-
1
المؤلفون: Montag, Martin J.
مصطلحات موضوعية: hyperspectal unmixing, Nichtpositive Krümmung, Prox-Regularisierung, nonconvex optimization, Moreau-Yosida regularization, Reflexionsspektroskopie, Hadamard-Mannigfaltigkeit, Hyperspektraler Sensor, infinite-dimensional manifold, alternating minimization, primal-dual algorithm, Matrizenfaktorisierung, msc:47J25, Multivariate Analyse, Nichtkonvexe Optimierung, ddc:510, Hadamard-Raum, msc:49M29, Beschränkte Krümmung, Multispektralfotografie, Matrizenzerlegung, msc:49J53, sparsity, nonnegative matrix factorization, Sequenzieller Algorithmus, Nichtglatte Optimierung, Konvergenz, proximation, surrogate algorithm, curvature, Hadamard space, Nichtkonvexes Variationsproblem, Mehrdimensionales Variationsproblem, Variationsrechnung, Kullback-Leibler divergence, Multivariates Verfahren, Mosco convergence, msc:65K10, Mehrdimensionale Bildverarbeitung, Konjugierte Dualität, Hadamard manifold, msc:58B99, msc:58E30, Bildsegmentierung, Ableitungsfreie Optimierung, Schwache Konvergenz, Gamma-Konvergenz, Multispektralaufnahme, Tichonov-Regularisierung, Nichtlineare Optimierung, Effizienter Algorithmus, Infrarotspektroskopie, total variation spatial regularization, variational model
وصف الملف: application/pdf
-
2Academic Journal
المؤلفون: Agarwal, Ravi P., Balaj, Mircea, O'Regan, Donal
مصطلحات موضوعية: keyword:intersection theorem, keyword:fixed point, keyword:saddle point, keyword:equilibrium problem, keyword:complementarity problem, msc:47H04, msc:47H10, msc:49J53
وصف الملف: application/pdf
Relation: mr:MR3066821; zbl:Zbl 1275.47105; reference:[1] Agarwal, R. P., Balaj, M., O'Regan, D.: Common fixed point theorems and minimax inequalities in locally convex Hausdorff topological vector spaces.Appl. Anal. 88 (2009), 1691-1699. Zbl 1223.47057, MR 2588412, 10.1080/00036810903331874; reference:[2] Aliprantis, C. D., Border, K. C.: Infinite Dimensional Analysis. A Hitchhiker's Guide. 3rd ed.Springer Berlin (2006). Zbl 1156.46001, MR 2378491; reference:[3] Ansari, Q. H., Farajzadeh, A. P., Schaible, S.: Existence of solutions of vector variational inequalities and vector complementarity problems.J. Glob. Optim. 45 (2009), 297-307. Zbl 1226.49015, MR 2539162, 10.1007/s10898-008-9375-x; reference:[4] Ansari, Q. H., Yao, J. C.: An existence result for the generalized vector equilibrium problem.Appl. Math. Lett. 12 (1999), 53-56. Zbl 1014.49008, MR 1751352, 10.1016/S0893-9659(99)00121-4; reference:[5] Balaj, M.: An intersection theorem with applications in minimax theory and equilibrium problem.J. Math. Anal. Appl. 336 (2007), 363-371. Zbl 1124.49019, MR 2348511, 10.1016/j.jmaa.2007.02.065; reference:[6] Balaj, M.: A fixed point-equilibrium theorem with applications.Bull. Belg. Math. Soc. - Simon Stevin 17 (2010), 919-928. Zbl 1213.54061, MR 2777781, 10.36045/bbms/1292334066; reference:[7] Balaj, M., O'Regan, D.: Inclusion and intersection theorems with applications in equilibrium theory in $G$-convex spaces.J. Korean Math. Soc. 47 (2010), 1017-1029. Zbl 1203.47092, MR 2723006, 10.4134/JKMS.2010.47.5.1017; reference:[8] Fan, K.: A generalization of Tychonoff's fixed point theorem.Math. Ann. 142 (1961), 305-310. Zbl 0093.36701, MR 0131268, 10.1007/BF01353421; reference:[9] Farajzadeh, A. P., Noor, M. A., Zainab, S.: Mixed quasi complementarity problems in topological vector spaces.J. Glob. Optim. 45 (2009), 229-235. Zbl 1193.90204, MR 2539158, 10.1007/s10898-008-9368-9; reference:[10] Himmelberg, C. J.: Fixed points of compact multifunctions.J. Math. Anal. Appl. 38 (1972), 205-207. Zbl 0225.54049, MR 0303368, 10.1016/0022-247X(72)90128-X; reference:[11] Jeyakumar, V., Oettli, W., Natividad, M.: A solvability theorem for a class of quasiconvex mappings with applications to optimization.J. Math. Anal. Appl. 179 (1993), 537-546. Zbl 0791.46002, MR 1249837, 10.1006/jmaa.1993.1368; reference:[12] Khan, S. A.: Generalized vector implicit quasi complementarity problems.J. Glob. Optim. 49 (2011), 695-705. Zbl 1242.90261, MR 2781983, 10.1007/s10898-010-9557-1; reference:[13] Khanh, P. Q., Quan, N. H.: Intersection theorems, coincidence theorems and maximal-element theorems in $GFC$-spaces.Optimization 59 (2010), 115-124. Zbl 1185.49007, MR 2765472, 10.1080/02331930903500324; reference:[14] Köthe, G.: Topological Vector Spaces I.Springer Berlin (1969). MR 0248498; reference:[15] Lan, K. Q.: An intersection theorem for multivalued maps and applications.Comput. Math. Appl. 48 (2004), 725-729. Zbl 1060.49016, MR 2105247, 10.1016/j.camwa.2004.03.003; reference:[16] Lee, B. S., Farajzadeh, A. P.: Generalized vector implicit complementarity problems with corresponding variational inequality problems.Appl. Math. Lett. 21 (2008), 1095-1100. Zbl 1211.90249, MR 2450657, 10.1016/j.aml.2007.12.008; reference:[17] Lu, H., Tang, D.: An intersection theorem in L-convex spaces with applications.J. Math. Anal. Appl. 312 (2005), 343-356. Zbl 1090.47045, MR 2175223, 10.1016/j.jmaa.2005.03.085
-
3Academic Journal
المؤلفون: Csiszár, Imre, Matúš, František
مصطلحات موضوعية: keyword:maximum entropy, keyword:moment constraint, keyword:generalized primal/dual solutions, keyword:normal integrand, keyword:minimizing sequence, keyword:convex duality, keyword:Bregman projection, keyword:conic core, keyword:generalized exponential family, keyword:inference principles, msc:49J53, msc:49K30, msc:62B10, msc:65K10, msc:90C46, msc:94A17
وصف الملف: application/pdf
Relation: mr:MR3013394; reference:[1] S. M. Ali, S. D. Silvey: A general class of coefficients of divergence of one distribution from another.J. Roy. Statist. Soc. Ser. B 28 (1966) 131-142. Zbl 0203.19902, MR 0196777; reference:[2] S. Amari, H. Nagaoka: Methods of Information Geometry.Transl. Math. Monographs 191, Oxford Univ. Press, 2000. Zbl 1146.62001, MR 1800071; reference:[3] S. Amari, A. Cichocki: Information geometry of divergence functions.Bull. Polish Acad. Sci. 58 (2010) 183-194.; reference:[4] O. Barndorff-Nielsen: Information and Exponential Families in Statistical Theory.Wiley, 1978. Zbl 0387.62011, MR 0489333; reference:[5] H. H. Bauschke, J. M. Borwein: Legendre functions and the method of random Bregman projections.J. Convex Anal. 4 (1997), 27-67. Zbl 0894.49019, MR 1459881; reference:[6] H. H. Bauschke, J. M. Borwein, P. L. Combettes: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces.Comm. Contemp. Math. 3 (2001), 615-647. Zbl 1032.49025, MR 1869107, 10.1142/S0219199701000524; reference:[7] A. Ben-Tal, A. Charnes: A dual optimization framework for some problems of information theory and statistics.Problems Control Inform. Theory 8 (1979), 387-401. Zbl 0437.90078, MR 0553884; reference:[8] J. M. Borwein, A. S. Lewis: Duality relationships for entropy-like minimization problems.SIAM J. Control Optim. 29 (1991), 325-338. Zbl 0797.49030, MR 1092730, 10.1137/0329017; reference:[9] J. M. Borwein, A. S. Lewis: Convergence of best entropy estimates.SIAM J. Optim. 1 (1991), 191-205. Zbl 0756.41037, MR 1098426, 10.1137/0801014; reference:[10] J. M. Borwein, A. S. Lewis: Partially-finite programming in $L_1$ and the existence of maximum entropy estimates.SIAM J. Optim. 3 (1993), 248-267. MR 1215444, 10.1137/0803012; reference:[11] J. M. Borwein, A. S. Lewis, D. Noll: Maximum entropy spectral analysis using derivative information. Part I: Fisher information and convex duality.Math. Oper. Res. 21 (1996), 442-468. MR 1397223, 10.1287/moor.21.2.442; reference:[12] L. M. Bregman: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming.USSR Comput. Math. and Math. Phys. 7 (1967), 200-217. Zbl 0186.23807, MR 0215617, 10.1016/0041-5553(67)90040-7; reference:[13] M. Broniatowski, A. Keziou: Minimization of $\phi$-divergences on sets of signed measures.Studia Sci. Math. Hungar. 43 (2006), 403-442. Zbl 1121.28004, MR 2273419; reference:[14] J. P. Burg: Maximum entropy spectral analysis.Paper presented at 37th Meeting of Soc. Explor. Geophysicists, Oklahoma City 1967.; reference:[15] J. P. Burg: Maximum entropy spectral analysis.Ph.D. Thesis, Dept. Geophysics, Stanford Univ., Stanford 1975.; reference:[16] Y. Censor, S. A. Zenios: Parallel Optimization.Oxford University Press, New York 1997. Zbl 0945.90064, MR 1486040; reference:[17] N. N. Chentsov: Statistical Decision Rules and Optimal Inference.Transl. Math. Monographs 53, American Math. Soc., Providence 1982. Russian original: Nauka, Moscow 1972. Zbl 0484.62008, MR 0645898; reference:[18] I. Csiszár: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten.Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 85-108. Zbl 0124.08703, MR 0164374; reference:[19] I. Csiszár: Information-type measures of difference of probability distributions and indirect observations.Studia Sci. Math. Hungar. 2 (1967), 299-318. Zbl 0157.25802, MR 0219345; reference:[20] I. Csiszár: $I$-divergence geometry of probability distributions and minimization problems.Ann. Probab. 3 (1975), 146-158. MR 0365798, 10.1214/aop/1176996454; reference:[21] I. Csiszár: Sanov property, generalized $I$-projection and a conditional limit theorem.Ann. Probab. 12 (1984), 768-793. Zbl 0544.60011, MR 0744233, 10.1214/aop/1176993227; reference:[22] I. Csiszár: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems.Ann. Statist. 19 (1991), 2031-2066. Zbl 0753.62003, MR 1135163, 10.1214/aos/1176348385; reference:[23] I. Csiszár: Generalized projections for non-negative functions.Acta Math. Hungar. 68 (1995), 1-2, 161-185. Zbl 0837.62006, MR 1320794, 10.1007/BF01874442; reference:[24] I. Csiszár, F. Gamboa, E. Gassiat: MEM pixel correlated solutions for generalized moment and interpolation problems.IEEE Trans. Inform. Theory 45 (1999), 2253-2270. Zbl 0958.94002, MR 1725114, 10.1109/18.796367; reference:[25] I. Csiszár, F. Matúš: Convex cores of measures on $\mathcal{R}^d$.Studia Sci. Math. Hungar. 38 (2001), 177-190. MR 1877777; reference:[26] I. Csiszár, F. Matúš: Information projections revisited.IEEE Trans. Inform. Theory 49 (2003), 1474-1490. Zbl 1063.94016, MR 1984936, 10.1109/TIT.2003.810633; reference:[27] I. Csiszár, F. Matúš: Generalized maximum likelihood estimates for infinite dimensional exponential families.In: Proc. Prague Stochastics'06, Prague 2006, pp. 288-297.; reference:[28] I. Csiszár, F. Matúš: Generalized maximum likelihood estimates for exponential families.Probab. Theory Related Fields 141 (2008), 213-246. Zbl 1133.62039, MR 2372970, 10.1007/s00440-007-0084-z; reference:[29] I. Csiszár, F. Matúš: On minimization of entropy functionals under moment constraints.In: Proc. ISIT 2008, Toronto, pp. 2101-2105.; reference:[30] I. Csiszár, F. Matúš: On minimization of multivariate entropy functionals.In: Proc. ITW 2009, Volos, Greece, pp. 96-100.; reference:[31] I. Csiszár, F. Matúš: Minimization of entropy functionals revisited.In: Proc. ISIT 2012, Cambridge, MA, pp. 150-154.; reference:[32] D. Dacunha-Castelle, F. Gamboa: Maximum d'entropie et problème des moments.Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), 567-596. Zbl 0788.62007, MR 1080586; reference:[33] A. P. Dawid, P. D. Grünwald: Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory.Ann. Statist. 32 (2004), 1367-1433. Zbl 1048.62008, MR 2089128, 10.1214/009053604000000553; reference:[34] S. Eguchi: Information geometry and statistical pattern recognition.Sugaku Expositions, Amer. Math. Soc. 19 (2006), 197-216. MR 2279777; reference:[35] B. A. Frigyik, S. Srivastava, M. R. Gupta: Functional Bregman divergence and Bayesian estimation of distributions.IEEE Trans. Inform. Theory 54 (2008), 5130-5139. MR 2589887, 10.1109/TIT.2008.929943; reference:[36] F. Gamboa, E. Gassiat: Bayesian methods and maximum entropy for ill-posed inverse problems.Ann. Statist. 25 (1997), 1, 328-350. Zbl 0871.62010, MR 1429928, 10.1214/aos/1034276632; reference:[37] E. T. Jaynes: Information theory and statistical mechanics.Physical Review Ser. II 106 (1957), 620-630. Zbl 0084.43701, MR 0087305; reference:[38] L. Jones, C. Byrne: General entropy criteria for inverse problems with application to data compression, pattern classification and cluster analysis.IEEE Trans. Inform. Theory 36 (1990), 23-30. MR 1043277, 10.1109/18.50370; reference:[39] S. Kullback: Information Theory and Statistics.John Wiley and Sons, New York 1959. Zbl 0897.62003, MR 0103557; reference:[40] S. Kullback, R. A. Leibler: On information and sufficiency.Ann. Math. Statist. 22 (1951), 79-86. Zbl 0042.38403, MR 0039968, 10.1214/aoms/1177729694; reference:[41] C. Léonard: Minimizers of energy functionals.Acta Math. Hungar. 93 (2001), 281-325. Zbl 1052.49017, MR 1925356, 10.1023/A:1017919422086; reference:[42] C. Léonard: Minimizers of energy functionals under not very integrable constraints.J. Convex Anal. 10 (2003), 63-68. MR 1999902; reference:[43] C. Léonard: Minimization of entropy functionals.J. Math. Anal. Appl. 346 (2008), 183-204. Zbl 1152.49039, MR 2428283, 10.1016/j.jmaa.2008.04.048; reference:[44] C. Léonard: Entropic projections and dominating points.ESAIM: Probability and Statistics 14 (2010), 343-381. Zbl 1220.60018, MR 2795471, 10.1051/ps/2009003; reference:[45] F. Liese, I. Vajda: Convex Statistical Distances.Teubner Texte zur Mathematik 95, Teubner Verlag, Leipzig 1986. Zbl 0656.62004, MR 0926905; reference:[46] N. Murata, T. Takenouchi, T. Kanamori, S. Eguchi: Information geometry of U-Boost and Bregman divergence.Neural Computation 16 (2004), 1437-1481. Zbl 1102.68489, 10.1162/089976604323057452; reference:[47] R. T. Rockafellar: Integrals which are convex functionals.Pacific J. Math. 24 (1968), 525-539. Zbl 0324.90061, MR 0236689, 10.2140/pjm.1968.24.525; reference:[48] R. T. Rockafellar: Convex integral functionals and duality.In: Contributions to Nonlinear Functional Analysis (E. H. Zarantonello, ed.), Academic Press, New York 1971, pp. 215-236. Zbl 0326.49008, MR 0390870; reference:[49] R. T. Rockafellar: Convex Analysis.Princeton University Press, Princeton 1970. Zbl 1011.49013, MR 0274683; reference:[50] R. T. Rockafellar, R. J.-B. Wets: Variational Analysis.Springer Verlag, Berlin - Heidel\-berg - New York 2004. Zbl 0888.49001, MR 1491362; reference:[51] M. Teboulle, I. Vajda: Convergence of best $\phi$-entropy estimates.IEEE Trans. Inform. Theory 39 (1993), 297-301. Zbl 0765.94001, MR 1211512, 10.1109/18.179378; reference:[52] F. Topsoe: Information-theoretical optimization techniques.Kybernetika 15 (1979), 8-27. MR 0529888; reference:[53] I. Vajda: Theory of Statistical Inference and Information.Kluwer Academic Puplishers, Dordrecht 1989. Zbl 0711.62002
-
4Academic Journal
المؤلفون: Ferger, Dietmar
مصطلحات موضوعية: keyword:$\epsilon$-argmin of stochastic process, keyword:random closed sets, keyword:weak convergence of Hoffmann--Jørgensen, keyword:Fell-topology, keyword:Missing-topology, msc:49J53, msc:60B10, msc:60F05, msc:90C15
وصف الملف: application/pdf
Relation: mr:MR2907854; zbl:Zbl 1241.93054; reference:[1] Billingsley, P.: Convergence of Probability Measures.John Wiley & Sons, New York 1968. Zbl 0172.21201, MR 0233396; reference:[2] Ferger, D.: A continuous mapping theorem for the Argmax-functional in the non-unique case.Statist. Neerlandica 58 (2004), 83–96. Zbl 1090.60032, MR 2042258, 10.1046/j.0039-0402.2003.00111.x; reference:[3] Gänssler, P., Stute, W.: Wahrscheinlichkeitstheorie.Springer–Verlag, Berlin – Heidelberg 1977. MR 0501219; reference:[4] Gersch, O.: Convergence in Distribution of Random Closed Sets and Applications in Stability Theory and Stochastic Optimization.PhD Thesis. Technische Universität Ilmenau 2007.; reference:[5] Kallenberg, O.: Foundations of Modern Probability.Springer–Verlag, New York 1997. Zbl 0892.60001, MR 1464694; reference:[6] Lagodowski, A., Rychlik, Z.: Weak convergence of probability measures on the function space $D_d[0,\infty )$.Bull. Polish Acad. Sci. Math. 34 (1986), 329–335. MR 0874876; reference:[7] Lindvall, T.: Weak convergence of probability measures and random functions in the function space $D[0,\infty )$.J. Appl. Probab. 10 (1973), 109–121. Zbl 0258.60008, MR 0362429, 10.2307/3212499; reference:[8] Norberg, T.: Convergence and existence of random set distributions.Ann. Probab. 12 (1984), 726–732. Zbl 0545.60021, MR 0744229, 10.1214/aop/1176993223; reference:[9] Pflug, G. Ch.: Asymptotic dominance and confidence for solutions of stochastic programs.Czechoslovak J. Oper. Res. 1 (1992), 21–30. Zbl 1015.90511; reference:[10] Pflug, G. Ch.: Asymptotic stochastic orograms.Math. Oper. Res. 20 (1995), 769–789. MR 1378105, 10.1287/moor.20.4.769; reference:[11] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis.Springer–Verlag, Berlin – Heidelberg 1998. Zbl 0888.49001, MR 1491362; reference:[12] Royden, H. L.: Real Analysis.Third edition Macmillan Publishing Company, New York 1988. Zbl 0704.26006, MR 1013117; reference:[13] Salinetti, G., Wets, R. J.-B.: On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima.Math. Oper. Res. 11 (1986), 385–419. Zbl 0611.60004, MR 0852332, 10.1287/moor.11.3.385; reference:[14] Vaart, A. W. van der, Wellner, J. A.: Weak Convergence and Empirical Processes.Springer–Verlag, New York 1996. MR 1385671; reference:[15] Vogel, S.: Qualitative stability of stochastic programs with applications in asymptotic statistics.Statist. Decisions 23 (2005), 219–248. Zbl 1093.62032, MR 2236458, 10.1524/stnd.2005.23.3.219; reference:[16] Vogel, S.: Semiconvergence in distribution of random closed sets with applications to random optimization problems.Ann. Oper. Res. 142 (2006), 269–282. MR 2222921, 10.1007/s10479-006-6172-0
-
5Academic Journal
المؤلفون: Henrion, René, Outrata, Jiří, Surowiec, Thomas
مصطلحات موضوعية: keyword:mathematical programs with equilibrium constraints, keyword:S-stationary points, keyword:M-stationary points, keyword:Fréchet normal cone, keyword:limiting normal cone, msc:49J53, msc:90C30, msc:90C31, msc:90C47
وصف الملف: application/pdf
Relation: mr:MR2676080; zbl:Zbl 1225.90125; reference:[1] Dontchev, A. L., Rockafellar, R. T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets.SIAM J. Optim. 6 (1996), 1087–1105. Zbl 0899.49004, MR 1416530, 10.1137/S1052623495284029; reference:[2] Dontchev, A. L., Rockafellar, R. T.: Ample parameterization of variational inclusions.SIAM J. Optim. 12 (2001), 170–187. Zbl 1008.49009, MR 1870590, 10.1137/S1052623400371016; reference:[3] Henrion, R., Jourani, A., Outrata, J. V.: On the calmness of a class of multifunctions.SIAM J. Optim. 13 (2002), 603–618. Zbl 1028.49018, MR 1951037, 10.1137/S1052623401395553; reference:[4] Henrion, R., Römisch, W.: On M-stationary points for a stochastic equilibrium problem under equilibrium constraints in electricity spot market modeling.Appl. Math. 52 (2007), 473–494. MR 2357576, 10.1007/s10492-007-0028-z; reference:[5] Henrion, R., Outrata, J. V., Surowiec, T.: On the coderivative of normal cone mappings to inequality systems.Nonlinear Anal. 71 (2009), 1213–1226. MR 2527541, 10.1016/j.na.2008.11.089; reference:[6] Henrion, R., Outrata, J. V., Surowiec, T.: Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market.Weierstraß-Institute of Applied Analysis and Stochastics, Preprint No. 1433 (2009) and submitted. MR 2527541; reference:[7] Henrion, R., Mordukhovich, B. S., Nam, N. M.: Second-order analysis of polyhedral systems in finite and infinite dimensions with applications to robust stability of variational inequalities.SIAM J. Optim., to appear. MR 2650845; reference:[8] Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints.Cambridge University Press, Cambridge 1996. Zbl 1139.90003, MR 1419501; reference:[9] Mordukhovich, B. S.: Approximation Methods in Problems of Optimization and Control (in Russian).Nauka, Moscow 1988. MR 0945143; reference:[10] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation.Vol. 1: Basic Theory. Springer, Berlin 2006.; reference:[11] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation.Vol. 2: Applications. Springer, Berlin 2006. MR 2191745; reference:[12] Flegel, M. L., Kanzow, C., Outrata, J. V.: Optimality conditions for disjunctive programs with application to mathematical programs with equilibrium constraints.Set-Valued Anal. 15 (2007), 139–162. Zbl 1149.90143, MR 2321948, 10.1007/s11228-006-0033-5; reference:[13] Outrata, J. V., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints.Kluwer Academic Publishers, Dordrecht 1998. MR 1641213; reference:[14] Pang, J.-S., Fukushima, M.: Complementarity constraint qualifications and simplified B-stationarity conditions for mathematical programs with equilibrium constraints.Comput. Optim. Appl. 13 (1999), 111–136. MR 1704116, 10.1023/A:1008656806889; reference:[15] Robinson, S. M.: Some continuity properties of polyhedral multifunctions.Math. Program. Studies 14 (1976), 206–214. Zbl 0449.90090, MR 0600130, 10.1007/BFb0120929; reference:[16] Robinson, S. M.: Strongly regular generalized equations.Math. Oper. Res. 5 (1980), 43–62. Zbl 0437.90094, MR 0561153, 10.1287/moor.5.1.43; reference:[17] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis.Springer, Berlin 1998. Zbl 0888.49001, MR 1491362; reference:[18] Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: Stationarity, optimality and sensitivity.Math. Oper. Res. 25 (2000), 1–22. MR 1854317, 10.1287/moor.25.1.1.15213; reference:[19] Surowiec, T.: Explicit Stationarity Conditions and Solution Characterization for Equilibrium Problems with Equilibrium Constraints.Doctoral Thesis, Humboldt University, Berlin 2009.
-
6Academic Journal
المؤلفون: Park, Jong Yeoul, Park, Sun Hye
مصطلحات موضوعية: keyword:existence of solution, keyword:differential inclusion, keyword:memory source term, keyword:uniform decay, msc:35L70, msc:35L71, msc:35L85, msc:35L86, msc:49J53
وصف الملف: application/pdf
Relation: mr:MR2532376; zbl:Zbl 1224.35285; reference:[1] Aassila, M.: Global existence of solutions to a wave equation with damping and source terms.Diff. Int. Eqs. 14 (2001), 1301-1314. Zbl 1018.35053, MR 1859607; reference:[2] Cavalcanti, M. M.: Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation.Discrete Contin. Dynam. Systems 8 (2002), 675-695. Zbl 1009.74034, MR 1897875; reference:[3] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Ma, T. F., Soriano, J. A.: Global existence and asymptotic stability for viscoelastic problems.Diff. Int. Eqs. 15 (2002), 731-748. MR 1893844; reference:[4] Gasiński, L.: Existence of solutions for hyperbolic hemivariational inequalities.J. Math. Anal. Appl. 276 (2002), 723-746. MR 1944786, 10.1016/S0022-247X(02)00431-6; reference:[5] Gasiński, L., Papageorgiou, N. S.: Nonlinear hemivariational inequalities at resonance.J. Math. Anal. Appl. 244 (2000), 200-213. MR 1746797, 10.1006/jmaa.1999.6701; reference:[6] Kormornik, V., Zuazua, E.: A direct method for the boundary stabilization of the wave equation.J. Math. Pures et Appl. 69 (1990), 33-54. MR 1054123; reference:[7] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod-Gauthier Villars, Paris (1969). Zbl 0189.40603, MR 0259693; reference:[8] Miettinen, M.: A parabolic hemivariational inequality.Nonlinear Anal. 26 (1996), 725-734. Zbl 0858.35072, MR 1362746, 10.1016/0362-546X(94)00312-6; reference:[9] Miettinen, M., Panagiotopoulos, P. D.: On parabolic hemivariational inequalities and applications.Nonlinear Anal. 35 (1999), 885-915. Zbl 0923.35089, MR 1664899; reference:[10] Rivera, J. E. Munoz, Salvatierra, A. P.: Asymptotic behavior of the energy in partially viscoelastic materials.Quart. Appl. Math. 59 (2001), 557-578. MR 1848535, 10.1090/qam/1848535; reference:[11] Panagiotopoulos, P. D.: Inequality Problems in Mechanics and Applincations.Convex and Nonconvex Energy Functions, Birkhäuser, Basel, Boston (1985). MR 0896909; reference:[12] Panagiotopoulos,, P. D.: Hemivariational Inequalities and Applications in Mechanics and Engineering.Springer, New York (1993). MR 1385670; reference:[13] Park, J. Y., Bae, J. J.: On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term.Appl. Math. Comput. 129 (2002), 87-105. Zbl 1032.35139, MR 1897321, 10.1016/S0096-3003(01)00031-5; reference:[14] Park, J. Y., Kim, H. M., Park, S. H.: On weak solutions for hyperbolic differential inclusion with discontinuous nonlinearities.Nonlinear Anal. 55 (2003), 103-113. Zbl 1032.35144, MR 2001634, 10.1016/S0362-546X(03)00216-5; reference:[15] Rauch, J.: Discontinuous semilinear differential equations and multiple valued maps.Proc. Amer. Math. Soc. 64 (1977), 277-282. Zbl 0413.35031, MR 0442453, 10.1090/S0002-9939-1977-0442453-6
-
7Academic Journal
المؤلفون: Bao, Truong Q., Mordukhovich, Boris S.
مصطلحات موضوعية: keyword:variational analysis, keyword:nonsmooth and set-valued optimization, keyword:equilibrium constraints, keyword:existence of optimal solutions, keyword:necessary optimality conditions, keyword:generalized differentiation, msc:49J52, msc:49J53, msc:90C29, msc:90C30, msc:90C33
وصف الملف: application/pdf
Relation: mr:MR2357575; zbl:Zbl 1164.49306; reference:[1] T. Q. Bao, P. Gupta, B. S. Mordukhovich: Necessary conditions in multiobjective optimization with equilibrium constraints.J. Optim. Theory Appl. 135 (2007), . MR 2346530; reference:[2] T. Q. Bao, B. S. Mordukhovich: Variational principles for set-valued mappings with applications to multiobjective optimization.Control Cybern. 36 (2007), 531–562. MR 2376038; reference:[3] J. M. Borwein, Q. J. Zhu: Techniques of Variational Analysis. CMS Books in Math., Vol. 20.Springer-Verlag, New York, 2005. MR 2144010; reference:[4] F. Facchinei, J.-S. Pang: Finite-Dimensional Variational Inequalities and Complementary Problems, Vol. I, Vol. II.Springer-Verlag, New York, 2003. MR 1955648; reference:[5] J. Jahn: Vector Optimization. Theory, Applications and Extensions. Series Oper. Res.Springer-Verlag, Berlin, 2004. MR 2058695; reference:[6] Z.-Q. Luo, J.-S. Pang, and D. Ralph: Mathematical Programs with Equilibrium Constraints.Cambridge University Press, Cambridge, 1997. MR 1419501; reference:[7] B. S. Mordukhovich: Variational Analysis and Generalized Differentiation. I. Basic Theory. Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 330.Springer-Verlag, Berlin, 2006. MR 2191744; reference:[8] B. S. Mordukhovich: Variational Analysis and Generalized Differentiation. II. Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 331.Springer-Verlag, Berlin, 2006. MR 2191745; reference:[9] B. S. Mordukhovich, J. V. Outrata: On second-order subdifferentials and their applications.SIAM J. Optim. 12 (2001), 139–169. MR 1870589, 10.1137/S1052623400377153; reference:[10] B. S. Mordukhovich, J. V. Outrata: Coderivative analysis of quasivariational inequalities with applications to stability and optimization.SIAM J. Optim (to appear). MR 2338444; reference:[11] B. S. Mordukhovich, J. V. Outrata, and M. Červinka: Equilibrium problems with complementarity constraints: case study with applications to oligopolistic markets.Optimization (to appear). MR 2344087; reference:[12] J. V. Outrata: Optimality conditions for a class of mathematical programs with equilibrium constraints.Math. Oper. Res. 24 (1999), 627–644. Zbl 1039.90088, MR 1854246, 10.1287/moor.24.3.627; reference:[13] J. V. Outrata: A generalized mathematical program with equilibrium constraints.SIAM J. Control Optim. 38 (2000), 1623–1638. Zbl 0968.49012, MR 1766433, 10.1137/S0363012999352911; reference:[14] J. V. Outrata: A note on a class of equilibrium problems with equilibrium constraints.Kybernetika 40 (2004), 585–594. Zbl 1249.49017, MR 2120998; reference:[15] J. V. Outrata, M. Kočvara, and J. Zowe:: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints.Kluwer Academic Publishers, Dordrecht, 1998. MR 1641213; reference:[16] S. M. Robinson: Generalized equations and their solutions. I. Basic theory.Math. Program. Study 10 (1979), 128–141. Zbl 0404.90093, MR 0527064, 10.1007/BFb0120850; reference:[17] R. T. Rockafellar, R. J.-B. Wets: Variational Analysis. Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 317.Springer-Verlag, Berlin, 1998. MR 1491362; reference:[18] X. Y. Zheng, K. F. Ng: The Lagrange multiplier rule for multifunctions in Banach spaces.SIAM J. Optim. 17 (2006), 1154–1175. Zbl 1127.49014, MR 2274507, 10.1137/060651860
-
8Academic Journal
مصطلحات موضوعية: keyword:$p$-Laplacian, keyword:nonsmooth critical point theory, keyword:Clarke subdifferential, keyword:saddle point theorem, keyword:periodic solution, keyword:Poincare-Wirtinger inequality, keyword:Sobolev inequality, keyword:nonsmooth Palais-Smale condition, msc:34A60, msc:34C25, msc:37J45, msc:47J30, msc:49J52, msc:49J53
وصف الملف: application/pdf
Relation: mr:MR2059256; zbl:Zbl 1080.34532; reference:[1] H. Brezis and L. Nirenberg: Remarks on finding critical points.Comm. Pure. Appl. Math. 44 (1991), 939–963. MR 1127041, 10.1002/cpa.3160440808; reference:[2] K. C. Chang: Variational methods for nondifferentiable functionals and their applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102–129. MR 0614246, 10.1016/0022-247X(81)90095-0; reference:[3] F. H. Clarke: Optimization and Nonsmooth Analysis.Wiley, New York, 1983. Zbl 0582.49001, MR 0709590; reference:[4] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume I: Theory.Kluwer, Dordrecht, 1997. MR 1485775; reference:[5] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume II: Applications.Kluwer, Dordrecht, 1997. MR 1741926; reference:[6] N. Kourogenis and N. S. Papageorgiou: Nonsmooth critical point theory and nonlinear elliptic equations at resonance.J. Austral. Math. Soc. (Series A) 69 (2000), 245–271. MR 1775181, 10.1017/S1446788700002202; reference:[7] N. Kourogenis and N. S. Papageorgiou: Periodic solutions for quasilinear differential equations with discontinuous nonlinearities.Acta. Sci. Math. (Szeged) 65 (1999), 529–542. MR 1737269; reference:[8] G. Lebourg: Valeur moyenne pour gradient généralisé.CRAS Paris 281 (1975), 795–797. Zbl 0317.46034, MR 0388097; reference:[9] J. Mawhin and M. Willem: Critical Point Theory and Hamiltonian Systems.Springer-Verlag, Berlin, 1989. MR 0982267; reference:[10] Z. Naniewicz and P. Panagiotopoulos: Mathematical Theory of Hemivariational Inequalities and Applications.Marcel Dekker, New York, 1994. MR 1304257; reference:[11] P. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics, No.45.AMS, Providence, 1986. MR 0845785; reference:[12] C. L. Tang: Periodic solutions for nonautonomous second order systems with sublinear nonlinearity.Proc. AMS 126 (1998), 3263–3270. Zbl 0902.34036, MR 1476396; reference:[13] C. L. Tang: Existence and multiplicity of periodic solutions for nonautonomous second order systems.Nonlin. Anal. 32 (1998), 299–304. Zbl 0949.34032, MR 1610641, 10.1016/S0362-546X(97)00493-8; reference:[14] J. P. Aubin and H. Frankowska: Set-Valued Analysis.Birkhäuser-Verlag, Boston, 1990. MR 1048347
-
9
المؤلفون: Flegel, Michael L.
مصطلحات موضوعية: msc:49J53, ddc:510, Nichtlineare Optimierung
وصف الملف: application/pdf
-
10Academic Journal
المؤلفون: Veselý, Libor, Zajíček, Luděk
وصف الملف: application/pdf
Relation: mr:MR1900395; zbl:Zbl 1129.46311
-
11Academic Journal
المؤلفون: Kristály, Alexandru, Varga, Csaba
وصف الملف: application/pdf
Relation: mr:MR1900392; zbl:Zbl 1031.49007
-
12Academic Journal
المؤلفون: Bárcenas, Diomedes
مصطلحات موضوعية: keyword:weak compactness, keyword:measurable multifunctions, keyword:Radon-Nikodym property, keyword:multimeasures, msc:28B05, msc:28B20, msc:46G10, msc:47D06, msc:49J53
وصف الملف: application/pdf
Relation: mr:MR1851543; zbl:Zbl 1079.28501; reference:[1] Z. Arststein: Weak convergence of set valued functions and control.SIAM, J. Control Optim. 13 (1975), 865–878. MR 0377661, 10.1137/0313052; reference:[2] I.Assani and A. Klei: Parties décomposables compactes de $L_E^1$.C. R. Acad. Sci. Paris, Ser. I 294 (1982), 533–536. MR 0679937; reference:[3] D. Barcenas and W. Urbina: Measurable multifunctions in non separable Banach spaces.SIAM, J. Math. Anal. 28 (1997), 1212–1226. MR 1466678, 10.1137/S0036141095296005; reference:[4] C. Castaing: Weak compactness criteria in set valued integration.Laboratorie d’Analyse convex, prepublication 1995/03. Zbl 0918.28014; reference:[5] C. Castaing and P. Clauzure: Compacite faible dans lespace des multifuntions integrablements bornees et minimizations.Ann. Mat. Pura Appl. (IV) 140 (1985), 345–364. MR 0807644; reference:[6] C. Castaing and M. Valadier: Convex Analysis and Measurable Multifunctions.LNM 586, Springer Verlag, Berlin, 1977. MR 0467310; reference:[7] W. J. Davis, T. Fiegel, W. B. Johnson and A. Pełczyński: Factoring weakly compact operators.J. Funct. Anal. 17 (1974), 311–327. MR 0355536, 10.1016/0022-1236(74)90044-5; reference:[8] J. Diestel and W. Ruess and W. Schachermayer: On weak copactness in $L^1(\mu ,X)$.Proc. Amer. Math. Soc. 118 (1993), 443–453. MR 1132408, 10.1090/S0002-9939-1993-1132408-X; reference:[9] J. Diestel, J. J. Uhl: Vector measures.Amer. Math. Soc. Surveys vol. 15, Providence, R.I., 1977. MR 0453964; reference:[10] C. Godet Thobie: Some results about multimeasures and their selectors.Measure Theory, D. Kölzow (ed.), LNM 794, Springer-Verlag, Berlin, 1980, pp. 112–116. Zbl 0432.28009, MR 0577965; reference:[11] N. Ghoussoub and P. Saab: Weak compactness in spaces of Bochner integrable functions and the Radon-Nikodym property.Pacific J. Math. 110 (1984), 65–70. MR 0722738, 10.2140/pjm.1984.110.65; reference:[12] F. Hiai: Radon-Nikodym theorems for set valued measures.J. Multivariate Anal. 8 (1978), 96–118. Zbl 0384.28006, MR 0583862, 10.1016/0047-259X(78)90022-2; reference:[13] F. Hiai and H. Umegaki: Integrals, conditional expectations and martingales of multivalued functions.J. Multivariate Anal. 7 (1977), 149–182. MR 0507504, 10.1016/0047-259X(77)90037-9; reference:[14] H. A. Klein: A compactness criteria in $L^1(E)$ and Radon-Nikodym theorems for multimeasures.Bull. Soc. Math. 2ê serie 112 (1988), 305–324.; reference:[15] M. Muresan: On a boundary value problem for quasi-linear differential inclusions of evolution.Collect. Math. 45 (1994), 165–175. Zbl 0824.34017, MR 1316934; reference:[16] N. Papageorgiou: Contributions to the theory of set valued functions and set valued measures.Trans. Amer. Math. Soc. 304 (1987), 245–265. Zbl 0634.28004, MR 0906815, 10.1090/S0002-9947-1987-0906815-3; reference:[17] N. Papageorgiou: Boundary value problems for evolution inclusions.Comment. Math. Univ. Carolin. 29 (1988), 355–363. Zbl 0696.35074, MR 0957404; reference:[18] N. Papageorgiou: Decomponsable sets in the Lebesgue Bochner spaces.Comment. Math. Univ. St. Paul 37 (1988), 49–62. MR 0942305; reference:[19] N. Papageorgiou: Radon-Nikodym theorem for multimeasures and transition multimeasures.Proc. Amer. Math. Soc. 111 (1991), 465–474. MR 1036989; reference:[20] N. Papageorgiou: On the convergence properties of measurable multifuntions in a Banach space.Math. Japon. 37 (1992), 637–643. MR 1176035; reference:[21] N. Papageorgiou: On the conditional expectation and convergence properties of Radon sets.Trans. Amer. Math. Soc. 347 (1995), 2495–2515. MR 1290728, 10.1090/S0002-9947-1995-1290728-9; reference:[22] H. P. Rosenthal: A characterization of Banach spaces containing $l^1$.Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 0358307, 10.1073/pnas.71.6.2411; reference:[23] C. Stegall: The Radon-Nikodym property in conjugate Banach Spaces II.Trans. Amer. Math. Soc. 264 (1981), 507–519. Zbl 0475.46016, MR 0603779; reference:[24] X. Xiaoping, C. Lixing, L. Goucheng and Y. Xiaobo: Set valued mesures and integral representations.Comment. Math. Univ. Carolin. 37 (1996), 269–284. MR 1399002
-
13Academic Journal
المؤلفون: Leonetti, Francesco, Siepe, Francesco
مصطلحات موضوعية: keyword:calculus of variations, keyword:minimizers, keyword:regularity, msc:35J20, msc:35J60, msc:49J20, msc:49J53, msc:49N60
وصف الملف: application/pdf
Relation: mr:MR1860235; zbl:Zbl 1051.49023; reference:[1] Boccardo L., Giachetti D.: Alcune osservazioni sulla regolarità delle soluzioni di problemi fortemente non lineari e applicazioni.Ricerche Mat. XXXIV (1985), 309-323. MR 0870828; reference:[2] Boccardo L., Schianchi R.: A remark on the $L^s$-regularity of the minima of functionals of the calculus of variations.Rev. Mat. Univ. Complut. Madrid 2 (1989), 113-118. MR 1012107; reference:[3] Campanato S.: Sistemi ellittici in forma di divergenza.Quaderni Scuola Norm. Sup. Pisa, 1980. MR 0668196; reference:[4] De Giorgi E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico.Boll. Un. Mat. Ital. 4 (1968), 135-137. MR 0227827; reference:[5] D'Ottavio A., Leonetti F., Musciano C.: Maximum principle for vector-valued mappings minimizing variational integrals.Atti Sem. Mat. Fis. Univ. Modena, suppl. vol. XLVI (1998), 677-683. Zbl 0913.35026, MR 1645746; reference:[6] Fusco N., Hutchinson J.: Partial regularity and everywhere continuity for a model problem from non-linear elasticity.J. Austral. Math. Soc. (Series A) 57 (1994), 158-169. MR 1288671; reference:[7] Giachetti D., Porzio M.M.: Local regularity results for minima of functionals of the calculus of variations.Nonlinear Anal. TMA 39 (2000), 463-482. MR 1725398; reference:[8] Giaquinta M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems.Ann. of Math. Stud. 105, Princeton Univ. Press, 1983. Zbl 0516.49003, MR 0717034; reference:[9] Giusti E.: Metodi diretti nel calcolo delle variazioni.U.M.I., 1994. Zbl 0942.49002, MR 1707291; reference:[10] Kufner A., John O., Fučik S.: Function Spaces.Noordhoff International Publishing, Leyden, 1977. MR 0482102; reference:[11] Leonetti F.: Maximum principle for vector-valued minimizers of some integral functionals.Boll. Un. Mat. Ital. 7 (1991), 51-56. Zbl 0729.49015, MR 1101010; reference:[12] Leonetti F.: Maximum principle for functionals depending on minors of the jacobian matrix of vector-valued mappings.Australian Nat. Univ., Centre for Math. Anal., Research Report 20, 1990.; reference:[13] Nečas J., Stará J.: Principio di massimo per i sistemi ellittici quasi lineari non diagonali.Boll. Un. Mat. Ital. 6 (1972), 1-10. MR 0315281; reference:[14] Stampacchia G.: Equations elliptiques du second ordre à coefficientes discontinus.Semin. de Math. Supérieures, Univ. de Montréal 16 (1966). MR 0251373
-
14Academic Journal
-
15Conference