يعرض 1 - 20 نتائج من 32 نتيجة بحث عن '"msc:47B60"', وقت الاستعلام: 0.60s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4577041; zbl:Zbl 07723831; reference:[1] Aliprantis C. D., Burkinshaw O.: Positive Operators.Springer, Dordrecht, 2006. Zbl 1098.47001, MR 2262133; reference:[2] Aqzzouz B., Elbour A.: Some new results on the class of AM-compact operators.Rend. Circ. Mat. Palermo (2) 59 (2010), no. 2, 267–275. MR 2670695, 10.1007/s12215-010-0020-4; reference:[3] Aqzzouz B., Elbour A., H’michane J.: Some properties of the class of positive Dunford–Pettis operators.J. Math. Anal. Appl. 354 (2009), no. 1, 295–300. MR 2510440, 10.1016/j.jmaa.2008.12.063; reference:[4] Aqzzouz B., H'michane J.: The duality problem for the class of order weakly compact operators.Glasg. Math. J. 51 (2009), no. 1, 101–108. MR 2471680, 10.1017/S0017089508004576; reference:[5] Bouras K., Lhaimer D., Moussa M.: On the class of almost L-weakly and almost M-weakly compact operators.Positivity 22 (2018), 1433–1443. MR 3863626, 10.1007/s11117-018-0586-1; reference:[6] Dodds P. G., Fremlin D. H.: Compact operators on Banach lattices.Israel J. Math. 34 (1979), no. 4, 287–320. MR 0570888, 10.1007/BF02760610; reference:[7] Elbour A., Afkir F., Sabiri M.: Some properties of almost L-weakly and almost M-weakly compact operators.Positivity 24 (2020), 141–149. MR 4052686, 10.1007/s11117-019-00671-7; reference:[8] El Fahri K., Khabaoui H., H'michane J.: Some characterizations of L-weakly compact sets using the unbounded absolute weak convergence and applications.Positivity 26 (2022), no. 3, Paper No. 42, 13 pages. MR 4412414; reference:[9] El Fahri K., Oughajji F. Z.: On the class of almost order (L) sets and applications.Rendiconti del Circolo Matematico di Palermo Series 2 70 (2021), 235–245. MR 4234309; reference:[10] Lhaimer D., Bouras K., Moussa M.: On the class of order L-weakly and order M-weakly compact operators.Positivity 25 (2021), no. 4, 1569–1578. MR 4301150, 10.1007/s11117-021-00829-2; reference:[11] Meyer-Nieberg P.: Banach Lattices.Universitext, Springer, Berlin, 1991. Zbl 0743.46015, MR 1128093; reference:[12] Wnuk W.: Banach lattices with properties of the Schur type---a survey.Confer. Sem. Mat. Univ. Bari (1993), No. 249, 25 pages. MR 1230964; reference:[13] Wnuk W.: Remarks on J. R. Holub's paper concerning Dunford–Pettis operators.Math. Japon. 38 (1993), no. 6, 1077–1080. MR 1250331; reference:[14] Zabeti O.: Unbounded absolute weak convergence in Banach lattices.Positivity 22 (2018), no. 2, 501–505. MR 3780811, 10.1007/s11117-017-0524-7; reference:[15] Zabeti O.: Unbounded continuous operators and unbounded Banach–Saks property in Banach lattices.Positivity 25 (2021), no. 5, 1989–2001. MR 4338556, 10.1007/s11117-021-00858-x

  2. 2
    Academic Journal

    المؤلفون: Hafidi, Noufissa, H'michane, Jawad

    وصف الملف: application/pdf

    Relation: mr:MR4405814; zbl:Zbl 07511571; reference:[1] Aliprantis C. D., Burkinshaw O.: Positive Operators.reprint of the 1985 original, Springer, Dordrecht, 2006. Zbl 1098.47001, MR 2262133; reference:[2] Aqzzouz B., Elbour A., H'michane J.: The duality problem for the class of $b$-weakly compact operators.Positivity 13 (2009), no. 4, 683–692. MR 2538515, 10.1007/s11117-008-2288-6; reference:[3] Aqzzouz B., H'michane J.: Some results on order weakly compact operators.Math. Bohem. 134 (2009), no. 4, 359–367. MR 2597231, 10.21136/MB.2009.140668; reference:[4] Deng Y., O’Brien M., Troitsky V. G.: Unbounded norm convergence in Banach lattices.Positivity 21 (2017), no. 3, 963–974. MR 3688941, 10.1007/s11117-016-0446-9; reference:[5] Gao N.: Unbounded order convergence in dual spaces.J. Math. Anal. Appl. 419 (2014), no. 1, 347–354. MR 3217153, 10.1016/j.jmaa.2014.04.067; reference:[6] Gao N., Xanthos F.: Unbounded order convergence and application to martingales without probability.J. Math. Anal. Appl. 415 (2014), no. 2, 931–947. MR 3178299, 10.1016/j.jmaa.2014.01.078; reference:[7] Kandić M., Li H., Troitsky V. G.: Unbounded norm topology beyond normed lattices.Positivity 22 (2018), no. 3, 745–760. MR 3817116, 10.1007/s11117-017-0541-6; reference:[8] Kandić M., Marabeh M. A. A., Troitsky V. G.: Unbounded norm topology in Banach lattices.J. Math. Anal. Appl. 451 (2017), no. 1, 259–279. MR 3619237, 10.1016/j.jmaa.2017.01.041; reference:[9] Meyer-Nieberg P.: Banach Lattices.Universitext, Springer, Berlin, 1991. Zbl 0743.46015, MR 1128093; reference:[10] Nakano H.: Ergodic theorems in semi-ordered linear spaces.Ann. of Math. (20) 49 (1948), no. 2, 538–556. MR 0029112, 10.2307/1969044; reference:[11] Wang Z., Chen Z., Chen J.: Continuous operators for unbounded convergence in Banach lattices.available at arXiv:1903.04854 [math.FA] (2021), 9 pages. MR 4293863; reference:[12] Wickstead A. W.: Weak and unbounded order convergence in Banach lattices.J. Austral. Math. Soc. Ser. A 24 (1977), no. 3, 312–319. MR 0482060, 10.1017/S1446788700020346; reference:[13] Zaanen A. C.: Riesz Spaces. II.North-Holland Mathematical Library, 30, North-Holland Publishing Company, Amsterdam, 1983. MR 0704021

  3. 3
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4221833; zbl:07250709; reference:[1] Aliprantis, C. D., Burkinshaw, O.: On weakly compact operators on Banach lattices.Proc. Am. Math. Soc. 83 (1981), 573-578. Zbl 0452.47038, MR 0627695, 10.2307/2044122; reference:[2] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Springer, Dordrecht (2006). Zbl 1098.47001, MR 2262133, 10.1007/978-1-4020-5008-4; reference:[3] Alpay, S., Altin, B., Tonyali, C.: On property (b) of vector lattices.Positivity 7 (2003), 135-139. Zbl 1036.46018, MR 2028377, 10.1023/A:1025840528211; reference:[4] Alpay, S., Altin, B., Tonyali, C.: A note on Riesz spaces with property-$b$.Czech. Math. J. 56 (2006), 765-772. Zbl 1164.46310, MR 2291773, 10.1007/s10587-006-0054-0; reference:[5] Dodds, P. G.: $o$-weakly compact mappings of Riesz spaces.Trans. Am. Math. Soc. 214 (1975), 389-402. Zbl 0313.46011, MR 0385629, 10.2307/1997114; reference:[6] Meyer-Nieberg, P.: Über Klassen schwach kompakter Operatoren in Banachverbanden.Math. Z. 138 (1974), 145-159 German. Zbl 0291.47020, MR 0353053, 10.1007/BF01214230; reference:[7] Meyer-Nieberg, P.: Banach Lattices.Universitext. Springer, Berlin (1991). Zbl 0743.46015, MR 1128093, 10.1007/978-3-642-76724-1; reference:[8] Zaanen, A. C.: Riesz Spaces II.North-Holland Mathematical Library, Volume 30. North-Holland, Amsterdam (1983). Zbl 0519.46001, MR 0704021, 10.1016/s0924-6509(08)x7015-1

  4. 4
    Academic Journal
  5. 5
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3136498; zbl:Zbl 06260034; reference:[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators. Reprint of the 1985 original.Springer, Berlin (2006). Zbl 1098.47001, MR 2262133; reference:[2] Andrews, K. T.: Dunford-Pettis sets in the space of Bochner integrable functions.Math. Ann. 241 (1979), 35-41. Zbl 0398.46025, MR 0531148, 10.1007/BF01406706; reference:[3] Aqzzouz, B., Bouras, K.: Weak and almost Dunford-Pettis operators on Banach lattices.Demonstr. Math. 46 165-179 (2013). MR 3075506; reference:[4] Aqzzouz, B., Bouras, K.: Dunford-Pettis sets in Banach lattices.Acta Math. Univ. Comen., New Ser. 81 185-196 (2012). MR 2975284; reference:[5] Aqzzouz, B., Bouras, K., Moussa, M.: Duality property for positive weak Dunford-Pettis operators.Int. J. Math. Math. Sci. 2011, Article ID 609287 12 p (2011). Zbl 1262.47057, MR 2821970; reference:[6] Dodds, P. G., Fremlin, D. H.: Compact operators on Banach lattices.Isr. J. Math. 34 (1979), 287-320. MR 0570888, 10.1007/BF02760610; reference:[7] Meyer-Nieberg, P.: Banach Lattices.Universitext. Springer, Berlin (1991). Zbl 0743.46015, MR 1128093

  6. 6
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2876948; zbl:Zbl 1249.47019; reference:[1] Akhiezer, N. I., Glasman, I. M.: Theory of linear operators in Hilbert space.Tech. report, Vyshcha Shkola, Kharkov, 1977, English transl. Pitman (APP), 1981. MR 0486990; reference:[2] Belaidi, B., Farissi, A. El, Latreuch, Z.: Inequalities between sum of the powers and the exponential of sum of nonnegative sequence.RGMIA Research Collection, 11 (1), Article 6, 2008.; reference:[3] Qi, F.: Inequalities between sum of the squares and the exponential of sum of nonnegative sequence.J. Inequal. Pure Appl. Math. 8 (3) (2007), 1–5, Art. 78. MR 2345933; reference:[4] Weidman, J.: Linear operators in Hilbert spaces.New York, Springer, 1980. MR 0566954

  7. 7
    Academic Journal

    المؤلفون: Aqzzouz, Belmesnaoui, Elbour, Aziz

    وصف الملف: application/pdf

    Relation: mr:MR2807713; zbl:Zbl 1224.46035; reference:[1] Aliprantis, C. D., Burkinshaw, O.: Locally Solid Riesz Spaces.Academic Press (1978). Zbl 0402.46005, MR 0493242; reference:[2] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Reprint of the 1985 original. Springer, Dordrecht (2006). Zbl 1098.47001, MR 2262133; reference:[3] Dodds, P. G.: o-weakly compact mappings of Riesz spaces.Trans. Amer. Math. Soc. 214 (1975), 389-402. Zbl 0313.46011, MR 0385629; reference:[4] Meyer-Nieberg, P.: Banach Lattices.Universitext. Springer, Berlin (1991). Zbl 0743.46015, MR 1128093; reference:[5] Wickstead, A. W.: Converses for the Dodds-Fremlin and Kalton-Saab Theorems.Math. Proc. Camb. Phil. Soc. 120 (1996), 175-179. Zbl 0872.47018, MR 1373356, 10.1017/S0305004100074752

  8. 8
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2545658; zbl:Zbl 1222.47063; reference:[1] Abramovich, Y. A., Wickstead, A. W.: Solutions of several problems in the theory of compact positive operators.Proc. Amer. Math. Soc. 123 (1995), 3021-3026. Zbl 0860.47023, MR 1283534, 10.1090/S0002-9939-1995-1283534-8; reference:[2] Aliprantis, C. D., Burkinshaw, O.: Locally solid Riesz spaces.Academic Press (1978). Zbl 0402.46005, MR 0493242; reference:[3] Aliprantis, C. D., Burkinshaw, O.: Positive compact operators on Banach lattices.Math. Z. 174 (1980), 289-298. Zbl 0425.46015, MR 0593826, 10.1007/BF01161416; reference:[4] Aliprantis, C. D., Burkinshaw, O.: On weakly compact operators on Banach lattices.Proc. Amer. Math. Soc. 83 (1981), 573-578. Zbl 0452.47038, MR 0627695, 10.1090/S0002-9939-1981-0627695-X; reference:[5] Aqzzouz, B., Nouira, R.: Les opérateurs précompacts sur les treillis vectoriels localement convexes-solides.Sci. Math. Jpn. 57 (2003), 279-256. MR 1959985; reference:[6] Chen, Z. L., Wickstead, A. W.: Vector lattices of weakly compact operators on Banach lattices.Trans. Amer. Math. Soc. 352 (1999), 397-412. MR 1641095, 10.1090/S0002-9947-99-02431-9; reference:[7] Fremlin, D. H.: Riesz spaces with the order continuity property I.Proc. Cambr. Phil. Soc. 81 (1977), 31-42. Zbl 0344.46019, MR 0425572, 10.1017/S0305004100000244; reference:[8] Krengel, U.: Remark on the modulus of compact operators.Bull. Amer. Math. Soc. 72 (1966), 132-133. Zbl 0135.36302, MR 0190752, 10.1090/S0002-9904-1966-11452-0; reference:[9] Meyer-Nieberg, P.: Banach lattices.Universitext. Springer-Verlag, Berlin (1991). Zbl 0743.46015, MR 1128093; reference:[10] Robertson, A. P., Robertson, W.: Topological vector spaces.2$^{ {nd}}$ ed., Cambridge University Press, London (1973). Zbl 0251.46002, MR 0350361; reference:[11] Wickstead, A. W.: Dedekind completeness of some lattices of compact operators.Bull. Polish Acad. of Sci. Math. 43 (1995), 297-304. Zbl 0847.47025, MR 1414786; reference:[12] Wickstead, A. W.: Converses for the Dodds-Fremlin and Kalton-Saab theorems.Math. Proc. Camb. Phil. Soc. 120 (1996), 175-179. Zbl 0872.47018, MR 1373356, 10.1017/S0305004100074752; reference:[13] Zaanen, A. C.: Riesz spaces II.North Holland Publishing Company (1983). Zbl 0519.46001, MR 0704021

  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2223966; zbl:Zbl 1150.47029; reference:[1] Herzog G., Kunstmann P.C.: Stability for families of positive semigroups and partial differential equations via one-sided estimates.Demonstratio Math. 34 77-82 (2001). Zbl 1084.47512, MR 1823086; reference:[2] Kühnemund F., Wacker M.: The Lie-Trotter product formula does not hold for arbitrary sums of generators.Semigroup Forum 60 478-485 (2000). MR 1828831; reference:[3] Lemmert R., Volkmann P.: On the positivity of semigroups of operators.Comment. Math. Univ. Carolinae 39 483-489 (1998). Zbl 0970.47026, MR 1666770; reference:[4] Martin R.: Nonlinear operators and differential equations in Banach spaces.Pure and Applied Mathematics, John Wiley and Sons, New York-London-Sydney, 1976. Zbl 0333.47023, MR 0492671; reference:[5] Nagel R. (Ed.): One-parameter semigroups of positive operators.Lecture Notes in Mathematics 1184, Springer, Berlin, 1986. Zbl 0643.92017, MR 0839450; reference:[6] Ouhabaz E.M.: Invariance of closed convex sets and domination criteria for semigroups.Potential Anal. 5 611-625 (1996). Zbl 0868.47029, MR 1437587; reference:[7] Stein M., Voigt J.: The modulus of matrix semigroups.Arch. Math. (Basel) 82 311-316 (2004). Zbl 1070.47034, MR 2057381; reference:[8] Volkmann P.: Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen.Math. Z. 127 (1972), 157-164. Zbl 0226.34058, MR 0308547

  10. 10
    Academic Journal

    المؤلفون: Marek, Ivo

    وصف الملف: application/pdf

    Relation: mr:MR2121000; zbl:Zbl 1249.65070; reference:[1] Benzi M., Frommer A., Nabben, R., Szyld D.: Algebraic theory of multiplicative Schwarz methods.Numer. Math. 89 (2002), 605–639 Zbl 0991.65037, MR 1865505, 10.1007/s002110100275; reference:[2] Benzi M., Szyld D. B.: Existence and uniqueness of splittings for stationary iterative methods with applications to alterning methods.Numer. Math. 76 (1997), 309–321 MR 1452511, 10.1007/s002110050265; reference:[3] Berman A., Plemmons R.: Non-negative Matrices in the Mathematical Sciences.Academic Press, New York 1979 MR 0544666; reference:[4] Bohl E.: A boundary layer phenomenon for linear systems with a rank deficient matrix.Z. Angew. Math. Mech. 7/8 (1991), 223–231 Zbl 0792.65057, MR 1121486, 10.1002/zamm.19910710707; reference:[5] Bohl E.: Constructing amplification via chemical circuits.In: Biomedical Modeling Simulation (J. Eisarfeld, D. S. Leonis, and M. Witken, eds.), Elsevier Science Publ. B. V. 1992, pp. 331–334; reference:[6] Bohl E.: Structural amplification in chemical networks.In: Complexity, Chaos and Biological Evolution (E. Mosekilde and L. Mosekilde, eds.), Plenum Press, New York 1991, pp. 119–128; reference:[7] Bohl E., Boos W.: Quantitative analysis of binding protein-mediated ABC transport system.J. Theoret. Biol. 186 (1997), 65–74 10.1006/jtbi.1996.0342; reference:[8] Bohl E., Lancaster P.: Perturbation of spectral inverses applied to a boundary layer phenomenon arizing in chemical networks.Linear Algebra Appl. 180 (1993), 65–74 MR 1206409, 10.1016/0024-3795(93)90524-R; reference:[9] Bohl E., Marek I.: A model of amplification.J. Comput. Appl. Math. 63 (1995), 27–47 Zbl 0845.92003, MR 1365549, 10.1016/0377-0427(95)00052-6; reference:[10] Bohl E., Marek I.: A nonlinear model involving M-operators.An amplification effect measured in the cascade of vision. J. Comput. Appl. Math. 60 (1994), 13–28 MR 1354645, 10.1016/0377-0427(94)00081-B; reference:[11] Bohl E., Marek I.: A stability theorem for a class of linear evolution problems.Integral Equations Operator Theory 34 (1999), 251–269 MR 1689389, 10.1007/BF01300579; reference:[12] Bohl E., Marek I.: Existence and uniqueness results for nonlinear cooperative systems.Oper. Theory: Adv. Appl. 130 (2001), 153–170 Zbl 1023.47052, MR 1902006; reference:[13] Hille E., Phillips R. S.: Functional Analysis and Semigroups (Amer.Math. Society Coll. Publ. Vol. XXXI). Third printing of Revised Edition Providence, RI 1968; reference:[14] Krein M. G., Rutman M. A.: Linear operators leaving invariant a cone in a Banach space.Uspekhi Mat. Nauk III (1948), 1, 3–95. (In Russian.) English translation in Amer. Math. Soc. Transl. 26 (1950) Zbl 0030.12902, MR 0027128; reference:[15] Marek I.: Frobenius theory of positive operators.Comparison theorems and applications. SIAM J. Appl. Math. 19 (1970), 608–628 Zbl 0219.47022, MR 0415405, 10.1137/0119060; reference:[16] Marek I., Szyld D.: Algebraic Schwarz methods for the numerical solution of Markov chains.Linear Algebra Appl. Submitted Zbl 1050.65030, MR 2066608; reference:[17] Marek I., Žitný K.: Analytic Theory of Matrices for Applied Sciences, Vol 1.(Teubner Texte zur Mathematik Band 60.) Teubner, Leipzig 1983 MR 0731071; reference:[18] Ortega J. M., Rheinboldt W.: Iterative Solution of Nonlinear Equations in Several Variables.Academic Press, New York – San – Francisco – London 1970 Zbl 0949.65053, MR 0273810; reference:[19] Schaefer H. H.: Banach Lattices and Positive Operators.Springer–Verlag, Berlin – Heidelberg – New York 1974 Zbl 0296.47023, MR 0423039; reference:[20] Stewart W. J.: Introduction to the Numerical Solution of Markov Chains.Princeton University Press, Princeton, NJ 1994 Zbl 0821.65099, MR 1312831; reference:[21] Taylor A. E., Lay D. C.: Introduction to Functional Analysis.Second edition. Wiley, New York 1980 Zbl 0654.46002, MR 0564653; reference:[22] Tralau C., Greller G., Pajatsch M., Boos, W., Bohl E.: Mathematical treatment of transport data of bacterial transport system to estimate limitation in diffusion through the outer membrane.J. Theoret. Biol. 207 (2000), 1–14 10.1006/jtbi.2000.2140; reference:[23] Varga R. S.: Matrix Iterative Analysis.Prentice–Hall, Englewood Cliffs, NJ 1962. Second edition, revised and expanded. Springer–Verlag, Berlin – Heidelberg – New York 2000 MR 1753713

  11. 11
    Academic Journal

    المؤلفون: Zima, Mirosława

    مصطلحات موضوعية: msc:34K40, msc:47A11, msc:47B60, msc:47B99

    وصف الملف: application/pdf

    Relation: mr:MR1746709; zbl:Zbl 1008.47004; reference:[1] A. Augustynowicz, M. Kwapisz: On a numerical-analytic method of solving of boundary value problem for functional differential equation of neutral type.Math. Nachr. 145 (1990), 255–269. MR 1069034, 10.1002/mana.19901450120; reference:[2] J. Banaś: Applications of measures of noncompactness to various problems.Folia Scientiarum Universitatis Technicae Resoviensis 34 (1987). MR 0884890; reference:[3] D. Bugajewski: On some applications of theorems on the spectral radius to differential equations.J. Anal. Appl. 16 (1997), 479–484. Zbl 0880.35125, MR 1459970; reference:[4] D. Bugajewski, M. Zima: On the Darboux problem of neutral type.Bull. Austral. Math. Soc. 54 (1996), 451–458. MR 1419608, 10.1017/S0004972700021869; reference:[5] J. Daneš: On local spectral radius.Čas. pěst. mat. 112 (1987), 177–187. MR 0897643; reference:[6] A. R. Esayan: On the estimation of the spectral radius of the sum of positive semicommutative operators (in Russian).Sib. Mat. Zhur. 7, 460–464.; reference:[7] L. Faina: Existence and continuous dependence for a class of neutral functional differential equations.Ann. Polon. Math. 64 (1996), 215–226. Zbl 0873.34051, MR 1410341, 10.4064/ap-64-3-215-226; reference:[8] K.-H. Förster, B. Nagy: On the local spectral radius of a nonnegative element with respect to an irreducible operator.Acta Sci. Math. 55 (1991), 155–166. MR 1124954; reference:[9] M. A. Krasnoselski et al.: Approximate solutions of operator equations.Noordhoff, Groningen, 1972.; reference:[10] V. Müller: Local spectral radius formula for operators in Banach spaces.Czechoslovak Math. J. 38 (1988), 726–729. MR 0962915; reference:[11] P. P. Zabrejko: The contraction mapping principle in K-metric and locally convex spaces (in Russian).Dokl. Akad. Nauk BSSR 34 (1990), 1065–1068. MR 1095667; reference:[12] M. Zima: A certain fixed point theorem and its applications to integral-functional equations.Bull. Austral. Math. Soc. 46 (1992), 179–186. Zbl 0761.34048, MR 1183775, 10.1017/S0004972700011813; reference:[13] M. Zima: A theorem on the spectral radius of the sum of two operators and its applications.Bull. Austral. Math. Soc. 48 (1993), 427–434. MR 1248046, 10.1017/S0004972700015884

  12. 12
    Academic Journal

    المؤلفون: Ercan, Zafer

    وصف الملف: application/pdf

    Relation: mr:MR1676793; zbl:Zbl 0954.46003; reference:[1] Z. Ercan and A. W. Wickstead: Towards a theory of non-linear orthomorphisms.Functional Analysis and Economic Theory, Springer, 1998, pp. 65–73. MR 1730120; reference:[2] A. V. Koldunov: Hammerstein operators preserving disjointness.Proc. Amer. Math. Soc. 4 (1995), 1083–1095. Zbl 0827.47051, MR 1212284; reference:[3] W. A. J. Luxemburg and A. C. Zaanen: Riesz Spaces 1.North-Holland, Amsterdam, 1971.; reference:[4] P. Meyer-Nieberg: Banach Lattices.Springer Universitest., Berlin, 1992. MR 1128093

  13. 13
    Academic Journal

    المؤلفون: Scheffold, Egon

    مصطلحات موضوعية: msc:46B42, msc:46J05, msc:46J99, msc:47B60, msc:47B65

    وصف الملف: application/pdf

    Relation: mr:MR1658261; zbl:Zbl 0954.46012; reference:[L1] R. Arens: The adjoint of a bilinear operation.Proc. A. M. S. 2 (1951), 839–848. Zbl 0044.32601, MR 0045941; reference:[L2] R. Cristescu: Ordered Vector Spaces and Linear Operators.Ed. Academiei-Abacus Press, Kent, 1976. Zbl 0322.46010, MR 0467238; reference:[L3] J. Duncan, S. A. R. Hosseiniun: The second dual of a Banach algebra.Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 309–325. MR 0559675, 10.1017/S0308210500017170; reference:[L4] P. Meyer-Nieberg: Banach Lattices.Springer, Berlin-Heidelberg-New York, 1991. Zbl 0743.46015, MR 1128093; reference:[L5] H. H. Schaefer: Banach Lattices and Positive Operators.Springer, Berlin-Heidelberg-New York, 1974. Zbl 0296.47023, MR 0423039; reference:[L6] E. Scheffold: Über Bimorphismen und das Arens-Produkt bei kommutativen $D$-Banachverbandsalgebren.Rev. Roumaine Math. Pures Appl. 39 (1994), no. 3, 259–270. Zbl 0832.46041, MR 1315492; reference:[L7] E. Scheffold: Über den ordnungsstetigen Bidual von $FF$-Banachverbandsalgebren.Arch. Math. 60 (1993), 473–477. MR 1213518, 10.1007/BF01202314; reference:[L8] E. Scheffold: Über die Arens-triadjungierte Abbildung von Bimorphismen.Rev. Roumaine Math. Pures Appl. 41 (1996), no. 9–10, 697–701. MR 1647683; reference:[L9] A. Ülger: Weakly compact bilinear forms and Arens regularity.Proc. A. M. S. 101 (1987), 697–704. MR 0911036

  14. 14
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1112002; zbl:Zbl 0758.47033; reference:[1] N. Bourbaki: Intégration.Hermann. Paгis, 1969. Zbl 0189.14201; reference:[2] N. Dunford J. T. Schwarz: Linear operators.Inteгscience Publishers, New York 1958.; reference:[3] J. Komorník: Asymptotic periodicity of the iterates of Markov operators.Tôhoku Math. Ј., 38 (1986), 15-27. MR 0826761, 10.2748/tmj/1178228533; reference:[4] J. Komorník A. Lasota: Asymptotic decomposition of Markov operators.Bull. Pol. Ac. Math. 35 (1987), З21-З27. MR 0919219; reference:[5] A. Lasota M. C. Mackey: Pгobabilistic Pгopeгties of Deterministic Systems.Cambridge University Press, Cambridge 1985. MR 0832868

  15. 15
    Academic Journal

    المؤلفون: Rebowski, R.

    مصطلحات موضوعية: msc:46B42, msc:46E05, msc:47B38, msc:47B60

    وصف الملف: application/pdf

    Relation: mr:MR1101421; zbl:Zbl 0784.46016

  16. 16
    Academic Journal

    المؤلفون: Hernández, F. L.

    مصطلحات موضوعية: msc:46B42, msc:47A05, msc:47B38, msc:47B60

    وصف الملف: application/pdf

    Relation: mr:MR1101412; zbl:Zbl 0786.47035

  17. 17
    Conference

    المؤلفون: Weis, L. W.

    مصطلحات موضوعية: msc:47A53, msc:47B38, msc:47B60

    وصف الملف: application/pdf

    Relation: mr:MR0781944; zbl:Zbl 0599.47023

  18. 18
    Conference

    المؤلفون: Grząślewicz, Ryszard

    مصطلحات موضوعية: msc:46B30, msc:46B42, msc:46E30, msc:47B55, msc:47B60

    وصف الملف: application/pdf

    Relation: mr:MR0781938; zbl:Zbl 0575.46022

  19. 19
    Conference

    المؤلفون: Neumann, Michael M.

    مصطلحات موضوعية: msc:28A50, msc:46A55, msc:47B60, msc:90B10, msc:90B15

    وصف الملف: application/pdf

    Relation: mr:MR0744385; zbl:Zbl 0541.90036

  20. 20
    Conference

    المؤلفون: Netuka, Ivan

    مصطلحات موضوعية: msc:31D05, msc:35J25, msc:35K20, msc:46A22, msc:46A40, msc:47B60

    وصف الملف: application/pdf

    Relation: zbl:Zbl 0527.46003