يعرض 1 - 15 نتائج من 15 نتيجة بحث عن '"msc:47A11"', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4221824; zbl:07217184; reference:[1] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers.Kluwer Academic Publishers, Dordrecht (2004). Zbl 1077.47001, MR 2070395, 10.1007/1-4020-2525-4; reference:[2] Aiena, P.: Quasi-Fredholm operators and localized SVEP.Acta Sci. Mat. 73 (2007), 251-263. Zbl 1135.47300, MR 2339864; reference:[3] Aiena, P., Biondi, M. T., Carpintero, C.: On Drazin invertibility.Proc. Am. Math. Soc. 136 (2008), 2839-2848. Zbl 1142.47004, MR 2399049, 10.1090/S0002-9939-08-09138-7; reference:[4] Astudillo-Villaba, F. R., Castillo, R. E., Ramos-Fernández, J. C.: Multiplication operators on the spaces of functions of bounded {$p$}-variation in Wiener's sense.Real Anal. Exch. 42 (2017), 329-344. Zbl 06870333, MR 3721805, 10.14321/realanalexch.42.2.0329; reference:[5] Barnes, B. A.: The spectral and Fredholm theory of extensions of bounded linear operators.Proc. Am. Math. Soc. 105 (1989), 941-949. Zbl 0673.47003, MR 0955454, 10.2307/2047057; reference:[6] Barnes, B. A.: Restrictions of bounded linear operators: Closed range.Proc. Am. Math. Soc. 135 (2007), 1735-1740. Zbl 1124.47002, MR 2286083, 10.1090/S0002-9939-06-08624-2; reference:[7] Berkani, M.: On a class of quasi-Fredholm operators.Integral Equations Oper. Theory 34 (1999), 244-249. Zbl 0939.47010, MR 1694711, 10.1007/BF01236475; reference:[8] Berkani, M., Sarih, M.: On semi B-Fredholm operators.Glasg. Math. J. 43 (2001), 457-465. Zbl 0995.47008, MR 1878588, 10.1017/S0017089501030075; reference:[9] Carpintero, C., Muñoz, D., Rosas, E., Sanabria, J., García, O.: Weyl type theorems and restrictions.Mediterr. J. Math. 11 (2014), 1215-1228. Zbl 1331.47005, MR 3268818, 10.1007/s00009-013-0369-7; reference:[10] Finch, J. K.: The single valued extension property on a Banach space.Pac. J. Math. 58 (1975), 61-69. Zbl 0315.47002, MR 0374985, 10.2140/pjm.1975.58.61; reference:[11] Heuser, H. G.: Functional Analysis.A Wiley-Interscience Publication. John Wiley & Sons, Chichester (1982). Zbl 0465.47001, MR 0640429

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3831481; zbl:Zbl 06890409; reference:[1] Aiena, P., Trapani, C., Triolo, S.: SVEP and local spectral radius formula for unbounded operators.Filomat 28 (2014), 263-273. Zbl 06704755, MR 3360003, 10.2298/FIL1402263A; reference:[2] Bai, Q., Huang, J., Chen, A.: Essential, Weyl and Browder spectra of unbounded upper triangular operator matrices.Linear Multilinear Algebra 64 (2016), 1583-1594. Zbl 06605447, MR 3503370, 10.1080/03081087.2015.1111290; reference:[3] Barraa, M., Boumazgour, M.: A note on the spectrum of an upper triangular operator matrix.Proc. Am. Math. Soc. 131 (2003), 3083-3088. Zbl 1050.47005, MR 1993217, 10.1090/S0002-9939-03-06862-X; reference:[4] Benhida, C., Zerouali, E. H., Zguitti, H.: Spectra of upper triangular operator matrices.Proc. Am. Math. Soc. 133 (2005), 3013-3020. Zbl 1067.47005, MR 2159780, 10.1090/S0002-9939-05-07812-3; reference:[5] Bermudez, T., Gonzalez, M.: On the boundedness of the local resolvent function.Integral Equations Oper. Theory 34 (1999), 1-8. Zbl 0931.47003, MR 1690283, 10.1007/BF01332488; reference:[6] Bračič, J., Müller, V.: On bounded local resolvents.Integral Equations Oper. Theory 55 (2006), 477-486. Zbl 1113.47003, MR 2250159, 10.1007/s00020-005-1402-4; reference:[7] Du, H., Jin, P.: Perturbation of spectrums of $2\times 2$ operator matrices.Proc. Am. Math. Soc. 121 (1994), 761-766. Zbl 0814.47016, MR 1185266, 10.2307/2160273; reference:[8] Elbjaoui, H., Zerouali, E. H.: Local spectral theory for $2\times2$ operator matrices.Int. J. Math. Math. Sci. 2003 (2003), 2667-2672. Zbl 1060.47003, MR 2005905, 10.1155/S0161171203012043; reference:[9] Eschmeier, J., Prunaru, B.: Invariant subspaces and localizable spectrum.Integral Equations Oper. Theory 42 (2002), 461-471. Zbl 1010.47006, MR 1885444, 10.1007/BF01270923; reference:[10] González, M.: An example of a bounded local resolvent.Operator Theory, Operator Algebras and Related Topics. Proc. 16th Int. Conf. Operator Theory, Timişoara, 1996 Theta Found., Bucharest (1997), 159-162. Zbl 0943.47002, MR 1728418; reference:[11] Han, J. K., Lee, H. Y., Lee, W. Y.: Invertible completions of $2\times 2$ upper triangular operator matrices.Proc. Am. Math. Soc. 128 (2000), 119-123. Zbl 0944.47004, MR 1618686, 10.1090/S0002-9939-99-04965-5; reference:[12] Houimdi, M., Zguitti, H.: Local spectral properties of a square matrix of operators.Acta Math. Vietnam 25 (2000), 137-144 (in French). Zbl 0970.47003, MR 1770883; reference:[13] Neumann, M. M.: On local spectral properties of operators on Banach spaces.Int. Workshop on Operator Theory, Cefalù, Italy, 1997 (P. Aiena et al., eds.) Circolo Matematico di Palermo, Suppl. Rend. Circ. Mat. Palermo, (2) {\it 56} (1998), 15-25. Zbl 0929.47001, MR 1710819; reference:[14] Zerouali, E. H., Zguitti, H.: Perturbation of spectra of operator matrices and local spectral theory.J. Math. Anal. Appl. 324 (2006), 992-1005. Zbl 1105.47006, MR 2265096, 10.1016/j.jmaa.2005.12.065; reference:[15] Zhong, W.: Method of separation of variables and Hamiltonian system.Comput. Struct. Mech. Appl. 8 (1991), 229-240 (in Chinese).

  3. 3
    Academic Journal

    المؤلفون: Berkani, Mohammed

    وصف الملف: application/pdf

    Relation: mr:MR3576796; zbl:Zbl 06674859; reference:[1] Aiena, P., Peña, P.: Variations on Weyl's theorem.J. Math. Anal. Appl. 324 (2006), 566-579. Zbl 1101.47001, MR 2262492, 10.1016/j.jmaa.2005.11.027; reference:[2] Amouch, M., Zguitti, H.: On the equivalence of Browder's and generalized Browder's theorem.Glasg. Math. J. 48 (2006), 179-185. Zbl 1097.47012, MR 2224938, 10.1017/S0017089505002971; reference:[3] Barnes, B. A.: Riesz points and Weyl's theorem.Integral Equations Oper. Theory 34 (1999), 187-196. Zbl 0948.47002, MR 1694707, 10.1007/BF01236471; reference:[4] Berkani, M.: On a class of quasi-Fredholm operators.Integral Equations Oper. Theory 34 (1999), 244-249. Zbl 0939.47010, MR 1694711, 10.1007/BF01236475; reference:[5] Berkani, M.: $B$-Weyl spectrum and poles of the resolvent.J. Math. Anal. Appl. 272 (2002), 596-603. Zbl 1043.47004, MR 1930862, 10.1016/S0022-247X(02)00179-8; reference:[6] Berkani, M.: Index of $B$-Fredholm operators and generalization of a Weyl theorem.Proc. Am. Math. Soc. 130 (2002), 1717-1723. Zbl 0996.47015, MR 1887019, 10.1090/S0002-9939-01-06291-8; reference:[7] Berkani, M.: On the equivalence of Weyl theorem and generalized Weyl theorem.Acta Math. Sin., Engl. Ser. 23 (2007), 103-110. Zbl 1116.47015, MR 2275483, 10.1007/s10114-005-0720-4; reference:[8] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators.Acta Sci. Math. 69 (2003), 359-376. Zbl 1050.47014, MR 1991673; reference:[9] Berkani, M., Sarih, M.: On semi B-Fredholm operators.Glasg. Math. J. 43 (2001), 457-465. Zbl 0995.47008, MR 1878588, 10.1017/S0017089501030075; reference:[10] Berkani, M., Zariouh, H.: Extended Weyl type theorems.Math. Bohem. 134 (2009), 369-378. Zbl 1211.47011, MR 2597232; reference:[11] Berkani, M., Zariouh, H.: New extended Weyl type theorems.Mat. Vesn. 62 (2010), 145-154. Zbl 1258.47020, MR 2639143; reference:[12] Cao, X. H.: A-Browder's theorem and generalized $a$-Weyl's theorem.Acta Math. Sin., Engl. Ser. 23 (2007), 951-960. Zbl 1153.47009, MR 2307839, 10.1007/s10114-005-0870-4; reference:[13] Curto, R. E., Han, Y. M.: Generalized Browder's and Weyl's theorems for Banach space operators.J. Math. Anal. Appl. 336 (2007), 1424-1442. Zbl 1131.47003, MR 2353025, 10.1016/j.jmaa.2007.03.060; reference:[14] Djordjević, D. S.: Operators obeying $a$-Weyl's theorem.Publ. Math. 55 (1999), 283-298. Zbl 0938.47008, MR 1721837; reference:[15] Djordjević, S. V., Han, Y. M.: Browder's theorems and spectral continuity.Glasg. Math. J. 42 (2000), 479-486. Zbl 0979.47004, MR 1793814, 10.1017/S0017089500030147; reference:[16] Duggal, B. P.: Polaroid operators and generalized Browder-Weyl theorems.Math. Proc. R. Ir. Acad. 108A (2008), 149-163. Zbl 1180.47006, MR 2475808, 10.3318/PRIA.2008.108.2.149; reference:[17] Heuser, H. G.: Functional Analysis.John Wiley & Sons Chichester (1982). Zbl 0465.47001, MR 0640429; reference:[18] Rakočević, V.: Operators obeying $a$-Weyl's theorem.Rev. Roum. Math. Pures Appl. 34 (1989), 915-919. MR 1030982; reference:[19] Weyl, H.: Über beschränkte quadratische Formen, deren Differenz vollstetig ist.Rend. Circ. Mat. Palermo 27 German (1909), 373-392, 402. 10.1007/BF03019655

  4. 4
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3475141; zbl:Zbl 06562162; reference:[1] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers.Kluwer Academic Publishers, Dordrecht (2004). Zbl 1077.47001, MR 2070395; reference:[2] Aluthge, A.: On $p$-hyponormal operators for $0; reference:[3] Berkani, M.: On a class of quasi-Fredholm operators.Integral Equations Oper. Theory 34 (1999), 244-249. Zbl 0939.47010, MR 1694711, 10.1007/BF01236475; reference:[4] Berkani, M., Arroud, A.: Generalized Weyl's theorem and hyponormal operators.J. Aust. Math. Soc. 76 (2004), 291-302. Zbl 1061.47021, MR 2041251, 10.1017/S144678870000896X; reference:[5] Berkani, M., Castro, N., Djordjevi{ć}, S. V.: Single valued extension property and generalized Weyl's theorem.Math. Bohem. 131 (2006), 29-38. Zbl 1114.47015, MR 2211001; reference:[6] Berkani, M., Kachad, M., Zariouh, H.: Extended Weyl-type theorems for direct sums.Demonstr. Math. (electronic only) 47 (2014), 411-422. Zbl 1318.47019, MR 3217737; reference:[7] Berkani, M., Kachad, M., Zariouh, H., Zguitti, H.: Variations on a-Browder-type theorems.Sarajevo J. Math. 9 (2013), 271-281. MR 3146195, 10.5644/SJM.09.2.11; reference:[8] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators.Acta Sci. Math. 69 (2003), 359-376. Zbl 1050.47014, MR 1991673; reference:[9] Berkani, M., Sarih, M.: On semi B-Fredholm operators.Glasg. Math. J. 43 (2001), 457-465. Zbl 0995.47008, MR 1878588, 10.1017/S0017089501030075; reference:[10] Berkani, M., Zariouh, H.: Weyl type-theorems for direct sums.Bull. Korean Math. Soc. 49 (2012), 1027-1040. Zbl 1263.47016, MR 3012970, 10.4134/BKMS.2012.49.5.1027; reference:[11] Conway, J. B.: The Theory of Subnormal Operators.Mathematical Surveys and Monographs 36 American Mathematical Society, Providence (1991). Zbl 0743.47012, MR 1112128; reference:[12] Djordjevi{ć}, S. V., Han, Y. M.: A note on Weyl's theorem for operator matrices.Proc. Am. Math. Soc. 131 (2003), 2543-2547. Zbl 1041.47006, MR 1974653, 10.1090/S0002-9939-02-06808-9; reference:[13] Duggal, B. P., Kubrusly, C. S.: Weyl's theorem for direct sums.Stud. Sci. Math. Hung. 44 (2007), 275-290. Zbl 1164.47019, MR 2325524; reference:[14] Heuser, H. G.: Functional Analysis.John Wiley Chichester (1982). Zbl 0465.47001, MR 0640429; reference:[15] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory.London Mathematical Society Monographs. New Series 20 Clarendon Press, Oxford (2000). Zbl 0957.47004, MR 1747914; reference:[16] Lee, W. Y.: Weyl spectra of operator matrices.Proc. Am. Math. Soc. 129 (2001), 131-138. Zbl 0965.47011, MR 1784020, 10.1090/S0002-9939-00-05846-9

  5. 5
    Academic Journal

    المؤلفون: Amouch, M., Zguitti, H.

    وصف الملف: application/pdf

    Relation: mr:MR2807707; zbl:Zbl 1216.47018; reference:[1] Aiena, P.: Fredholm and Local Spectral Theory with Applications to Multipliers.Kluwer Academic Publishers (2004), Dordrecht. Zbl 1077.47001, MR 2070395; reference:[2] Amouch, M.: Weyl type theorems for operators satisfying the single-valued extension property.J. Math. Anal. Appl. 326 (2007), 1476-1484. Zbl 1117.47007, MR 2280999, 10.1016/j.jmaa.2006.03.085; reference:[3] Amouch, M.: Polaroid operators with SVEP and perturbations of property $(gw)$.Mediterr. J. Math. 6 (2009), 461-470. Zbl 1221.47009, MR 2565278, 10.1007/s00009-009-0018-3; reference:[4] Amouch, M., Zguitti, H.: On the equivalence of Browder's and generalized Browder's theorem.Glasg. Math. J. 48 (2006), 179-185. Zbl 1097.47012, MR 2224938, 10.1017/S0017089505002971; reference:[5] Benhida, C., Zerouali, E. H., Zguitti, H.: Spectral properties of upper triangular block operators.Acta Sci. Math. (Szeged) 71 (2005), 681-690. Zbl 1105.47005, MR 2206603; reference:[6] Berkani, M.: On a class of quasi-Fredholm operators.Integral Equations Oper. Theory 34 (1999), 244-249. Zbl 0939.47010, MR 1694711, 10.1007/BF01236475; reference:[7] Berkani, M.: Restriction of an operator to the range of its powers.Stud. Math. 140 (2000), 163-175. Zbl 0978.47011, MR 1784630, 10.4064/sm-140-2-163-175; reference:[8] Berkani, M.: Index of Fredholm operators and generalization of a Weyl theorem.Proc. Am. Math. Soc. 130 (2002), 1717-1723. MR 1887019, 10.1090/S0002-9939-01-06291-8; reference:[9] Berkani, M., Amouch, M.: Preservation of property ($gw$) under perturbations.Acta Sci. Math. (Szeged) 74 (2008), 769-781. Zbl 1199.47068, MR 2487945; reference:[10] Berkani, M., Arroud, A.: Generalized Weyl's theorem and hyponormal operators.J. Aust. Math. Soc. 76 (2004), 291-302. Zbl 1061.47021, MR 2041251, 10.1017/S144678870000896X; reference:[11] Berkani, M., Arroud, A.: B-Fredholm and spectral properties for multipliers in Banach algebras.Rend. Circ. Mat. Palermo 55 (2006), 385-397. Zbl 1123.47031, MR 2287069, 10.1007/BF02874778; reference:[12] Berkani, M., Castro, N., Djordjević, S. V.: Single valued extension property and generalized Weyl's theorem.Math. Bohem. 131 (2006), 29-38. Zbl 1114.47015, MR 2211001; reference:[13] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators.Acta Sci. Math. (Szeged) 69 (2003), 359-376. Zbl 1050.47014, MR 1991673; reference:[14] Duggal, B. P., Harte, R., Jeon, I. H.: Polaroid operators and Weyl's theorem.Proc. Am. Math. Soc. 132 (2004), 1345-1349. Zbl 1062.47004, MR 2053338, 10.1090/S0002-9939-03-07381-7; reference:[15] Finch, J. K.: The single valued extension property on a Banach space.Pacific J. Math. 58 (1975), 61-69. Zbl 0315.47002, MR 0374985, 10.2140/pjm.1975.58.61; reference:[16] Heuser, H. G.: Functional Analysis.John Wiley Chichester (1982). Zbl 0465.47001, MR 0640429; reference:[17] Houimdi, M., Zguitti, H.: Propriétés spectrales locales d'une matrice carrée des opérateurs.Acta Math. Vietnam. 25 (2000), 137-144. Zbl 0970.47003, MR 1770883; reference:[18] Laursen, K. B.: Operators with finite ascent.Pacific J. Math. 152 (1992), 323-336. Zbl 0783.47028, MR 1141799, 10.2140/pjm.1992.152.323; reference:[19] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory.Clarendon Oxford (2000). Zbl 0957.47004, MR 1747914; reference:[20] Lay, D. C.: Spectral analysis using ascent, descent, nullity and defect.Math. Ann. 184 (1970), 197-214. Zbl 0177.17102, MR 0259644, 10.1007/BF01351564; reference:[21] Mbekhta, M., Müller, V.: Axiomatic theory of spectrum II.Stud. Math. 119 (1996), 129-147. MR 1391472, 10.4064/sm-119-2-129-147; reference:[22] Zerouali, E. H., Zguitti, H.: On the weak decomposition property $(\delta_w)$.Stud. Math. 167 (2005), 17-28. Zbl 1202.47005, MR 2133369, 10.4064/sm167-1-2; reference:[23] Zguitti, H.: A note on generalized Weyl's theorem.J. Math. Anal. Appl. 316 (2006), 373-381. Zbl 1101.47002, MR 2201769, 10.1016/j.jmaa.2005.04.057; reference:[24] Zguitti, H.: On the Drazin inverse for upper triangular operator matrices.Bull. Math. Anal. Appl. 2 (2010), 27-33. MR 2658125

  6. 6
    Academic Journal

    المؤلفون: Berkani, M., Zariouh, H.

    وصف الملف: application/pdf

    Relation: mr:MR2597232; zbl:Zbl 1211.47011; reference:[1] Amouch, M., Berkani, M.: On the property $({\rm gw})$.Mediterr. J. Math. 5 (2008), 371-378. MR 2465582, 10.1007/s00009-008-0156-z; reference:[2] Amouch, M., Zguitti, H.: On the equivalence of Browder's and generalized Browder's theorem.Glasgow Math. J. 48 (2006), 179-185. Zbl 1097.47012, MR 2224938, 10.1017/S0017089505002971; reference:[3] Aiena, P., P. Peña: Variation on Weyl's theorem.J. Math. Anal. Appl. 324 (2006), 566-579. MR 2262492, 10.1016/j.jmaa.2005.11.027; reference:[4] Barnes, B. A.: Riesz points and Weyl's theorem.Integral Equations Oper. Theory 34 (1999), 187-196. Zbl 0948.47002, MR 1694707, 10.1007/BF01236471; reference:[5] Berkani, M.: B-Weyl spectrum and poles of the resolvent.J. Math. Anal. Applications 272 (2002), 596-603. Zbl 1043.47004, MR 1930862, 10.1016/S0022-247X(02)00179-8; reference:[6] Berkani, M.: On the equivalence of Weyl theorem and generalized Weyl theorem.Acta Mathematica Sinica, English series 23 (2007), 103-110. Zbl 1116.47015, MR 2275483, 10.1007/s10114-005-0720-4; reference:[7] Berkani, M.: Index of B-Fredholm operators and generalization of a Weyl theorem.Proc. Amer. Math. Soc. 130 (2002), 1717-1723. Zbl 0996.47015, MR 1887019, 10.1090/S0002-9939-01-06291-8; reference:[8] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators.Acta Sci. Math. (Szeged) 69 (2003), 359-376. Zbl 1050.47014, MR 1991673; reference:[9] Berkani, M., Sarih, M.: On semi B-Fredholm operators.Glasgow Math. J. 43 (2001), 457-465. Zbl 0995.47008, MR 1878588, 10.1017/S0017089501030075; reference:[10] Coburn, L. A.: Weyl's theorem for nonnormal operators.Michigan Math. J. 13 (1966), 285-288. Zbl 0173.42904, MR 0201969, 10.1307/mmj/1031732778; reference:[11] Djordjević, S. V., Han, Y. M.: Browder's theorems and spectral continuity.Glasgow Math. J. 42 (2000), 479-486. Zbl 0979.47004, MR 1793814, 10.1017/S0017089500030147; reference:[12] Heuser, H.: Functionl Analysis.John Wiley, New York (1982).; reference:[13] Radjavi, H., Rosenthal, P.: Invariant Subspaces.Springer, Berlin (1973). Zbl 0269.47003, MR 0367682; reference:[14] Rakočević, V.: Operators obeying a-Weyl's theorem.Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919. MR 1030982; reference:[15] Rakočević, V.: On a class of operators.Mat. Vesnik. 37 (1985), 423-426. MR 0836891; reference:[16] Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators.Math. Ann. 163 (1966), 18-49. Zbl 0138.07602, MR 0190759, 10.1007/BF02052483

  7. 7
    Academic Journal

    المؤلفون: Amouch, M., Zguitti, H.

    وصف الملف: application/pdf

    Relation: mr:MR2428311; zbl:Zbl 1199.47067; reference:[1] P. Aiena: Fredholm Theory and Local Spectral Theory, with Applications to Multipliers.Kluwer Academic Publishers, 2004. MR 2070395; reference:[2] P. Aiena, O. Monsalve: Operators which do not have the single valued extension property.J. Math. Anal. Appl. 250 (2000), 435–448. MR 1786074, 10.1006/jmaa.2000.6966; reference:[3] M. Amouch: Weyl type theorems for operators satisfying the single-valued extension property.J. Math. Anal. Appl. 326 (2007), 1476–1484. Zbl 1117.47007, MR 2280999, 10.1016/j.jmaa.2006.03.085; reference:[4] M. Amouch: Generalized $a$-Weyl’s theorem and the single-valued extension property.Extracta. Math. 21 (2006), 51–65. Zbl 1123.47005, MR 2258341; reference:[5] M. Amouch, H. Zguitti: On the equivalence of Browder’s and generalized Browder’s theorem.Glasgow Math. J. 48 (2006), 179–185. MR 2224938, 10.1017/S0017089505002971; reference:[6] M. Berkani, N. Castro, S. V. Djordjevic: Single valued extension property and generalized Weyl’s theorem.Math. Bohem. 131 (2006), 29–38. MR 2211001; reference:[7] M. Berkani, A. Arroud: Generalized Weyl’s theorem and hyponormal operators.J. Aust. Math. Soc. 76 (2004), 291–302. MR 2041251, 10.1017/S144678870000896X; reference:[8] M. Berkani, J. J. Koliha: Weyl type theorems for bounded linear operators.Acta Sci. Math. (Szeged) 69 (2003), 359–376. MR 1991673; reference:[9] M. Berkani, M. Sarih: On semi B-Fredholm operators.Glasgow Math. J. 43 (2001), 457–465. MR 1878588; reference:[10] S. V. Djordjević, Y. M. Han: Browder’s theorems and spectral continuity.Glasgow Math. J. 42 (2000), 479–486. MR 1793814, 10.1017/S0017089500030147; reference:[11] B. P. Duggal: Hereditarily normaloid operators.Extracta Math. 20 (2005), 203–217. Zbl 1160.47301, MR 2195202; reference:[12] J. K. Finch: The single valued extension property on a Banach space.Pacific J. Math. 58 (1975), 61–69. Zbl 0315.47002, MR 0374985, 10.2140/pjm.1975.58.61; reference:[13] S. Grabiner: Uniform ascent and descent of bounded operators.J. Math. Soc. Japan 34 (1982), 317–337. Zbl 0477.47013, MR 0651274, 10.2969/jmsj/03420317; reference:[14] Y. M. Han, W. Y. Lee: Weyl’s theorem holds for algebraically hyponormal operators.Proc. Amer. Math. Soc. 128 (2000), 2291–2296. MR 1756089, 10.1090/S0002-9939-00-05741-5; reference:[15] Y. M. Han, S. V. Djordjević: A note on $a$-Weyl’s theorem.J. Math. Anal. Appl. 260 (2001), 200–213. MR 1843976, 10.1006/jmaa.2001.7448; reference:[16] J. J. Koliha: Isolated spectral points.Proc. Amer. Math. Soc. 124 (1996), 3417–3424. Zbl 0864.46028, MR 1342031, 10.1090/S0002-9939-96-03449-1; reference:[17] K. B. Laursen: Operators with finite ascent.Pacific. Math. J. 152 (1992), 323–336. Zbl 0783.47028, MR 1141799, 10.2140/pjm.1992.152.323; reference:[18] K. B. Laursen, M. M. Neumann: An Introduction to Local Spectral Theory.Clarendon, Oxford, 2000. MR 1747914; reference:[19] D. C. Lay: Spectral analysis using ascent, descent, nullity and defect.Math. Ann. 184 (1970), 197–214. Zbl 0177.17102, MR 0259644, 10.1007/BF01351564; reference:[20] M. Mbekhta: Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux.Glasgow Math. J. 29 (1987), 159–175. Zbl 0657.47038, MR 0901662, 10.1017/S0017089500006807; reference:[21] M. Mbekhta: Résolvant généralisé et théorie spectrale.J. Operator Theory 21 (1989), 69–105. Zbl 0694.47002, MR 1002122; reference:[22] M. Mbekhta, V. Müler: On the axiomatic theory of the spectrum II.Studia Math. 119 (1996), 129–147. MR 1391472, 10.4064/sm-119-2-129-147; reference:[23] M. Oudghiri: Weyl’s and Browder’s theorem for operators satisfying the SVEP.Studia Math. 163 (2004), 85–101. MR 2047466, 10.4064/sm163-1-5; reference:[24] V. Rakočević: On the essential approximate point spectrum II.Mat. Vesnik 36 (1984), 89–97. MR 0880647; reference:[25] V. Rakočević: Approximate point spectrum and commuting compact perturbations.Glasgow Math. J. 28 (1986), 193–198. MR 0848425, 10.1017/S0017089500006509; reference:[26] V. Rakočević: Operators obeying $a$-Weyl’s theorem.Rev. Roumaine Math. Pures Appl. 34 (1989), 915–919. MR 1030982; reference:[27] H. Weyl: Über beschränkte quadratische Formen, deren Differenz vollstetig ist.Rend. Circ. Mat. Palermo 27 (1909), 373–392. 10.1007/BF03019655; reference:[28] H. Zguitti: A note on generalized Weyl’s theorem.J. Math. Anal. Appl. 324 (2006), 992–1005. Zbl 1101.47002, MR 2201769

  8. 8
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2356283; zbl:Zbl 1174.47001; reference:[1] P. Aiena: Fredholm and Local Spectral Theory, with Applications to Multipliers.Kluwer Academic Publ., Dordrecht, 2004. Zbl 1077.47001, MR 2070395; reference:[2] P. Aiena and F. Villafañe: Components of resolvent sets and local spectral theory.Proceedings of the Fourth Conference on Function Spaces at Edwardsville, Contemp. Math. 328, Amer. Math. Soc., Providence, RI, 2003, pp. 1–14. MR 1990385; reference:[3] E. Albrecht and J. Eschmeier: Analytic functional models and local spectral theory.Proc. London Math. Soc. 75 (1997), 323–348. MR 1455859; reference:[4] J. Eschmeier: Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie.Habilitationsschrift, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, Heft 42, Münster, 1987. Zbl 0619.47030, MR 0876484; reference:[5] J. Eschmeier: On the essential spectrum of Banach space operators.Proc. Edinburgh Math. Soc. 43 (2000), 511–528. Zbl 0980.47004, MR 1878655; reference:[6] D. Herrero: On the essential spectra of quasisimilar operators.Can. J. Math. 40 (1988), 1436–1457. Zbl 0723.47015, MR 0990108, 10.4153/CJM-1988-066-x; reference:[7] T. Kato: Perturbation theory for nullity, deficiency and other quantities of linear operators.J. Anal. Math. 6 (1958), 261–322. Zbl 0090.09003, MR 0107819, 10.1007/BF02790238; reference:[8] J.-P. Labrousse: Les opérateurs quasi Fredholm: une généralisation des opérateurs semi Fredholm.Rend. Circ. Mat. Palermo 29 (1980), 161–258. Zbl 0474.47008, MR 0636072, 10.1007/BF02849344; reference:[9] K. B. Laursen and M. M. Neumann: An Introduction to Local Spectral Theory.Clarendon Press, Oxford, 2000. MR 1747914; reference:[10] T. L. Miller and V. G. Miller: Equality of essential spectra of quasisimilar operators with property $(\delta )$.Glasgow Math. J. 38 (1996), 21–28. MR 1373954, 10.1017/S0017089500031219; reference:[11] T. L. Miller, V. G. Miller and M. M. Neumann: Localization in the spectral theory of operators on Banach spaces.Proceedings of the Fourth Conference on Function Spaces at Edwardsville, Contemp. Math. 328, Amer. Math. Soc., Providence, RI, 2003, pp. 247–262. MR 1990406; reference:[12] B. Nagy: On $S$-decomposable operators.J. Operator Theory 2 (1979), 277–286. Zbl 0436.47024, MR 0559609; reference:[13] M. Putinar: Quasi-similarity of tuples with Bishop’s property $(\beta )$.Int. Eq. and Oper. Theory 15 (1992), 1047–1052. Zbl 0773.47011, MR 1188794, 10.1007/BF01203128; reference:[14] F.-H. Vasilescu: Analytic Functional Calculus and Spectral Decompositions.Editura Academiei and D. Reidel Publishing Company, Bucharest and Dordrecht, 1982. Zbl 0495.47013, MR 0690957

  9. 9
    Academic Journal

    المؤلفون: Ko, Eungil, Nam, Hae-Won, Yang, Youngoh

    وصف الملف: application/pdf

    Relation: mr:MR2280808; zbl:Zbl 1164.47319; reference:[1] C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu: Approximation of Hilbert space operators, Volume II.Research Notes in Mathematics 102, Pitman, Boston, 1984. MR 0735080; reference:[2] S. C. Arora and J. K. Thukral: On a class of operators.Glasnik Math. 21 (1986), 381–386. MR 0896819; reference:[3] S. K. Berberian: An extension of Weyl’s theorem to a class of not necessarily normal operators.Michigan Math J. 16 (1969), 273–279. Zbl 0175.13603, MR 0250094, 10.1307/mmj/1029000272; reference:[4] S. K. Berberian: The Weyl’s spectrum of an operator.Indiana Univ. Math. J. 20 (1970), 529–544. MR 0279623, 10.1512/iumj.1971.20.20044; reference:[5] S. W. Brown: Hyponormal operators with thick spectrum have invariant subspaces.Ann. of Math. 125 (1987), 93–103. MR 0873378, 10.2307/1971289; reference:[6] L. A. Coburn: Weyl’s theorem for non-normal operators.Michigan Math. J. 13 (1966), 285–288. MR 0201969, 10.1307/mmj/1031732778; reference:[7] I. Colojoara and C. Foias: Theory of generalized spectral operators.Gordon and Breach, New York, 1968. MR 0394282; reference:[8] J. B. Conway: Subnormal operators.Pitman, London, 1981. Zbl 0474.47013, MR 0634507; reference:[9] S. Djordjevic, I. Jeon and E. Ko: Weyl’s theorem through local spectral theory.Glasgow Math. J. 44 (2002), 323–327. MR 1902409; reference:[10] B. P. Duggal: On the spectrum of $p$-hyponormal operators.Acta Sci. Math. (Szeged) 63 (1997), 623–637. Zbl 0893.47013, MR 1480502; reference:[11] J. Eschmeier: Invariant subspaces for subscalar operators.Arch. Math. 52 (1989), 562–570. Zbl 0651.47002, MR 1007631, 10.1007/BF01237569; reference:[12] P. R. Halmos: A Hilbert space problem book.Springer-Verlag, 1982. Zbl 0496.47001, MR 0675952; reference:[13] R. E. Harte: Invertibility and singularity.Dekker, New York, 1988. Zbl 0678.47001; reference:[14] C. Kitai: Invariant closed sets for linear operators.Ph.D. Thesis, Univ. of Toronto, 1982.; reference:[15] E. Ko: Algebraic and triangular $n$-hyponormal operators.Proc. Amer. Math. Soc. 123 (1995), 3473–3481. Zbl 0877.47015, MR 1291779; reference:[16] K. B. Laursen: Operators with finite ascent.Pacific J. Math. 152 (1992), 323–336. Zbl 0783.47028, MR 1141799, 10.2140/pjm.1992.152.323; reference:[17] K. B. Laursen: Essential spectra through local spectral theory.Proc. Amer. Math. Soc. 125 (1997), 1425–1434. Zbl 0871.47003, MR 1389525, 10.1090/S0002-9939-97-03852-5; reference:[18] K. K. Oberai: On the Weyl spectrum.Illinois J. Math. 18 (1974), 208–212. Zbl 0277.47002, MR 0333762, 10.1215/ijm/1256051222; reference:[19] K. K. Oberai: On the Weyl spectrum (II).Illinois J. Math. 21 (1977), 84–90. Zbl 0358.47004, MR 0428073, 10.1215/ijm/1256049504; reference:[20] M. Putinar: Hyponormal operators are subscalar.J. Operator Th. 12 (1984), 385–395. Zbl 0573.47016, MR 0757441; reference:[21] R. Lange: Biquasitriangularity and spectral continuity.Glasgow Math. J. 26 (1985), 177–180. Zbl 0583.47006, MR 0798746, 10.1017/S0017089500005966; reference:[22] B. L. Wadhwa: Spectral, $M$-hyponormal and decomposable operators.Ph.D. thesis, Indiana Univ., 1971.; reference:[23] D. Xia: Spectral theory of hyponormal operators.Operator Theory 10, Birkhäuser-Verlag, 1983. Zbl 0523.47012, MR 0806959

  10. 10
    Academic Journal

    المؤلفون: Miller, T. L., Neumann, M. M.

    وصف الملف: application/pdf

    Relation: mr:MR1923267; zbl:Zbl 1075.47500; reference:[1] E. Albrecht and J. Eschmeier: Analytic functional models and local spectral theory.Proc. London Math. Soc. 75 (1997), 323–348. MR 1455859; reference:[2] E. Albrecht, J. Eschmeier and M. M. Neumann: Some topics in the theory of decomposable operators.In: Advances in Invariant Subspaces and Other Results of Operator Theory. Operator Theory: Advances and Applications, Vol. 17, Birkhäuser Verlag, Basel, 1986, pp. 15–34. MR 0901056; reference:[3] C. Apostol: Decomposable multiplication operators.Rev. Roumaine Math. Pures Appl. 17 (1972), 323–333. Zbl 0239.47013, MR 0310665; reference:[4] B. Aupetit and D. Drissi: Local spectrum and subharmonicity.In: Proc. Edinburgh Math. Soc. Vol. 39, 1996, pp. 571–579. MR 1417698; reference:[5] I. Colojoară and C. Foiaş: Theory of Generalized Spectral Operators.Gordon and Breach, New York, 1968. MR 0394282; reference:[6] J. Eschmeier: Spectral decompositions and decomposable multipliers.Manuscripta Math. 51 (1985), 201–224. Zbl 0578.47024, MR 0788679, 10.1007/BF01168353; reference:[7] J. Eschmeier, K. B. Laursen and M. M. Neumann: Multipliers with natural local spectra on commutative Banach algebras.J. Funct. Analysis 138 (1996), 273–294. MR 1395959; reference:[8] R. Kantrowitz and M. M. Neumann: On certain Banach algebras of vector-valued functions.In: Function spaces, the second conference. Lecture Notes in Pure and Applied Math. Vol. 172, Marcel Dekker, New York, 1995, pp. 223–242. MR 1352233; reference:[9] R. Lange and S. Wang: New Approaches in Spectral Decomposition. Contemp. Math. 128.Amer. Math. Soc., Providence, RI, 1992. MR 1162741; reference:[10] K. B. Laursen and M. M. Neumann: Asymptotic intertwining and spectral inclusions on Banach spaces.Czechoslovak Math. J. 43(118) (1993), 483–497. MR 1249616; reference:[11] T. L. Miller and V. G. Miller: An operator satisfying Dunford’s condition $\mathrm (C)$ but without Bishop’s property $(\text{b})$.Glasgow Math. J. 40 (1998), 427–430. MR 1660054, 10.1017/S0017089500032754; reference:[12] M. M. Neumann: On local spectral properties of operators on Banach spaces.Rend. Circ. Mat. Palermo (2), Suppl. 56 (1998), 15–25. Zbl 0929.47001, MR 1710819; reference:[13] S. L. Sun: The sum and product of decomposable operators.Northeast. Math. J. 5 (1989), 105–117. (Chinese) Zbl 0699.47022, MR 1010749; reference:[14] F.-H. Vasilescu: Analytic Functional Calculus and Spectral Decompositions.Editura Academiei and D. Reidel Publ. Company, Bucharest and Dordrecht, 1982. Zbl 0495.47013, MR 0690957; reference:[15] P. Vrbová: On local spectral properties of operators in Banach spaces.Czechoslovak Math. J. 23(98) (1973), 483–492. MR 0322536

  11. 11
    Academic Journal

    المؤلفون: Zima, Mirosława

    مصطلحات موضوعية: msc:34K40, msc:47A11, msc:47B60, msc:47B99

    وصف الملف: application/pdf

    Relation: mr:MR1746709; zbl:Zbl 1008.47004; reference:[1] A. Augustynowicz, M. Kwapisz: On a numerical-analytic method of solving of boundary value problem for functional differential equation of neutral type.Math. Nachr. 145 (1990), 255–269. MR 1069034, 10.1002/mana.19901450120; reference:[2] J. Banaś: Applications of measures of noncompactness to various problems.Folia Scientiarum Universitatis Technicae Resoviensis 34 (1987). MR 0884890; reference:[3] D. Bugajewski: On some applications of theorems on the spectral radius to differential equations.J. Anal. Appl. 16 (1997), 479–484. Zbl 0880.35125, MR 1459970; reference:[4] D. Bugajewski, M. Zima: On the Darboux problem of neutral type.Bull. Austral. Math. Soc. 54 (1996), 451–458. MR 1419608, 10.1017/S0004972700021869; reference:[5] J. Daneš: On local spectral radius.Čas. pěst. mat. 112 (1987), 177–187. MR 0897643; reference:[6] A. R. Esayan: On the estimation of the spectral radius of the sum of positive semicommutative operators (in Russian).Sib. Mat. Zhur. 7, 460–464.; reference:[7] L. Faina: Existence and continuous dependence for a class of neutral functional differential equations.Ann. Polon. Math. 64 (1996), 215–226. Zbl 0873.34051, MR 1410341, 10.4064/ap-64-3-215-226; reference:[8] K.-H. Förster, B. Nagy: On the local spectral radius of a nonnegative element with respect to an irreducible operator.Acta Sci. Math. 55 (1991), 155–166. MR 1124954; reference:[9] M. A. Krasnoselski et al.: Approximate solutions of operator equations.Noordhoff, Groningen, 1972.; reference:[10] V. Müller: Local spectral radius formula for operators in Banach spaces.Czechoslovak Math. J. 38 (1988), 726–729. MR 0962915; reference:[11] P. P. Zabrejko: The contraction mapping principle in K-metric and locally convex spaces (in Russian).Dokl. Akad. Nauk BSSR 34 (1990), 1065–1068. MR 1095667; reference:[12] M. Zima: A certain fixed point theorem and its applications to integral-functional equations.Bull. Austral. Math. Soc. 46 (1992), 179–186. Zbl 0761.34048, MR 1183775, 10.1017/S0004972700011813; reference:[13] M. Zima: A theorem on the spectral radius of the sum of two operators and its applications.Bull. Austral. Math. Soc. 48 (1993), 427–434. MR 1248046, 10.1017/S0004972700015884

  12. 12
    Academic Journal

    المؤلفون: Benhida, Chafiq

    مصطلحات موضوعية: msc:47A11, msc:47A15, msc:47A45, msc:47L45

    وصف الملف: application/pdf

    Relation: mr:MR1676702; zbl:Zbl 0954.47009; reference:[1] H. Bercovici: Factorization theorems and the structure of operators on Hilbert space.Annals of Math. 128 (1988), 399–431. Zbl 0706.47010, MR 0960951, 10.2307/1971446; reference:[2] H. Bercovici, C. Foias, C. Pearcy: Dual algebras with applications to invariant subspaces and dilation theory.CBMS Regional conference series in Math vol. 56, Amer. Math. Soc., Providence, R. I., 1985. MR 0787041; reference:[3] S. Brown, B. Chevreau: Toute contraction à calcul fonctionnel isométrique est réflexive.C. R. Acad. Sci. Paris 307, Série I (1988), 185–188. MR 0955549; reference:[4] B. Chevreau: Sur les contractions à calcul fonctionnel isométrique 2.Journal Operator Theory 20 (1988), 269–293. MR 1004124; reference:[5] B. Chevreau, C. Pearcy: On the structure of contraction operators I.Journal Func. Anal. 76 (1988), 1–29. MR 0923042, 10.1016/0022-1236(88)90046-8; reference:[6] B. Chevreau, G. Exner, C. Pearcy: On the structure of contraction operators III.Michigan. Math. Journal 36 (1989), 29–61. MR 0989936, 10.1307/mmj/1029003881; reference:[7] B. Sz. Nagy, C. Foias: Harmonic Analysis of Operators on Hilbert Space.North Holland, Amsterdam, 1970. MR 0275190; reference:[8] R. Olin, J. Thomson: Algebras of subnormal operators.Journal Func. Anal. 37 (1980), 271–301. MR 0581424, 10.1016/0022-1236(80)90045-2; reference:[9] M. Ouannasser: Une remarque sur la classe $Ā_{1 \aleph _0}$.Math. Balkanica (N. S) 4 (1990), 203–205. MR 1088007; reference:[10] M. Ouannasser: Sur les contractions de la classe $Ā_n$.Journal Operator Theory 28 (1992), 105–120. MR 1259919

  13. 13
    Academic Journal

    المؤلفون: Torgašev, Aleksandar

    وصف الملف: application/pdf

    Relation: mr:MR1614080; zbl:Zbl 0926.47002; reference:[1] I. Colojoara, C. Foiaş: Quasinilpotent equivalence of not necessarily commuting operators.Journal Math. Mech. 15 (1966), 521–540. MR 0192344; reference:[2] I. Colojoara, C. Foiaş: Theory of Generalized Spectral Operators.Gordon and Breach, New York, 1968. MR 0394282; reference:[3] C. Foiaş: Spectral maximal spaces and decomposable operators in Banach spaces.Arch. Math. 14 (1963), 341–349. MR 0152893, 10.1007/BF01234965; reference:[4] J.D.Gray: Local analytic extensions of the resolvent.Pacific J. Math. 27(2) (1968), 305–324. Zbl 0172.17204, MR 0236738, 10.2140/pjm.1968.27.305; reference:[5] R.C. Sine: Spectral decomposition of a class of operators.Pacific J. Math. 14 (1964), 333–352. Zbl 0197.39501, MR 0164242, 10.2140/pjm.1964.14.333; reference:[6] P. Vrbová: On local spectral properties of operators in Banach spaces.Czechoslovak Math. J. 23 (1973), 483–492. MR 0322536

  14. 14
    Academic Journal

    المؤلفون: van Neerven, J. M. A. M.

    مصطلحات موضوعية: msc:47A10, msc:47A11, msc:47A65, msc:47B65

    وصف الملف: application/pdf

    Relation: mr:MR1344516; zbl:Zbl 0859.47003; reference:[B] B. Beauzamy: Introduction to Operator Theory and Invariant Subspaces.North Holland, 1988. Zbl 0663.47002, MR 0967989; reference:[M] V. Müller: Local spectral radius formula for operators on Banach spaces.Czech. Math. J. 38 (1988), 726–729. MR 0962915; reference:[N] J.M.A.M. van Neerven: Exponential stability of operators and operator semigroups.(to appear). Zbl 0832.47034; reference:[R] A.F. Ruston: Fredholm theory in Banach spaces.Cambridge Univ. Press, 1986. Zbl 0596.47007, MR 0861275; reference:[SF] B. Sz.-Nagy and C. Foiaş: Harmonic analysis of Operators in Hilbert Space.North Holland, 1970. MR 0275191

  15. 15
    Academic Journal

    المؤلفون: Laursen, K. B., Neumann, M. M.

    مصطلحات موضوعية: msc:47A10, msc:47A11, msc:47B40

    وصف الملف: application/pdf

    Relation: mr:MR1249616; zbl:Zbl 0806.47001; reference:[1] E. Albrecht: An example of a weakly decomposable operator, which is not decomposable, Rev. Roumaine Math. Pures Appl.20 (1975), 855–861. MR 0377582; reference:[2] E. Albrecht: On decomposable operators.Integral Equations and Operator Theory 2 (1979), 1–10. Zbl 0421.47014, MR 0532735, 10.1007/BF01729357; reference:[3] E. Albrecht and J. Eschmeier: Analytic functional models and local spectral theory.Preprint University of Saarbrücken and University of Münster, 1991. MR 1455859; reference:[4] E. Albrecht, J. Eschmeier and M. M. Neumann: Some topics in the theory of decomposable operators.in: Advances in invariant subspaces and other results of operator theory, Operator Theory: Advances and Applications, vol. 17, Birkhäuser Verlag, Basel, 1986, pp. 15–34. MR 0901056; reference:[5] S. K. Berberian: Lectures in functional analysis and operator theory.Springer-Verlag, New York, 1974. Zbl 0296.46002, MR 0417727; reference:[6] E. Bishop: A duality theorem for an arbitrary operator.Pacific J. Math. 9 (1959), 379–397. Zbl 0086.31702, MR 0117562, 10.2140/pjm.1959.9.379; reference:[7] S. Clary: Equality of spectra of quasi-similar operators.Proc. Amer. Math. Soc. 53 (1975), 88–90. MR 0390824, 10.1090/S0002-9939-1975-0390824-7; reference:[8] I. Colojoară and C. Foiaş: Theory of generalized spectral operators.Gordon and Breach, New York, 1968. MR 0394282; reference:[9] C. Davis and P. Rosenthal: Solving linear operator equations.Can. J. Math. 26 (1974), 1384–1389. MR 0355649, 10.4153/CJM-1974-132-6; reference:[10] J. Eschmeier: Operator decomposability and weakly continuous representations of locally compact abelian groups.J. Operator Theory 7 (1982), 201–208. Zbl 0489.47019, MR 0658608; reference:[11] J. Eschmeier: Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie, Habilitationsschrift, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, Heft 42.Münster, 1987. MR 0876484; reference:[12] J. Eschmeier and B. Prunaru: Invariant subspaces for operators with Bishop’s property $(\beta )$ and thick spectrum.J. Functional Analysis 94 (1990), 196–222. MR 1077551, 10.1016/0022-1236(90)90034-I; reference:[13] L. A. Fialkow: A note on quasisimilarity of operators.Acta Sci. Math. (Szeged) 39 (1977), 67–85. Zbl 0364.47020, MR 0445319; reference:[14] P. R. Halmos: A Hilbert space problem book.Van NostrandNew York, 1967. Zbl 0144.38704, MR 0208368; reference:[15] T. B. Hoover: Quasisimilarity of operators.Illinois J. Math. 16 (1972), 678–686. MR 0312304, 10.1215/ijm/1256065551; reference:[16] K. B. Laursen: Operators with finite ascent.Pacific J . Math. 152 (1992), 323–336. Zbl 0783.47028, MR 1141799, 10.2140/pjm.1992.152.323; reference:[17] K. B. Laursen and M. M. Neumann: Decomposable multipliers and applications to harmonic analysis.Studia Math. 101 (1992), 193–214. MR 1149572, 10.4064/sm-101-2-193-214; reference:[18] K. B. Laursen and M. M. Neumann: Local spectral properties of multipliers on Banach algebras.Arch. Math. 58 (1992), 368–375. MR 1152625, 10.1007/BF01189927; reference:[19] K. B. Laursen and P. Vrbová: Some remarks on the surjectivity spectrum of linear operators.Czech. Math. J. 39 (114) (1989), 730–739. MR 1018009; reference:[20] M. Putinar: Hyponormal operators are subscalar.J. Operator Theory 12 (1984), 385–395. Zbl 0573.47016, MR 0757441; reference:[21] M. Rosenblum: On the operator equation $BX - XA = Q$.Duke Math. J. 23 (1956), 263–269. Zbl 0073.33003, MR 0079235, 10.1215/S0012-7094-56-02324-9; reference:[22] W. Rudin: Fourier analysis on groups.Interscience Publishers, New York, 1962. Zbl 0107.09603, MR 0152834; reference:[23] J. G. Stampfli: Quasi-similarity of operators.Proc. Royal Irish Acad. Sect. A 81 (1981), 109–119. MR 0635584; reference:[24] F.-H. Vasilescu: Analytic functional calculus and spect ral decompositions.Editura Academiei and D. Reidel Publishing Company, Bucureşti and Dordrecht, 1982.; reference:[25] P. Vrbová: On local spectral properties of operators in Banach spaces.Czech. Math. J. 23 (98) (1973), 483–492. MR 0322536; reference:[26] M. Zafran: On the spectra of multipliers.Pacific J. Math. 47 (1973), 609–626. Zbl 0242.43006, MR 0326309, 10.2140/pjm.1973.47.609