Masaki, Y.: Trajectory control for an autonomous bicycle with balancer.In: Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Xi'an 2008, pp. 676-681. 10.1109/aim.2008.4601741; reference:[7] Keo, L., Yamakita, M.: Control of an autonomous electric bicycle with both steering and balancer controls.Adv. Robot. 25 (2011), 1-22. 10.1163/016918610x538462; reference:[8] Lee, S., Ham, W.: Self-stabilizing strategy in tracking control of unmanned electric bicycle with mass balance.In: Proc. International Conference on Intelligent Robots and Systems, Lausanne 2002, pp. 2200-2205. 10.1109/irds.2002.1041594; reference:[9] Lei, G., Qi-zheng, L., Shi-min, W., Yu-feng, Z.: Design of linear quadratic optimal controller for bicycle robot, automation and logistics.In: Proc. International Conference on Automation and Logistics (ICAL), Shenyang 2009, pp. 1968-1972. 10.1109/ical.2009.5262628; reference:[10] Mayne, D. Q., Rawlings, J. B., Rao, C. V., Scokaert, P. O. M.: Constrained model predictive control: Stability and optimality.Automatica 36 (2000), 6, 789-814. Zbl 0949.93003, MR 1829182, 10.1016/s0005-1098(99)00214-9; reference:[11] Pongpaew, P.: Balancing Control of a Bicycle Robot by Centrifugal Force.Master's Thesis, Asian Institute of Technology, 2010.; reference:[12] Scokaert, P. O. M., Rawlings, J. B.: Constrained linear quadratic regulation.IEEE Trans. Automat. Control 43 (1998), 8, 1163-1169. Zbl 0957.93033, MR 1636487, 10.1109/9.704994; reference:[13] Tanaka, Y., Murakami, T.: Self sustaining bicycle robot with steering controller.In: Proc. IEEE International Workshop on Advanced Motion Control, Kawasaki 2004, pp. 193-197. 10.1109/amc.2004.1297665; reference:[14] Yi, J., Song, D., Levandowski, A., Jayasuriya, S.: Trajectory tracking and balance stabilization control of autonomous motorcycle.In: Proc. International Conference on Robotics and Automation, Orlando 2006, pp. 2583-2589. 10.1109/robot.2006.1642091

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1747971; zbl:Zbl 1274.93231; reference:[1] Blanchini F.: Ultimate boundedness control for uncertain discrete–time systems via set–induced Lyapunov functions.IEEE Trans. Automat. Control AC-39 (1994), 428–433 Zbl 0800.93754, MR 1265438, 10.1109/9.272351; reference:[2] d’Alessandro P., Santis E. De: General closed loop optimal solutions for linear dynamic systems with linear constraints.J. Math. Systems, Estimation and Control 6 (1996), 2, 1–14 Zbl 0844.93054, MR 1649944; reference:[3] d’Alessandro P.: A Conical Approach to Linear Programming, Scalar and Vector Optimization Problems.Gordon and Breach Science Publishers, 1997 Zbl 0912.90216, MR 1475216; reference:[4] d’Alessandro P., Santis E. De: Controlled Invariance and Feedback Laws.Research Report no. R.99-31, Dept. of Electrical Engineering, University of L’Aquila, 1999 (submitted); reference:[5] Hennet J. C., Dorea C. E. T.: Invariant regulators for linear systems under combined input and state constraints.In: Proc. of 33rd IEEE Conference on Decision and Control, Lake Buena Vista 1994, pp. 1030–1035

  3. 3
    Conference