يعرض 1 - 14 نتائج من 14 نتيجة بحث عن '"msc:47B20"', وقت الاستعلام: 0.69s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4407350; zbl:Zbl 07547248; reference:[1] Abood, E. H., Al-loz, M. A.: On some generalization of normal operators on Hilbert space.Iraqi J. Sci. 56 (2015), 1786-1794.; reference:[2] Abood, E. H., Al-loz, M. A.: On some generalizations of $(n,m)$-normal powers operators on Hilbert space.J. Progressive Res. Math. (JPRM) 7 (2016), 1063-1070.; reference:[3] Alzuraiqi, S. A., Patel, A. B.: On $n$-normal operators.Gen. Math. Notes 1 (2010), 61-73. Zbl 1225.47023; reference:[4] Arias, M. L., Corach, G., Gonzalez, M. C.: Metric properties of projections in semi-Hilbertian spaces.Integral Equations Oper. Theory 62 (2008), 11-28. Zbl 1181.46018, MR 2442900, 10.1007/s00020-008-1613-6; reference:[5] Arias, M. L., Corach, G., Gonzalez, M. C.: Partial isometries in semi-Hilbertian spaces.Linear Algebra Appl. 428 (2008), 1460-1475. Zbl 1140.46009, MR 2388631, 10.1016/j.laa.2007.09.031; reference:[6] Arias, M. L., Corach, G., Gonzalez, M. C.: Lifting properties in operator ranges.Acta Sci. Math. 75 (2009), 635-653. Zbl 1212.46048, MR 2590353; reference:[7] Baklouti, H., Feki, K., Ahmed, O. A. M. Sid: Joint normality of operators in semi-Hilbertian spaces.Linear Multilinear Algebra 68 (2020), 845-866. Zbl 07178188, MR 4072783, 10.1080/03081087.2019.1593925; reference:[8] Bavithra, V.: $(n,m)$-power quasi normal operators in semi-Hilbertian spaces.J. Math. Informatics 11 (2017), 125-129. 10.22457/jmi.v11a16; reference:[9] Benali, A., Ahmed, O. A. M. Sid: $(\alpha,\beta)$-$A$-normal operators in semi-Hilbertian spaces.Afr. Mat. 30 (2019), 903-920. Zbl 07101153, MR 3993640, 10.1007/s13370-019-00690-3; reference:[10] Chellali, C., Benali, A.: Class of $(A,n)$-power-hyponormal operators in semi-Hilbertian space.Func. Anal. Approx. Comput. 11 (2019), 13-21. Zbl 07158992, MR 4069434; reference:[11] Chō, M., Lee, J. E., Tanahashic, K., Uchiyamad, A.: Remarks on $n$-normal operators.Filomat 32 (2018), 5441-5451. MR 3898586, 10.2298/FIL1815441C; reference:[12] Chō, M., Načevska, B.: Spectral properties of $n$-normal operators.Filomat 32 (2018), 5063-5069. MR 3898553, 10.2298/FIL1814063C; reference:[13] Douglas, R. G.: On majorization, factorization, and range inclusion of operators in Hilbert space.Proc. Am. Math. Soc. 17 (1966), 413-415. Zbl 0146.12503, MR 0203464, 10.1090/S0002-9939-1966-0203464-1; reference:[14] Jah, S. H.: Class of $(A,n)$-power quasi-normal operators in semi-Hilbertian spaces.Int. J. Pure Appl. Math. 93 (2014), 61-83. Zbl 1331.47034, 10.12732/ijpam.v93i1.6; reference:[15] Jibril, A. A. S.: On $n$-power normal operators.Arab. J. Sci. Eng., Sect. A, Sci. 33 (2008), 247-251. Zbl 1182.47025, MR 2467186; reference:[16] Mary, J. S. I., Vijaylakshmi, P.: Fuglede-Putnam theorem and quasi-nilpotent part of $n$-normal operators.Tamkang J. Math. 46 (2015), (151-165). Zbl 1323.47023, MR 3352354, 10.5556/j.tkjm.46.2015.1665; reference:[17] Saddi, A.: $A$-normal operators in semi-Hilbertian spaces.Aust. J. Math. Anal. Appl. 9 (2012), Article ID 5, 12 pages. Zbl 1259.47022, MR 2878497; reference:[18] Ahmed, O. A. M. Sid, Benali, A.: Hyponormal and $k$-quasi-hyponormal operators on semi-Hilbertian spaces.Aust. J. Math. Anal. Appl. 13 (2016), Article ID 7, 22 pages. Zbl 1348.47022, MR 3513410; reference:[19] Ahmed, O. A. M. Sid, Ahmed, O. B. Sid: On the classes $(n,m)$-power $D$-normal and $(n,m)$-power $D$-quasi-normal operators.Oper. Matrices 13 (2019), 705-732. Zbl 07142373, MR 4008507, 10.7153/oam-2019-13-51; reference:[20] Ahmed, O. B. Sid, Ahmed, O. A. M. Sid: On the class of $n$-power $D$-$m$-quasi-normal operatos on Hilbert spaces.Oper. Matrices 14 (2020), 159-174. Zbl 07347976, MR 4080931, 10.7153/oam-2020-14-13; reference:[21] Suciu, L.: Orthogonal decompositions induced by generalized contractions.Acta Sci. Math. 70 (2004), 751-765. Zbl 1087.47010, MR 2107539

  2. 2
    Academic Journal

    المؤلفون: Lauric, Vasile

    وصف الملف: application/pdf

    Relation: mr:MR4295247; zbl:07396199; reference:[1] Abdessemed, A., Davies, E. B.: Some commutator estimates in the Schatten classes.J. Lond. Math. Soc., II. Ser. 39 (1989), 299-308. Zbl 0692.47009, MR 0991663, 10.1112/jlms/s2-39.2.299; reference:[2] Ackermans, S. T. M., Eijndhoven, S. J. L. van, Martens, F. J. L.: On almost commuting operators.Indag. Math. 45 (1983), 385-391. Zbl 0573.47024, MR 0731821, 10.1016/S1385-7258(83)80015-8; reference:[3] Kleinecke, D. C.: On operator commutators.Proc. Am. Math. Soc. 8 (1957), 535-536. Zbl 0079.12904, MR 0087914, 10.1090/S0002-9939-1957-0087914-4; reference:[4] Shirokov, F. V.: Proof of a conjecutre of Kaplansky.Usp. Mat. Nauk 11 (1956), 167-168 Russian. Zbl 0070.34201, MR 0087913; reference:[5] Shulman, V.: Some remarks on the Fuglede-Weiss theorem.Bull. Lond. Math. Soc. 28 (1996), 385-392. Zbl 0892.47007, MR 1384827, 10.1112/blms/28.4.385; reference:[6] Shulman, V., Turowska, L.: Operator synthesis. II: Individual synthesis and linear operator equations.J. Reine Angew. Math. 590 (2006), 143-187. Zbl 1094.47054, MR 2208132, 10.1515/CRELLE.2006.007

  3. 3
    Academic Journal

    المؤلفون: Lauric, Vasile

    وصف الملف: application/pdf

    Relation: mr:MR3881902; zbl:Zbl 07031703; reference:[1] Lauric, V.: Remarks on hyponormal operators and almost normal operators.Matematiche (Catania) 72 (2017), 3-8. MR 3666546; reference:[2] Pasnicu, C.: Weighted shifts as direct summands mod $\mathcal C_2$ of normal operators.Dilation Theory, Toeplitz operators, and Other Topics 7th Int. Conf. Oper. Theory, Timisoara, 1982, Oper. Theory, Adv. Appl. {\it 11} (1983) 275-281. Zbl 0527.47021, MR 0789643; reference:[3] Putinar, M.: Hyponormal operators are subscalar.J. Oper. Theory 12 (1984), 385-395. Zbl 0573.47016, MR 0757441; reference:[4] Voiculescu, D.: Hilbert space operators modulo normed ideals.Proc. Int. Congr. Math. Warszawa, 1983 2 (1984), 1041-1047. Zbl 0594.46063, MR 0804756; reference:[5] Voiculescu, D. V.: Almost normal operators mod Hilbert-Schmidt and the $K$-theory of the Banach algebras $E\Lambda(\Omega)$.J. Noncommut. Geom. 8 (2014), 1123-1145. Zbl 1325.46074, MR 3310942, 10.4171/JNCG/181

  4. 4
    Academic Journal

    المؤلفون: Bakherad, Mojtaba

    وصف الملف: application/pdf

    Relation: mr:MR3881891; zbl:Zbl 07031692; reference:[1] Abu-Omar, A., Kittaneh, F.: Numerical radius inequalities for $n\times n$ operator matrices.Linear Algebra Appl. 468 (2015), 18-26. Zbl 1316.47005, MR 3293237, 10.1016/j.laa.2013.09.049; reference:[2] Berezin, F. A.: Covariant and contravariant symbols of operators.Math. USSR, Izv. 6(1972) (1973), 1117-1151. English. Russian original translation from Russian Izv. Akad. Nauk SSSR, Ser. Mat. 36 1972 1134-1167. Zbl 0259.47004, MR 0350504, 10.1070/IM1972v006n05ABEH001913; reference:[3] Berezin, F. A.: Quantization.Math. USSR, Izv. 8 (1974), 1109-1165. English. Russian original translation from Izv. Akad. Nauk SSSR, Ser. Mat. 38 1974 1116-1175. Zbl 0312.53049, MR 0395610, 10.1070/IM1974v008n05ABEH002140; reference:[4] Gustafson, K. E., Rao, D. K. M.: Numerical Range. The Field of Values of Linear Operators and Matrices.Universitext, Springer, New York (1997). Zbl 0874.47003, MR 1417493, 10.1007/978-1-4613-8498-4; reference:[5] Hajmohamadi, M., Lashkaripour, R., Bakherad, M.: Some generalizations of numerical radius on off-diagonal part of $2\times 2$ operator matrices.To appear in J. Math. Inequal. Available at ArXiv 1706.05040 [math.FA]. MR 3811602; reference:[6] Halmos, P. R.: A Hilbert Space Problem Book.Graduate Texts in Mathematics 19, Encyclopedia of Mathematics and Its Applications 17, Springer, New York (1982). Zbl 0496.47001, MR 0675952, 10.1007/978-1-4684-9330-6; reference:[7] Horn, R. A., Johnson, C. R.: Topics in Matrix Analysis.Cambridge University Press, Cambridge (1991). Zbl 0729.15001, MR 1091716, 10.1017/CBO9780511840371; reference:[8] Hou, J. C., Du, H. K.: Norm inequalities of positive operator matrices.Integral Equations Operator Theory 22 (1995), 281-294. Zbl 0839.47004, MR 1337376, 10.1007/BF01378777; reference:[9] Karaev, M. T.: On the Berezin symbol.J. Math. Sci., New York 115 (2003), 2135-2140. English. Russian original translation from Zap. Nauchn. Semin. POMI 270 2000 80-89. Zbl 1025.47015, MR 1795640, 10.1023/A:1022828602917; reference:[10] Karaev, M. T.: Functional analysis proofs of Abel's theorems.Proc. Am. Math. Soc. 132 (2004), 2327-2329. Zbl 1099.40003, MR 2052409, 10.1090/S0002-9939-04-07354-X; reference:[11] Karaev, M. T.: Berezin symbol and invertibility of operators on the functional Hilbert spaces.J. Funct. Anal. 238 (2006), 181-192. Zbl 1102.47018, MR 2253012, 10.1016/j.jfa.2006.04.030; reference:[12] Karaev, M. T., Saltan, S.: Some results on Berezin symbols.Complex Variables, Theory Appl. 50 (2005), 185-193. Zbl 1202.47031, MR 2123954, 10.1080/02781070500032861; reference:[13] Kittaneh, F.: Notes on some inequalitis for Hilbert space operators.Publ. Res. Inst. Math. Sci. 24 (1988), 283-293. Zbl 0655.47009, MR 0944864, 10.2977/prims/1195175202; reference:[14] Nordgren, E., Rosenthal, P.: Boundary values of Berezin symbols.Nonselfadjoint Operators and Related Topics A. Feintuch et al. Oper. Theory, Adv. Appl. 73, Birkhäuser, Basel (1994), 362-368. Zbl 0874.47013, MR 1320554, 10.1007/978-3-0348-8522-5_14; reference:[15] Sheikhhosseini, A., Moslehian, M. S., Shebrawi, K.: Inequalities for generalized Euclidean operator radius via Young's inequality.J. Math. Anal. Appl. 445 (2017), 1516-1529. Zbl 1358.47010, MR 3545256, 10.1016/j.jmaa.2016.03.079; reference:[16] Zhu, K.: Operator Theory in Function Spaces.Pure and Applied Mathematics 139, Marcel Dekker, New York (1990). Zbl 0706.47019, MR 1074007

  5. 5
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3831482; zbl:Zbl 06890410; reference:[1] Caradus, S. R.: Generalized Inverses and Operator Theory.Queen's Pap. Pure Appl. Math. 50. Queen's University, Kingston, Ontario (1978). Zbl 0434.47003, MR 0523736; reference:[2] Embry-Wardrop, M., Lambert, A.: Measurable transformations and centred composition operators.Proc. R. Ir. Acad., Sect. A 90 (1990), 165-172. Zbl 0753.47011, MR 1150455; reference:[3] Embry-Wardrop, M., Lambert, A.: Subnormality for the adjoint of a composition operator on $L^2$.J. Oper. Theory 25 (1991), 309-318. Zbl 0795.47022, MR 1203036; reference:[4] Giselsson, O.: Half-centered operators.Online https://arxiv.org/pdf/1602.05081v1.pdf 44 pages.; reference:[5] Hoover, T., Lambert, A., Quinn, J.: The Markov process determined by a weighted composition operator.Stud. Math. 72 (1982), 225-235. Zbl 0503.47007, MR 0671398, 10.4064/sm-72-3-225-236; reference:[6] Lambert, A.: Hyponormal composition operators.Bull. Lond. Math. Soc. 18 (1986), 395-400. Zbl 0624.47014, MR 0838810, 10.1112/blms/18.4.395; reference:[7] Morrel, B. B., Muhly, P. S.: Centered operators.Studia Math. 51 (1974), 251-263. Zbl 0258.47019, MR 0355658, 10.4064/sm-51-3-251-263; reference:[8] Singh, R. K., Komal, B. S.: Composition operators.Bull. Aust. Math. Soc. 18 (1978), 439-446. Zbl 0377.47029, MR 0508815, 10.1017/S0004972700008303; reference:[9] Singh, R. K., Manhas, J. S.: Composition Operators on Function Spaces.North-Holland Mathematics Studies 179. North-Holland Publishing, Amsterdam (1993). Zbl 0788.47021, MR 1246562, 10.1016/s0304-0208(08)x7086-0

  6. 6
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3660169; zbl:Zbl 06738573; reference:[1] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara: Theory of Charges: A Study of Finitely Additive Measures.Pure and Applied Mathematics 109, Academic Press, London (1983). Zbl 0516.28001, MR 0751777; reference:[2] Campbell, J. T., Jamison, J. E.: On some classes of weighted composition operators.Glasg. Math. J. 32 (1990), 87-94 corrigendum on pages 261-263\kern1pt. Zbl 0705.47027, MR 1045089, 10.1017/S0017089500009095; reference:[3] Ding, J.: A closed range theorem for the Frobenius-Perron operator and its application to the spectral analysis.J. Math. Anal. Appl. 184 (1994), 156-167. Zbl 0804.47032, MR 1275951, 10.1006/jmaa.1994.1191; reference:[4] Ding, J.: The Frobenius-Perron operator as a product of two operators.Appl. Math. Lett. 9 (1996), 63-65. Zbl 0857.47016, MR 1386001, 10.1016/0893-9659(96)00033-X; reference:[5] Ding, J.: The point spectrum of Frobenius-Perron and Koopman operators.Proc. Am. Math. Soc. 126 (1998), 1355-1361. Zbl 0892.47010, MR 1443148, 10.1090/S0002-9939-98-04188-4; reference:[6] Ding, J., Du, Q., Li, T. Y.: The spectral analysis of Frobenius-Perron operators.J. Math. Anal. Appl. 184 (1994), 285-301. Zbl 0830.47022, MR 1278389, 10.1006/jmaa.1994.1200; reference:[7] Ding, J., Hornor, W. E.: A new approach to Frobenius-Perron operators.J. Math. Anal. Appl. 187 (1994), 1047-1058. Zbl 0819.47043, MR 1298836, 10.1006/jmaa.1994.1405; reference:[8] Ding, J., Zhou, A.: On the spectrum of Frobenius-Perron operators.J. Math. Anal. Appl. 250 (2000), 610-620. Zbl 0991.47014, MR 1786085, 10.1006/jmaa.2000.7003; reference:[9] Ding, J., Zhou, A.: Statistical Properties of Deterministic Systems.Tsinghua University Texts. Springer, Berlin; Tsinghua University Press, Beijing (2009). Zbl 1171.37001, MR 2518822, 10.1007/978-3-540-85367-1; reference:[10] Jabbarzadeh, M. R.: Weighted Frobenius-Perron and Koopman operators.Bull. Iran. Math. Soc. 35 (2009), 85-96. Zbl 1203.47018, MR 2642928; reference:[11] Jabbarzadeh, M. R.: A conditional expectation type operator on $L^p$ spaces.Oper. Matrices 4 (2010), 445-453. Zbl 1217.47068, MR 2680958, 10.7153/oam-04-24; reference:[12] Jabbarzadeh, M. R., Emamalipour, H.: Compact weighted Frobenius-Perron operators and their spectra.Bull. Iran. Math. Soc. 38 (2012), 817-826. Zbl 06283466, MR 3028472; reference:[13] Jabbarzadeh, M. R., Bakhshkandi, M. Jafari: Stability constants for weighted composition operators.To appear in Bull. Belg. Math. Soc.-Simon Stevin.; reference:[14] Rao, M. M.: Conditional Measures and Applications.Pure and Applied Mathematics (Boca Raton) 271, Chapman & Hall/CRC, Boca Raton (2005). Zbl 1079.60008, MR 2149673; reference:[15] Yosida, K.: Functional Analysis.Classics in Mathematics. Vol. 123, Springer, Berlin (1995). Zbl 0830.46001, MR 1336382, 10.1007/978-3-642-61859-8; reference:[16] Zaanen, A. C.: Integration.North-Holland, Amsterdam (1967). Zbl 0175.05002, MR 0222234

  7. 7
    Academic Journal

    المؤلفون: Bouali, Said, Bouhafsi, Youssef

    وصف الملف: application/pdf

    Relation: mr:MR3397256; zbl:Zbl 06486938; reference:[1] Anderson, J.: On normal derivations.Proc. Am. Math. Soc. 38 (1973), 135-140. Zbl 0255.47036, MR 0312313, 10.1090/S0002-9939-1973-0312313-6; reference:[2] Berger, C. A., Shaw, B. I.: Selfcommutators of multicyclic hyponormal operators are always trace class.Bull. Am. Math. Soc. 79 (1974), 1193-1199. Zbl 0283.47018, MR 0374972; reference:[3] Bouali, S., Bouhafsi, Y.: On the range kernel orthogonality and {$P$}-symmetric operators.Math. Inequal. Appl. 9 (2006), 511-519. Zbl 1112.47026, MR 2242781; reference:[4] Delai, M. B., Bouali, S., Cherki, S.: A remark on the orthogonality of the image to the kernel of a generalized derivation.Proc. Am. Math. Soc. 126 French (1998), 167-171. MR 1416081; reference:[5] Duggal, B. P.: A perturbed elementary operator and range-kernel orthogonality.Proc. Am. Math. Soc. 134 (2006), 1727-1734. Zbl 1082.47031, MR 2204285, 10.1090/S0002-9939-05-08337-1; reference:[6] Duggal, B. P.: A remark on normal derivations.Proc. Am. Math. Soc. 126 (1998), 2047-2052. Zbl 0894.47003, MR 1451795, 10.1090/S0002-9939-98-04326-3; reference:[7] Gohberg, I. C., Kreĭn, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators.Translations of Mathematical Monographs 18 American Mathematical Society, Providence (1969), translated from the Russian, Nauka, Moskva, 1965. Zbl 0181.13504, MR 0246142, 10.1090/mmono/018/01; reference:[8] Kittaneh, F.: Normal derivations in norm ideals.Proc. Am. Math. Soc. 123 (1995), 1779-1785. Zbl 0831.47036, MR 1242091, 10.1090/S0002-9939-1995-1242091-2; reference:[9] Tong, Y.: Kernels of generalized derivations.Acta Sci. Math. 54 (1990), 159-169. Zbl 0731.47038, MR 1073431; reference:[10] Turnšek, A.: Orthogonality in {$\scr C_p$} classes.Monatsh. Math. 132 (2001), 349-354. MR 1844072, 10.1007/s006050170039; reference:[11] Turnšek, A.: Elementary operators and orthogonality.Linear Algebra Appl. 317 (2000), 207-216. Zbl 1084.47510, MR 1782211; reference:[12] Yoshino, T.: Subnormal operator with a cyclic vector.Tôhoku Math. J. II. Ser. 21 (1969), 47-55. Zbl 0192.47801, MR 0246145, 10.2748/tmj/1178243033

  8. 8
    Academic Journal

    المؤلفون: Bouali, Said, Bouhafsi, Youssef

    وصف الملف: application/pdf

    Relation: mr:MR2738968; zbl:Zbl 1220.47049; reference:[1] Anderson, J. H., Bunce, J. W., Deddens, J. A., Williams, J. P.: $C^{\ast}$-algebras and derivation ranges.Acta. Sci. Math. (Szeged) 40 (1978), 211-227. Zbl 0406.46048, MR 0515202; reference:[2] Apostol, C., Fialkow, L.: Structural properties of elementary operators.Canad. J. Math. 38 (1986), 1485-1524. Zbl 0627.47015, MR 0873420, 10.4153/CJM-1986-072-6; reference:[3] Berens, H., Finzel, M.: A problem in linear matrix approximation.Math. Nachr. 175 (1995), 33-46. Zbl 0838.47015, MR 1355011, 10.1002/mana.19951750104; reference:[4] Bouali, S., Bouhafsi, Y.: On the range of the elementary operator $X\mapsto AXA-X$.Math. Proc. Roy. Irish Acad. 108 (2008), 1-6. Zbl 1189.47033, MR 2372836; reference:[5] Dixmier, J.: Les $C^{\ast}$-algèbres et leurs représentations.Gauthier Villars, Paris (1964). Zbl 0152.32902, MR 0171173; reference:[6] Douglas, R. G.: On the operator equation $S^{\ast}XT=X$ and related topics.Acta. Sci. Math. (Szeged) 30 (1969), 19-32. Zbl 0177.19204, MR 0250106; reference:[7] Duggal, B. P.: On intertwining operators.Monatsh. Math. 106 (1988), 139-148. Zbl 0652.47019, MR 0968331, 10.1007/BF01298834; reference:[8] Duggal, B. P.: A remark on generalised Putnam-Fuglede theorems.Proc. Amer. Math. Soc. 129 (2001), 83-87. Zbl 0958.47015, MR 1784016, 10.1090/S0002-9939-00-05920-7; reference:[9] Embry, M. R., Rosenblum, M.: Spectra, tensor product, and linear operator equations.Pacific J. Math. 53 (1974), 95-107. MR 0353023, 10.2140/pjm.1974.53.95; reference:[10] Fialkow, L.: Essential spectra of elementary operators.Trans. Amer. Math. Soc. 267 (1981), 157-174. Zbl 0475.47002, MR 0621980, 10.1090/S0002-9947-1981-0621980-8; reference:[11] Fialkow, A., Lobel, R.: Elementary mapping into ideals of operators.Illinois J. Math. 28 (1984), 555-578. MR 0761990, 10.1215/ijm/1256045966; reference:[12] Fialkow, L.: Elementary operators and applications.(Editor: Matin Mathieu), Procceding of the International Workshop, World Scientific (1992), 55-113. MR 1183937; reference:[13] Fong, C. K., Sourour, A. R.: On the operator identity $\sum A_kXB_k=0$.Canad. J. Math. 31 (1979), 845-857. Zbl 0368.47024, MR 0540912, 10.4153/CJM-1979-080-x; reference:[14] Genkai, Z.: On the operators $X\mapsto AX-XB$ and $ X\mapsto AXB-X$.Chinese J. Fudan Univ. Nat. Sci. 28 (1989), 148-154.; reference:[15] Magajna, B.: The norm of a symmetric elementary operator.Proc. Amer. Math. Soc. 132 (2004), 1747-1754. Zbl 1055.47030, MR 2051136, 10.1090/S0002-9939-03-07248-4; reference:[16] Mathieu, M.: Rings of quotients of ultraprime Banach algebras with applications to elementary operators.Proc. Centre Math. Anal., Austral. Nat. Univ. Canberra 21 (1989), 297-317. Zbl 0701.46027, MR 1022011; reference:[17] Mathieu, M.: The norm problem for elementary operators.Recent progress in functional analysis (Valencia 2000) 363-368 North-Holland Math. Stud. 189, North-Holland, Amsterdam (2001). Zbl 1011.47027, MR 1861772, 10.1016/S0304-0208(01)80061-X; reference:[18] Stachò, L. L., Zalar, B.: On the norm of Jordan elementary operators in standard operator algebra.Publ. Math. Debrecen 49 (1996), 127-134. MR 1416312

  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2595068; zbl:Zbl 1220.47043; reference:[1] Campbell, J., Jamison, J.: On some classes of weighted composition operators.Glasg. Math. J. 32 (1990), 87-94. Zbl 0712.47025, MR 1045089, 10.1017/S0017089500009095; reference:[2] Conway, J. B.: A course in Functional Analysis, 2nd ed.Springer-Verlag New York (1990). Zbl 0706.46003, MR 1070713; reference:[3] Pagter, B. de, Ricker, W. J.: Bicommutants of algebras of multiplication operators.Proc. London Math. Soc. 72 (1996), 458-480. Zbl 0910.47037, MR 1367086; reference:[4] Herron, J.: Weighted conditional expectation operators on $L^p$ spaces.UNC Charlotte Doctoral Dissertation ().; reference:[5] Kantorovitz, S.: Introduction to Modern Analysis.Oxford University Press Oxford (2003). Zbl 1014.46001, MR 1977370; reference:[6] Lambert, A., Lucas, T. G.: Nagata's principle of idealization in relation to module homomorphisms and conditional expectations.Kyungpook Math. J. 40 (2000), 327-337. Zbl 1042.13006, MR 1803109; reference:[7] Lambert, A.: $L^p$ multipliers and nested sigma-algebras.Oper. Theory Adv. Appl. 104 (1998), 147-153. MR 1639653; reference:[8] Lambert, A., Weinstock, B. M.: A class of operator algebras induced by probabilistic conditional expectations.Mich. Math. J. 40 (1993), 359-376. Zbl 0820.46056, MR 1226836, 10.1307/mmj/1029004757; reference:[9] Lambert, A.: Hyponormal composition operators.Bull. London Math. Soc. 18 (1986), 395-400. Zbl 0624.47014, MR 0838810, 10.1112/blms/18.4.395; reference:[10] Rao, M. M.: Conditional Measures and Applications.Marcel Dekker New York (1993). Zbl 0815.60001, MR 1234936; reference:[11] Takagi, H.: Fredholm weighted composition operators.Integral Equations Oper. Theory 16 (1993), 267-276. Zbl 0783.47048, MR 1205002, 10.1007/BF01358956; reference:[12] Takagi, H., Yokouchi, K.: Multiplication and composition operators between two $L^p$-spaces.Contemp. Math. 232 (1999), 321-338. MR 1678344, 10.1090/conm/232/03408; reference:[13] Zaanen, A. C.: Integration, 2nd ed.North-Holland Amsterdam (1967). MR 0222234

  10. 10
    Academic Journal

    المؤلفون: Mecheri, S.

    وصف الملف: application/pdf

    Relation: mr:MR2337624; zbl:Zbl 1174.47025; reference:[1] J. H. Anderson: On normal derivation.Proc. Amer. Math. Soc. 38 (1973), 135–140. MR 0312313, 10.1090/S0002-9939-1973-0312313-6; reference:[2] J. H. Anderson, J. W. Bunce, J. A. Deddens, and J. P. Williams: C$^{*}$ algebras and derivation ranges.Acta Sci. Math. 40 (1978), 211–227. MR 0515202; reference:[3] S. Bouali, J. Charles: Extension de la notion d’opérateur D-symétique I.Acta Sci. Math. 58 (1993), 517–525. (French) MR 1264254; reference:[4] S. Mecheri: Generalized P-symmetric operators.Proc. Roy. Irish Acad. 104A (2004), 173–175. MR 2140424; reference:[5] S. Mecheri, M. Bounkhel: Some variants of Anderson’s inequality in $C_{1}$-classes.JIPAM, J. Inequal. Pure Appl. Math. 4 (2003), 1–6. MR 1966004; reference:[6] S. Mecheri: On the range of elementary operators.Integral Equations Oper. Theory 53 (2005), 403–409. Zbl 1120.47024, MR 2186098, 10.1007/s00020-004-1327-3; reference:[7] V. S. Shulman: On linear equation with normal coefficient.Dokl. Akad. Nauk USSR 2705 (1983), 1070–1073. (Russian) MR 0714059; reference:[8] J. P. Williams: On the range of a derivation.Pac. J. Math. 38 (1971), 273–279. Zbl 0205.42102, MR 0308809

  11. 11
    Academic Journal

    المؤلفون: Ko, Eungil, Nam, Hae-Won, Yang, Youngoh

    وصف الملف: application/pdf

    Relation: mr:MR2280808; zbl:Zbl 1164.47319; reference:[1] C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu: Approximation of Hilbert space operators, Volume II.Research Notes in Mathematics 102, Pitman, Boston, 1984. MR 0735080; reference:[2] S. C. Arora and J. K. Thukral: On a class of operators.Glasnik Math. 21 (1986), 381–386. MR 0896819; reference:[3] S. K. Berberian: An extension of Weyl’s theorem to a class of not necessarily normal operators.Michigan Math J. 16 (1969), 273–279. Zbl 0175.13603, MR 0250094, 10.1307/mmj/1029000272; reference:[4] S. K. Berberian: The Weyl’s spectrum of an operator.Indiana Univ. Math. J. 20 (1970), 529–544. MR 0279623, 10.1512/iumj.1971.20.20044; reference:[5] S. W. Brown: Hyponormal operators with thick spectrum have invariant subspaces.Ann. of Math. 125 (1987), 93–103. MR 0873378, 10.2307/1971289; reference:[6] L. A. Coburn: Weyl’s theorem for non-normal operators.Michigan Math. J. 13 (1966), 285–288. MR 0201969, 10.1307/mmj/1031732778; reference:[7] I. Colojoara and C. Foias: Theory of generalized spectral operators.Gordon and Breach, New York, 1968. MR 0394282; reference:[8] J. B. Conway: Subnormal operators.Pitman, London, 1981. Zbl 0474.47013, MR 0634507; reference:[9] S. Djordjevic, I. Jeon and E. Ko: Weyl’s theorem through local spectral theory.Glasgow Math. J. 44 (2002), 323–327. MR 1902409; reference:[10] B. P. Duggal: On the spectrum of $p$-hyponormal operators.Acta Sci. Math. (Szeged) 63 (1997), 623–637. Zbl 0893.47013, MR 1480502; reference:[11] J. Eschmeier: Invariant subspaces for subscalar operators.Arch. Math. 52 (1989), 562–570. Zbl 0651.47002, MR 1007631, 10.1007/BF01237569; reference:[12] P. R. Halmos: A Hilbert space problem book.Springer-Verlag, 1982. Zbl 0496.47001, MR 0675952; reference:[13] R. E. Harte: Invertibility and singularity.Dekker, New York, 1988. Zbl 0678.47001; reference:[14] C. Kitai: Invariant closed sets for linear operators.Ph.D. Thesis, Univ. of Toronto, 1982.; reference:[15] E. Ko: Algebraic and triangular $n$-hyponormal operators.Proc. Amer. Math. Soc. 123 (1995), 3473–3481. Zbl 0877.47015, MR 1291779; reference:[16] K. B. Laursen: Operators with finite ascent.Pacific J. Math. 152 (1992), 323–336. Zbl 0783.47028, MR 1141799, 10.2140/pjm.1992.152.323; reference:[17] K. B. Laursen: Essential spectra through local spectral theory.Proc. Amer. Math. Soc. 125 (1997), 1425–1434. Zbl 0871.47003, MR 1389525, 10.1090/S0002-9939-97-03852-5; reference:[18] K. K. Oberai: On the Weyl spectrum.Illinois J. Math. 18 (1974), 208–212. Zbl 0277.47002, MR 0333762, 10.1215/ijm/1256051222; reference:[19] K. K. Oberai: On the Weyl spectrum (II).Illinois J. Math. 21 (1977), 84–90. Zbl 0358.47004, MR 0428073, 10.1215/ijm/1256049504; reference:[20] M. Putinar: Hyponormal operators are subscalar.J. Operator Th. 12 (1984), 385–395. Zbl 0573.47016, MR 0757441; reference:[21] R. Lange: Biquasitriangularity and spectral continuity.Glasgow Math. J. 26 (1985), 177–180. Zbl 0583.47006, MR 0798746, 10.1017/S0017089500005966; reference:[22] B. L. Wadhwa: Spectral, $M$-hyponormal and decomposable operators.Ph.D. thesis, Indiana Univ., 1971.; reference:[23] D. Xia: Spectral theory of hyponormal operators.Operator Theory 10, Birkhäuser-Verlag, 1983. Zbl 0523.47012, MR 0806959

  12. 12
    Academic Journal

    المؤلفون: Othman, Sadoon Ibrahim

    وصف الملف: application/pdf

    Relation: mr:MR1400605; zbl:Zbl 0863.47016; reference:[1] A. Brown: On a class of operators.Proc Amer. Math. Soc 4 (1953), 723-728. Zbl 0051.34303, MR 0059483, 10.1090/S0002-9939-1953-0059483-2; reference:[2] J. B. Conway: Subnormal Operators.Pitman Publishing Inc., London, 1981. Zbl 0474.47013, MR 0634507; reference:[3] N. Dunford, J. Schwartz: Linear Operators, Part II.Interscience, New York, 1963. Zbl 0128.34803, MR 0188745; reference:[4] P. R. Halmos: Normal dilations and extensions of operators.Summa Brasil. Math. 2 (1950), 125-134. MR 0044036; reference:[5] V. I. Istrătescu: Introduction to Linear Operator Theory.Marcel Dekker, Inc., New York, 1981. MR 0608969

  13. 13
    Academic Journal

    المؤلفون: Horák, Karel, Müller, Vladimír

    مصطلحات موضوعية: msc:46A25, msc:47A15, msc:47B20, msc:47D25, msc:47L30

    وصف الملف: application/pdf

    Relation: mr:MR1211759; zbl:Zbl 0811.47040; reference:[1] W. Arveson: An invitation to $C$*-algebra.Springer-Verlag, New York-Heidelberg-Berlin, 1976. MR 0512360; reference:[2] J. A. Deddens: Every isometry is reflexive.Proc. Amer. Math. Soc. 28 (1971), 509–512. Zbl 0213.14304, MR 0278099, 10.1090/S0002-9939-1971-0278099-7; reference:[3] J. Dixmier: Les Algèbres d’opérateurs dans l’espace Hilbertien.Gauthier-Villars, Paris, 1957. Zbl 0088.32304, MR 0094722; reference:[4] K. Horák and V. Müller: Functional model for commuting isometries.Czech. J. Math. 39 (1989), 370–379. MR 0992140; reference:[5] R. F. Olin and J. E. Thomson: Algebras of subnormal operators.J. Funct. Anal., 37 (1980), 271–301. MR 0581424, 10.1016/0022-1236(80)90045-2; reference:[6] M. Ptak: On the reflexivity of pairs of isometries and of tensor products of some operator algebras.Studia Math. 83 (1986), 47–55. MR 0829898, 10.4064/sm-83-1-57-95; reference:[7] M. Ptak: Reflexivity of pairs of shifts.Proc. Amer. Math. Soc. 109 (1990), 409–415. Zbl 0734.47023, MR 1007510, 10.1090/S0002-9939-1990-1007510-0; reference:[8] H. Radjavi and P. Rosenthal: Invariant Subspaces.(1973), Springer-Verlag, New York-Heidelberg-Berlin. MR 0367682; reference:[9] D. Sarason: Invariant subspaces and unstarred operator algebras.Pacific J. Math. 17 (1966), 511–517. Zbl 0171.33703, MR 0192365, 10.2140/pjm.1966.17.511; reference:[10] I. E. Segal: Decompositions of operator algebras, I and II.Memoirs of the AMS, No. 9, 1951. MR 0044749; reference:[11] W. R. Wogen: Quasinormal operators are reflexive.Bull. London Math. Soc. 11 (1979), 19–22. Zbl 0415.47016, MR 0535790; reference:[12] M. Zajac: Hyperreflexivity of isometries and weak contractions.J. Oper. Th. (to appear).

  14. 14
    Academic Journal

    المؤلفون: Murphy, Gerald J.

    مصطلحات موضوعية: msc:47B20

    وصف الملف: application/pdf

    Relation: mr:MR677855; zbl:Zbl 0505.47014; reference:[1] CONWAY J. B.: The dual of a subnormal operator.To appear, J. Operator Theory. Zbl 0469.47020, MR 0617974; reference:[2] HALMOS P. R.: A Hilbert space pгoblem book.D. Van Nostrand Co., Princeton (1967). MR 0208368