-
1Academic Journal
المؤلفون: Mizuta, Yoshihiro, Shimomura, Tetsu
مصطلحات موضوعية: keyword:variable exponent, keyword:fractional maximal function, keyword:Riesz potential, keyword:Sobolev's inequality, keyword:weighted Morrey space, keyword:double phase functional, msc:31B15, msc:42B25, msc:46E30
وصف الملف: application/pdf
Relation: reference:[1] Adams, D. R.: A note on Riesz potentials.Duke Math. J. 42 (1975), 765-778. Zbl 0336.46038, MR 0458158, 10.1215/S0012-7094-75-04265-9; reference:[2] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory.Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1995). Zbl 0834.46021, MR 1411441, 10.1007/978-3-662-03282-4; reference:[3] Almeida, A., Hasanov, J., Samko, S.: Maximal and potential operators in variable exponent Morrey spaces.Georgian Math. J. 15 (2008), 195-208. Zbl 1263.42002, MR 2428465, 10.1515/GMJ.2008.195; reference:[4] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes.St. Petersbg. Math. J. 27 (2016), 347-379. Zbl 1335.49057, MR 3570955, 10.1090/spmj/1392; reference:[5] Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase.Calc. Var. Partial Differ. Equ. 57 (2018), Article ID 62, 48 pages. Zbl 1394.49034, MR 3775180, 10.1007/s00526-018-1332-z; reference:[6] Byun, S.-S., Lee, H.-S.: Calderón-Zygmund estimates for elliptic double phase problems with variable exponents.J. Math. Anal. Appl. 501 (2021), Article ID 124015, 31 pages. Zbl 1467.35064, MR 4258791, 10.1016/j.jmaa.2020.124015; reference:[7] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces.Rev. Mat. Iberoam. 23 (2007), 743-770. Zbl 1213.42063, MR 2414490, 10.4171/RMI/511; reference:[8] Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals.Arch. Ration. Mech. Anal. 218 (2015), 219-273. Zbl 1325.49042, MR 3360738, 10.1007/s00205-015-0859-9; reference:[9] Colombo, M., Mingione, G.: Regularity for double phase variational problems.Arch. Ration. Mech. Anal. 215 (2015), 443-496. Zbl 1322.49065, MR 3294408, 10.1007/s00205-014-0785-2; reference:[10] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis.Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013). Zbl 1268.46002, MR 3026953, 10.1007/978-3-0348-0548-3; reference:[11] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: Weighted norm inequalities for the maximal operator on variable Lebesgue spaces.J. Math. Anal. Appl. 394 (2012), 744-760. Zbl 1298.42021, MR 2927495, 10.1016/j.jmaa.2012.04.044; reference:[12] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017. Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8; reference:[13] Fazio, G. Di, Ragusa, M. A.: Commutators and Morrey spaces.Boll. Unione Mat. Ital., VII. Ser., A 5 (1991), 323-332. Zbl 0761.42009, MR 1138545; reference:[14] Haj{ł}asz, P., Koskela, P.: Sobolev Met Poincaré.Memoirs of the American Mathematical Society 688. AMS, Providence (2000). Zbl 0954.46022, MR 1683160, 10.1090/memo/0688; reference:[15] Hästö, P., Ok, J.: Calderón-Zygmund estimates in generalized Orlicz spaces.J. Differ. Equations 267 (2019), 2792-2823. Zbl 1420.35087, MR 3953020, 10.1016/j.jde.2019.03.026; reference:[16] Kinnunen, J., Lindqvist, P.: The derivative of the maximal function.J. Reine Angew. Math. 503 (1998), 161-167. Zbl 0904.42015, MR 1650343, 10.1515/crll.1998.095; reference:[17] Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function.Bull. Lond. Math. Soc. 35 (2003), 529-535. Zbl 1021.42009, MR 1979008, 10.1112/S0024609303002017; reference:[18] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces.Bull. Sci. Math. 137 (2013), 76-96. Zbl 1267.46045, MR 3007101, 10.1016/j.bulsci.2012.03.008; reference:[19] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequality for double phase functionals with variable exponents.Forum Math. 31 (2019), 517-527. Zbl 1423.46049, MR 3918454, 10.1515/forum-2018-0077; reference:[20] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents.Complex Var. Elliptic Equ. 56 (2011), 671-695. Zbl 1228.31004, MR 2832209, 10.1080/17476933.2010.504837; reference:[21] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in $\Bbb R^n$.Rev. Mat. Complut. 25 (2012), 413-434. Zbl 1273.31005, MR 2931419, 10.1007/s13163-011-0074-7; reference:[22] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Campanato-Morrey spaces for the double phase functionals with variable exponents.Nonlinear Anal., Theory Methods Appl., Ser. A 197 (2020), Article ID 111827, 18 pages. Zbl 1441.31004, MR 4073513, 10.1016/j.na.2020.111827; reference:[23] Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequalities for Herz-Morrey-Orlicz spaces on the half space.Math. Inequal. Appl. 21 (2018), 433-453. Zbl 1388.31009, MR 3776085, 10.7153/mia-2018-21-30; reference:[24] Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of fractional maximal operators for double phase functionals with variable exponents.J. Math. Anal. Appl. 501 (2021), Article ID 124360, 16 pages. Zbl 1478.46028, MR 4258801, 10.1016/j.jmaa.2020.124360; reference:[25] Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent.J. Math. Soc. Japan 60 (2008), 583-602. Zbl 1161.46305, MR 2421989, 10.2969/jmsj/06020583; reference:[26] Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities in the unit ball for double phase functionals.J. Math. Anal. Appl. 501 (2021), Article ID 124133, 17 pages. Zbl 1478.46037, MR 4258797, 10.1016/j.jmaa.2020.124133; reference:[27] Mizuta, Y., Shimomura, T.: Sobolev type inequalities for fractional maximal functions and Green potentials in half spaces.Positivity 25 (2021), 1131-1146. Zbl 1481.46030, MR 4274309, 10.1007/s11117-021-00810-z; reference:[28] Mizuta, Y., Shimomura, T.: Boundedness of fractional integral operators in Herz spaces on the hyperplane.Math. Methods Appl. Sci. 45 (2022), 8631-8654. MR 4475228, 10.1002/mma.7425; reference:[29] Mizuta, Y., Shimomura, T.: Sobolev type inequalities for fractional maximal functions and Riesz potentials in half spaces.Available at https://arxiv.org/abs/2305.13708 (2023), 22 pages. MR 4274309; reference:[30] C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations.Trans. Am. Math. Soc. 43 (1938), 126-166. Zbl 0018.40501, MR 1501936, 10.1090/S0002-9947-1938-1501936-8; reference:[31] Ragusa, M. A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents.Adv. Nonlinear Anal. 9 (2020), 710-728. Zbl 1420.35145, MR 3985000, 10.1515/anona-2020-0022; reference:[32] Sawano, Y., Shimomura, T.: Fractional maximal operator on Musielak-Orlicz spaces over unbounded quasi-metric measure spaces.Result. Math. 76 (2021), Article ID 188, 22 pages. Zbl 1479.42055, MR 4305494, 10.1007/s00025-021-01490-7
-
2Academic Journal
المؤلفون: Akdim, Youssef, Belayachi, Mohammed, Hjiaj, Hassane
مصطلحات موضوعية: keyword:renormalized solution, keyword:nonlinear elliptic equation, keyword:non-coercive problem, msc:35J60, msc:46E30, msc:46E35
وصف الملف: application/pdf
Relation: mr:MR4585581; zbl:Zbl 07729577; reference:[1] Alvino, A., Boccardo, L., Ferone, V., Orsina, L., Trombetti, G.: Existence results for nonlinear elliptic equations with degenerate coercivity.Ann. Mat. Pura Appl., IV. Ser. 182 (2003), 53-79. Zbl 1105.35040, MR 1970464, 10.1007/s10231-002-0056-y; reference:[2] Alvino, A., Ferone, V., Trombetti, G.: A priori estimates for a class of nonuniformly elliptic equations.Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 381-391. Zbl 0911.35025, MR 1645729; reference:[3] Ali, M. Ben Cheikh, Guibé, O.: Nonlinear and non-coercive elliptic problems with integrable data.Adv. Math. Sci. Appl. 16 (2006), 275-297. Zbl 1215.35066, MR 2253236; reference:[4] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. Zbl 0866.35037, MR 1354907; reference:[5] Bensoussan, A., Boccardo, L., Murat, F.: On a nonlinear partial differential equation having natural growth terms and unbounded solution.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5 (1988), 347-364. Zbl 0696.35042, MR 0963104, 10.1016/S0294-1449(16)30342-0; reference:[6] Blanchard, D., Guibé, O.: Infinite valued solutions of non-uniformly elliptic problems.Anal. Appl., Singap. 2 (2004), 227-246. Zbl 1129.35370, MR 2070448, 10.1142/S0219530504000369; reference:[7] Boccardo, L., Dall'Aglio, A., Orsina, L.: Existence and regularity results for some elliptic equations with degenerate coercivity.Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 51-81. Zbl 0911.35049, MR 1645710; reference:[8] Boccardo, L., Gallouet, T.: Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data.Nonlinear Anal., Theory Methods Appl. 19 (1992), 573-579. Zbl 0795.35031, MR 1183664, 10.1016/0362-546X(92)90022-7; reference:[9] Croce, G.: The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity.Rend. Mat. Appl., VII. Ser. 27 (2007), 299-314. Zbl 1147.35043, MR 2398428; reference:[10] Vecchio, T. Del, Posteraro, M. R.: Existence and regularity results for nonlinear elliptic equations with measure data.Adv. Differ. Equ. 1 (1996), 899-917. Zbl 0856.35044, MR 1392010; reference:[11] Pietra, F. Della: Existence results for non-uniformly elliptic equations with general growth in the gradient.Differ. Integral Equ. 21 (2008), 821-836. Zbl 1224.35117, MR 2483336; reference:[12] Droniou, J.: Non-coercive linear elliptic problems.Potential Anal. 17 (2002), 181-203. Zbl 1161.35362, MR 1908676, 10.1023/A:1015709329011; reference:[13] Droniou, J.: Global and local estimates for nonlinear noncoercive elliptic equations with measure data.Commun. Partial Differ. Equations 28 (2003), 129-153. Zbl 1094.35046, MR 1974452, 10.1081/PDE-120019377; reference:[14] Guibé, O., Mercaldo, A.: Existence and stability results for renormalized solutions to noncoercive nonlinear elliptic equations with measure data.Potential Anal. 25 (2006), 223-258. Zbl 1198.35072, MR 2255346, 10.1007/s11118-006-9011-7; reference:[15] Guibé, O., Mercaldo, A.: Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data.Trans. Am. Math. Soc. 360 (2008), 643-669. Zbl 1156.35042, MR 2346466, 10.1090/S0002-9947-07-04139-6; reference:[16] Leone, C., Porretta, A.: Entropy solutions for nonlinear elliptic equations in $L^1$.Nonlinear Anal., Theory Methods Appl. 32 (1998), 325-334. Zbl 1155.35352, MR 1610574, 10.1016/S0362-546X(96)00323-9; reference:[17] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969), French. Zbl 0189.40603, MR 0259693; reference:[18] Maderna, C., Pagani, C. D., Salsa, S.: Quasilinear elliptic equations with quadratic growth in the gradient.J. Differ. Equations 97 (1992), 54-70. Zbl 0785.35039, MR 1161311, 10.1016/0022-0396(92)90083-Y; reference:[19] Murat, F.: Soluciones renormalizadas de EDP elipticas non lineales.Technical Report R93023, Laboratoire d'Analyse Numérique, Paris (1993), French.; reference:[20] Porretta, A.: Nonlinear equations with natural growth terms and measure data.Electron. J. Differ. Equ. Conf. 09 (2002), 183-202. Zbl 1109.35341, MR 1976695; reference:[21] León, S. Segura de: Existence and uniqueness for $L^1$ data of some elliptic equations with natural growth.Adv. Differ. Equ. 8 (2003), 1377-1408. Zbl 1158.35365, MR 2016651; reference:[22] Trombetti, C.: Non-uniformly elliptic equations with natural growth in the gradient.Potential Anal. 18 (2003), 391-404. Zbl 1040.35010, MR 1953268, 10.1023/A:1021884903872; reference:[23] Zou, W.: Existence of solutions for a class of porous medium type equations with a lower order terms.J. Inequal. Appl. 2015 (2015), Article ID 294, 23 pages. Zbl 1336.35167, MR 3399257, 10.1186/s13660-015-0799-9
-
3Academic Journal
المؤلفون: Ohno, Takao, Shimomura, Tetsu
مصطلحات موضوعية: keyword:Riesz potential, keyword:Sobolev's inequality, keyword:Orlicz-Morrey space, keyword:metric measure space, keyword:non-doubling measure, msc:46E30, msc:46E35
وصف الملف: application/pdf
Relation: mr:MR4541101; zbl:Zbl 07655767; reference:[1] Adams, D. R.: A note on Riesz potentials.Duke Math. J. 42 (1975), 765-778. Zbl 0336.46038, MR 458158, 10.1215/S0012-7094-75-04265-9; reference:[2] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces.EMS Tracts in Mathematics 17. European Mathematical Society, Zürich (2011). Zbl 1231.31001, MR 2867756, 10.4171/099; reference:[3] Burenkov, V. I., Guliyev, H. V.: Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces.Stud. Math. 163 (2004), 157-176. Zbl 1044.42015, MR 2047377, 10.4064/sm163-2-4; reference:[4] Cruz-Uribe, D. V., Shukla, P.: The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type.Stud. Math. 242 (2018), 109-139. Zbl 1397.42009, MR 3778907, 10.4064/sm8556-6-2017; reference:[5] Hajłasz, P., Koskela, P.: Sobolev met Poincaré.Mem. Am. Math. Soc. 688 (2000), 101 pages. Zbl 0954.46022, MR 1683160, 10.1090/memo/0688; reference:[6] Hashimoto, D., Sawano, Y., Shimomura, T.: Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces over quasi-metric measure spaces.Colloq. Math. 161 (2020), 51-66. Zbl 1464.46043, MR 4085112, 10.4064/cm7535-4-2019; reference:[7] Hedberg, L. I.: On certain convolution inequalities.Proc. Am. Math. Soc. 36 (1972), 505-510. Zbl 0283.26003, MR 0312232, 10.1090/S0002-9939-1972-0312232-4; reference:[8] Heinonen, J.: Lectures on Analysis on Metric Spaces.Universitext. Springer, New York (2001). Zbl 0985.46008, MR 1800917, 10.1007/978-1-4613-0131-8; reference:[9] Hurri-Syrjänen, R., Ohno, T., Shimomura, T.: On Trudinger-type inequalities in Orlicz-Morrey spaces of an integral form.Can. Math. Bull. 64 (2021), 75-90. Zbl 1472.46040, MR 4242993, 10.4153/S0008439520000223; reference:[10] Kairema, A.: Two-weight norm inequalities for potential type and maximal operators in a metric space.Publ. Mat., Barc. 57 (2013), 3-56. Zbl 1284.42055, MR 3058926, 10.5565/PUBLMAT_57113_01; reference:[11] Kairema, A.: Sharp weighted bounds for fractional integral operators in a space of homogeneous type.Math. Scand. 114 (2014), 226-253. Zbl 1302.47075, MR 3206387, 10.7146/math.scand.a-17109; reference:[12] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces.Bull. Sci. Math. 137 (2013), 76-96. Zbl 1267.46045, MR 3007101, 10.1016/j.bulsci.2012.03.008; reference:[13] Maeda, F.-Y., Ohno, T., Shimomura, T.: Boundedness of the maximal operator on Musielak-Orlicz-Morrey spaces.Tohoku Math. J. (2) 69 (2017), 483-495. Zbl 1387.42017, MR 3732884, 10.2748/tmj/1512183626; reference:[14] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^{1,\nu,\beta}(G)$.Hiroshima Math. J. 38 (2008), 425-436. Zbl 1175.31005, MR 2477751, 10.32917/hmj/1233152779; reference:[15] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials.J. Math. Soc. Japan 62 (2010), 707-744. Zbl 1200.26007, MR 2648060, 10.2969/jmsj/06230707; reference:[16] Mizuta, Y., Shimomura, T.: Continuity properties of Riesz potentials of Orlicz functions.Tohoku Math. J. (2) 61 (2009), 225-240. Zbl 1181.46026, MR 2541407, 10.2748/tmj/1245849445; reference:[17] Mizuta, Y., Shimomura, T.: Sobolev's inequality for Riesz potentials of functions in Morrey spaces of integral form.Math. Nachr. 283 (2010), 1336-1352. Zbl 1211.46026, MR 2731137, 10.1002/mana.200710122; reference:[18] Mizuta, Y., Shimomura, T., Sobukawa, T.: Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces.Osaka J. Math. 46 (2009), 255-271. Zbl 1186.31003, MR 2531149; reference:[19] C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations.Trans. Am. Math. Soc. 43 (1938), 126-166. Zbl 0018.40501, MR 1501936, 10.1090/S0002-9947-1938-1501936-8; reference:[20] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces.Math. Nachr. 166 (1994), 95-103. Zbl 0837.42008, MR 1273325, 10.1002/mana.19941660108; reference:[21] Nakai, E.: Generalized fractional integrals on Orlicz-Morrey spaces.Banach and Function Spaces Yokohama Publishers, Yokohama (2004), 323-333. Zbl 1118.42005, MR 2146936; reference:[22] Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. 1997 (1997), 703-726. Zbl 0889.42013, MR 1470373, 10.1155/S1073792897000469; reference:[23] Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. 1998 (1998), 463-487. Zbl 0918.42009, MR 1626935, 10.1155/S1073792898000312; reference:[24] Ohno, T., Shimomura, T.: On Sobolev-type inequalities on Morrey spaces of an integral form.Taiwanese J. Math. 26 (2022), 831-845. Zbl 07579496, MR 4484273, 10.11650/tjm/220203; reference:[25] Peetre, J.: On the theory of $L_{p,\lambda}$ spaces.J. Funct. Anal. 4 (1969), 71-87. Zbl 0175.42602, MR 0241965, 10.1016/0022-1236(69)90022-6; reference:[26] Samko, N. G., Samko, S. G., Vakulov, B. G.: Weighted Sobolev theorem in Lebesgue spaces with variable exponent.J. Math. Anal. Appl. 335 (2007), 560-583. Zbl 1142.46018, MR 2340340, 10.1016/j.jmaa.2007.01.091; reference:[27] Sawano, Y.: Sharp estimates of the modified Hardy-Littlewood maximal operator on the nonhomogeneous space via covering lemmas.Hokkaido Math. J. 34 (2005), 435-458. Zbl 1088.42010, MR 2159006, 10.14492/hokmj/1285766231; reference:[28] Sawano, Y., Shigematsu, M., Shimomura, T.: Generalized Riesz potentials of functions in Morrey spaces $L^{(1,\varphi;\kappa)}(G)$ over non-doubling measure spaces.Forum Math. 32 (2020), 339-359. Zbl 1436.42029, MR 4069939, 10.1515/forum-2019-0140; reference:[29] Sawano, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents.Collect. Math. 64 (2013), 313-350. Zbl 1280.31001, MR 3084400, 10.1007/s13348-013-0082-7; reference:[30] Sawano, Y., Shimomura, T.: Maximal operator on Orlicz spaces of two variable exponents over unbounded quasi-metric measure spaces.Proc. Am. Math. Soc. 147 (2019), 2877-2885. Zbl 1416.42025, MR 3973891, 10.1090/proc/14225; reference:[31] Sawano, Y., Shimomura, T., Tanaka, H.: A remark on modified Morrey spaces on metric measure spaces.Hokkaido Math. J. 47 (2018), 1-15. Zbl 1390.42032, MR 3773722, 10.14492/hokmj/1520928055; reference:[32] Serrin, J.: A remark on the Morrey potential.Control Methods in PDE-Dynamical Systems Contemporary Mathematics 426. AMS, Providence (2007), 307-315. Zbl 1129.31003, MR 2311532, 10.1090/conm/426; reference:[33] Sihwaningrum, I., Sawano, Y.: Weak and strong type estimates for fractional integral operators on Morrey spaces over metric measure spaces.Eurasian Math. J. 4 (2013), 76-81. Zbl 1277.42019, MR 3118893; reference:[34] Stempak, K.: Examples of metric measure spaces related to modified Hardy-Littlewood maximal operators.Ann. Acad. Sci. Fenn., Math. 41 (2016), 313-314. Zbl 1337.42023, MR 3467713, 10.5186/aasfm.2016.4119; reference:[35] Strömberg, J.-O.: Weak type $L^1$ estimates for maximal functions on non-compact symmetric spaces.Ann. Math. (2) 114 (1981), 115-126. Zbl 0472.43010, MR 625348, 10.2307/1971380; reference:[36] Terasawa, Y.: Outer measures and weak type $(1,1)$ estimates of Hardy-Littlewood maximal operators.J. Inequal. Appl. 2006 (2006), Article ID 15063, 13 pages. Zbl 1090.42012, MR 2215476, 10.1155/JIA/2006/15063
-
4Academic Journal
مصطلحات موضوعية: keyword:Young function, keyword:Orlicz space, keyword:quasi-Banach function space, keyword:inclusion, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR4536310; zbl:Zbl 07655813; reference:[1] Campo, R. del, Fernández, A., Mayoral, F., Naranjo, F.: Orlicz spaces associated to a quasi-Banach function space: Applications to vector measures and interpolation.Collect. Math. 72 (2021), 481-499. Zbl 07401995, MR 4297141, 10.1007/s13348-020-00295-1; reference:[2] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces.Pure and Applied Mathematics 146. Marcel Dekker, New York (1991). Zbl 0724.46032, MR 1113700; reference:[3] Romero, J. L.: When is $L^p(\mu)$ contained in $L^q(\mu)$?.Am. Math. Mon. 90 (1983), 203-206. Zbl 0549.46018, MR 0691371, 10.2307/2975553; reference:[4] Sawano, Y., Tabatabaie, S. M.: Inclusions in generalized Orlicz spaces.Bull. Iran. Math. Soc. 47 (2021), 1227-1233. Zbl 07377360, MR 4278242, 10.1007/s41980-020-00437-y; reference:[5] Subramanian, B.: On the inclusion $L^p(\mu)\subset L^q(\mu)$.Am. Math. Mon. 85 (1978), 479-481. Zbl 0388.46021, MR 0482134, 10.2307/2320071; reference:[6] Villani, A.: Another note on the inclusion $L^p(\mu) \subset L^q(\mu)$.Am. Math. Mon. 92 (1985), 485-487. Zbl 0592.46028, MR 0801221, 10.2307/2322503
-
5Academic Journal
المؤلفون: Sin, Cholmin, Ri, Sin-Il
مصطلحات موضوعية: keyword:existence of weak solutions, keyword:electrorheological fluid, keyword:Lipschitz truncation, keyword:variable exponent, msc:35A23, msc:35D30, msc:46E30, msc:46E35, msc:76A05, msc:76D03
وصف الملف: application/pdf
Relation: mr:MR4512174; zbl:Zbl 07655827; reference:[1] Abbatiello, A., Crispo, F., Maremonti, P.: Electrorheological fluids: Ill posedness of uniqueness backward in time.Nonlinear Anal., Theory Methods Appl., Ser. A 170 (2018), 47-69. Zbl 1469.35172, MR 3765555, 10.1016/j.na.2017.12.014; reference:[2] Bauer, S., Pauly, D.: On Korn's first inequality for mixed tangential and normal boundary conditions on bounded Lipschitz domains in $\mathbb{R}^N$.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 62 (2016), 173-188. Zbl 1364.46028, MR 3570353, 10.1007/s11565-016-0247-x; reference:[3] Veiga, H. Beirão da: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions.Adv. Differ. Equ. 9 (2004), 1079-1114. Zbl 1103.35084, MR 2098066; reference:[4] Veiga, H. Beirão da: On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or non-slip boundary conditions.Commun. Pure Appl. Math. 58 (2005), 552-577. Zbl 1075.35045, MR 2119869, 10.1002/cpa.20036; reference:[5] Bögelein, V., Duzaar, F., Habermann, J., Scheven, C.: Stationary electro-rheological fluids: Low order regularity for systems with discontinuous coefficients.Adv. Calc. Var. 5 (2012), 1-57. Zbl 1238.35095, MR 2879566, 10.1515/acv.2011.009; reference:[6] Breit, D., Diening, L., Fuchs, M.: Solenoidal Lipschitz truncation and applications in fluid mechanics.J. Differ. Equations 253 (2012), 1910-1942. Zbl 1245.35080, MR 2943947, 10.1016/j.jde.2012.05.010; reference:[7] Breit, D., Diening, L., Schwarzacher, S.: Solenoidal Lipschitz truncation for parabolic PDEs.Math. Models Methods Appl. Sci. 23 (2013), 2671-2700. Zbl 1309.76024, MR 3119635, 10.1142/S0218202513500437; reference:[8] Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A.: On unsteady flows of implicitly constituted incompressible fluids.SIAM J. Math. Anal. 44 (2012), 2756-2801. Zbl 1256.35074, MR 3023393, 10.1137/110830289; reference:[9] Bulíček, M., Málek, J., Rajagopal, K. R.: Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity.Indiana Univ. Math. J. 56 (2007), 51-85. Zbl 1129.35055, MR 2305930, 10.1512/iumj.2007.56.2997; reference:[10] Chen, P., Xiao, Y., Zhang, H.: Vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier-Stokes equations with a slip boundary condition.Math. Methods Appl. Sci. 40 (2017), 5925-5932. Zbl 1390.35226, MR 3713338, 10.1002/mma.4443; reference:[11] Crispo, F.: A note on the existence and uniqueness of time-periodic electro-rheological flows.Acta Appl. Math. 132 (2014), 237-250. Zbl 1295.76004, MR 3255040, 10.1007/s10440-014-9897-9; reference:[12] Desvillettes, L., Villani, C.: On a variant of Korn's inequality arising in statistical mechanics.ESAIM, Control Optim. Calc. Var. 8 (2002), 603-619. Zbl 1092.82032, MR 1932965, 10.1051/cocv:2002036; reference:[13] Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation.Invent. Math. 159 (2005), 245-316. Zbl 1162.82316, MR 2116276, 10.1007/s00222-004-0389-9; reference:[14] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017. Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8; reference:[15] Diening, L., Málek, J., Steinhauer, M.: On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications.ESAIM, Control Optim. Calc. Var. 14 (2008), 211-232. Zbl 1143.35037, MR 2394508, 10.1051/cocv:2007049; reference:[16] Diening, L., Růžička, M.: An existence result for non-Newtonian fluids in non-regular domains.Discrete Contin. Dyn. Syst., Ser. S 3 (2010), 255-268. Zbl 1193.35150, MR 2610563, 10.3934/dcdss.2010.3.255; reference:[17] Diening, L., Růžička, M., Schumacher, K.: A decomposition technique for John domains.Ann. Acad. Sci. Fenn., Math. 35 (2010), 87-114. Zbl 1194.26022, MR 2643399, 10.5186/aasfm.2010.3506; reference:[18] Diening, L., Schwarzacher, S., Stroffolini, B., Verde, A.: Parabolic Lipschitz truncation and caloric approximation.Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 120, 27 pages. Zbl 1377.35144, MR 3672391, 10.1007/s00526-017-1209-6; reference:[19] Ebmeyer, C.: Regularity in Sobolev spaces of steady flows of fluids with shear-dependent viscosity.Math. Methods Appl. Sci. 29 (2006), 1687-1707. Zbl 1124.35053, MR 2248563, 10.1002/mma.748; reference:[20] Fan, X.: Boundary trace embedding theorems for variable exponent Sobolev spaces.J. Math. Anal. Appl. 339 (2008), 1395-1412. Zbl 1136.46025, MR 2377096, 10.1016/j.jmaa.2007.08.003; reference:[21] Frehse, J., Málek, J., Steinhauer, M.: An existence result for fluids with shear dependent viscosity---steady flows.Nonlinear Anal., Theory Methods Appl. 30 (1997), 3041-3049. Zbl 0902.35089, MR 1602949, 10.1016/S0362-546X(97)00392-1; reference:[22] Frehse, J., Málek, J., Steinhauer, M.: On analysis of steady flows of fluids with sheardependent viscosity based on the Lipschitz truncation method.SIAM J. Math. Anal. 34 (2003), 1064-1083. Zbl 1050.35080, MR 2001659, 10.1137/S0036141002410988; reference:[23] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems.Springer Monographs in Mathematics. Springer, New York (2011). Zbl 1245.35002, MR 2808162, 10.1007/978-0-387-09620-9; reference:[24] Jiang, R., Kauranen, A.: Korn's inequality and John domains.Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 109, 18 pages. Zbl 1373.35015, MR 3669778, 10.1007/s00526-017-1196-7; reference:[25] Kaplický, P., Tichý, J.: Boundary regularity of flows under perfect slip boundary conditions.Cent. Eur. J. Math. 11 (2013), 1243-1263. Zbl 1278.35040, MR 3047056, 10.2478/s11533-013-0232-x; reference:[26] Kučera, P., Neustupa, J.: On robustness of a strong solution to the Navier-Stokes equations with Navier's boundary conditions in the $L^3$-norm.Nonlinearity 30 (2017), 1564-1583. Zbl 1367.35109, MR 3636311, 10.1088/1361-6544/aa6166; reference:[27] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow.Gordon and Breach, New York (1969). Zbl 0184.52603, MR 0254401; reference:[28] Li, Y., Li, K.: Existence of the solution to stationary Navier-Stokes equations with nonlinear slip boundary conditions.J. Math. Anal. Appl. 381 (2011), 1-9. Zbl 1221.35282, MR 2796187, 10.1016/j.jmaa.2011.04.020; reference:[29] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris (1969), French. Zbl 0189.40603, MR 0259693; reference:[30] Mácha, V., Tichý, J.: Higher integrability of solutions to generalized Stokes system under perfect slip boundary conditions.J. Math. Fluid Mech. 16 (2014), 823-845. Zbl 1309.35089, MR 3267551, 10.1007/s00021-014-0190-5; reference:[31] Malý, J., Ziemer, W. P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations.Mathematical Surveys and Monographs 51. American Mathematical Society, Providence (1997). Zbl 0882.35001, MR 1461542, 10.1090/surv/051; reference:[32] Neustupa, J., Penel, P.: On regularity of a weak solution to the Navier-Stokes equations with the generalized Navier slip boundary conditions.Adv. Math. Phys. 2018 (2018), Article ID 4617020, 7 pages. Zbl 1406.35236, MR 3773415, 10.1155/2018/4617020; reference:[33] Rădulescu, D. V., Repovš, D. D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis.Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). Zbl 1343.35003, MR 3379920, 10.1201/b18601; reference:[34] Růžička, M.: A note on steady flow of fluids with shear dependent viscosity.Nonlinear Anal., Theory Methods Appl. 30 (1997), 3029-3039. Zbl 0906.35076, MR 1602945, 10.1016/S0362-546X(97)00391-X; reference:[35] Růžička, M.: Electrorheological Fluid: Modeling and Mathematical Theory.Lecture Notes in Mathematics 1748. Springer, Berlin (2000). Zbl 0962.76001, MR 1810360, 10.1007/BFb0104029; reference:[36] Sin, C.: The existence of strong solutions to steady motion of electrorheological fluids in 3D cubic domain.J. Math. Anal. Appl. 445 (2017), 1025-1046. Zbl 1352.35124, MR 3543809, 10.1016/j.jmaa.2016.07.019; reference:[37] Sin, C.: The existence of weak solutions for steady flow of electrorheological fluids with nonhomogeneous Dirichlet boundary condition.Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 146-162. Zbl 1375.35400, MR 3695973, 10.1016/j.na.2017.06.014; reference:[38] Sin, C.: Global regularity of weak solutions for steady motions of electrorheological fluids in 3D smooth domain.J. Math. Anal. Appl. 461 (2018), 752-776. Zbl 1387.35082, MR 3759566, 10.1016/j.jmaa.2017.10.081; reference:[39] Sin, C.: Boundary partial regularity for steady flows of electrorheological fluids in 3D bounded domains.Nonlinear Anal., Theory Methods Appl., Ser. A 179 (2019), 309-343. Zbl 1404.35079, MR 3886635, 10.1016/j.na.2018.08.009; reference:[40] Solonnikov, V. A., Scadilov, V. E.: On a boundary value problem for a stationary system of Navier-Stokes equations.Proc. Steklov Inst. Math. 125 (1973), 186-199 translation from Trudy Mat. Inst. Steklov 125 1973 196-210. Zbl 0313.35063, MR 0172014
-
6Academic Journal
المؤلفون: Ren, Yanbo, Ding, Shuang
مصطلحات موضوعية: keyword:weight, keyword:weak type inequality, keyword:Hardy-Littlewood maximal function, keyword:Orlicz class, msc:42B25, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR4389107; zbl:Zbl 07511554; reference:[1] Bagby, R. J.: Weak bounds for the maximal function in weighted Orlicz spaces.Stud. Math. 96 (1990), 195-204. Zbl 0718.42018, MR 1060723, 10.4064/sm-95-3-195-204; reference:[2] Bloom, S., Kerman, R.: Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator.Stud. Math. 110 (1994), 149-167. Zbl 0813.42014, MR 1279989, 10.4064/sm-110-2-149-167; reference:[3] Gallardo, D.: Weighted weak type integral inequalities for the Hardy-Littlewood maximal operator.Isr. J. Math. 67 (1989), 95-108. Zbl 0683.42021, MR 1021364, 10.1007/BF02764902; reference:[4] Gogatishvili, A., Kokilashvili, V.: Necessary and sufficient conditions for weighted Orlicz class inequalities for maximal functions and singular integrals. I.Georgian Math. J. 2 (1995), 361-384. Zbl 0836.42012, MR 1344301, 10.1515/GMJ.1995.361; reference:[5] Kerman, R. A., Torchinsky, A.: Integral inequalities with weights for the Hardy maximal function.Stud. Math. 71 (1982), 277-284. Zbl 0517.42030, MR 0667316, 10.4064/sm-71-3-277-284; reference:[6] Kokilashvili, V., Krbec, M.: Weighted Inequalities in Lorentz and Orlicz Spaces.World Scientific, Singapore (1991). Zbl 0751.46021, MR 1156767, 10.1142/1367; reference:[7] Lai, Q.: Two weight $\Phi$-inequalities for the Hardy operator, Hardy-Littlewood maximal operator, and fractional integrals.Proc. Am. Math. Soc. 118 (1993), 129-142. Zbl 0783.42010, MR 1123665, 10.1090/S0002-9939-1993-1123665-4; reference:[8] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function.Trans. Am. Math. Soc. 165 (1972), 207-226. Zbl 0236.26016, MR 293384, 10.2307/1995882; reference:[9] Pick, L.: Two-weight weak type maximal inequalities in Orlicz classes.Stud. Math. 100 (1991), 207-218. Zbl 0752.42012, MR 1133385, 10.4064/sm-100-3-207-218; reference:[10] Rao, M. M., Ren, Z. D.: Applications of Orlicz Spaces.Pure and Applied Mathematics, Marcel Dekker 250. Marcel Dekker, New York (2002). Zbl 0997.46027, MR 1890178, 10.1201/9780203910863
-
7Academic Journal
المؤلفون: Karlovich, Alexei, Shargorodsky, Eugene
مصطلحات موضوعية: keyword:Lorentz Gamma space, keyword:reflexivity, keyword:Boyd indices, keyword:Zippin indices, msc:42B25, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR4339122; zbl:Zbl 07442485; reference:[1] Bennett, C., Sharpley, R.: Interpolation of Operators.Pure and Applied Mathematics 129. Academic Press, Boston (1988). Zbl 0647.46057, MR 0928802, 10.1016/s0079-8169(08)x6053-2; reference:[2] Boyd, D. W.: The Hilbert transform on rearrangement-invariant spaces.Can. J. Math. 19 (1967), 599-616. Zbl 0147.11302, MR 0212512, 10.4153/CJM-1967-053-7; reference:[3] Ciesielski, M.: Relationships between $K$-monotonicity and rotundity properties with application.J. Math. Anal. Appl. 465 (2018), 235-258. Zbl 1402.46010, MR 3806700, 10.1016/j.jmaa.2018.05.008; reference:[4] Gogatishvili, A., Kerman, R.: The rearrangement-invariant space $\Gamma_{p,\phi}$.Positivity 18 (2014), 319-345. Zbl 1311.46025, MR 3215181, 10.1007/s11117-013-0246-4; reference:[5] Gogatishvili, A., Pick, L.: Discretization and anti-discretization of rearrangement-invariant norms.Publ. Mat., Barc. 47 (2003), 311-358. Zbl 1066.46023, MR 2006487, 10.5565/PUBLMAT_47203_02; reference:[6] Kamińska, A., Maligranda, L.: On Lorentz spaces $\Gamma_{p,w}$.Isr. J. Math. 140 (2004), 285-318. Zbl 1068.46019, MR 2054849, 10.1007/BF02786637; reference:[7] Krejn, S. G., Petunin, Yu. I., Semenov, E. M.: Interpolation of Linear Operators.Translations of Mathematical Monographs 54. American Mathematical Society, Providence (1982). Zbl 0493.46058, MR 0649411, 10.1090/mmono/054; reference:[8] Maligranda, L.: Indices and interpolation.Diss. Math. 234 (1985), 1-49. Zbl 0566.46038, MR 0820076; reference:[9] Pick, L., Kufner, A., John, O., Fučík, S.: Function Spaces. Volume 1.De Gruyter Series in Nonlinear Analysis and Applications 14. Walter de Gruyter, Berlin (2013). Zbl 1275.46002, MR 3024912, 10.1515/9783110250428; reference:[10] Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces.Stud. Math. 96 (1990), 145-158. Zbl 0705.42014, MR 1052631, 10.4064/sm-96-2-145-158; reference:[11] Zippin, M.: Interpolation of operators of weak type between rearrangement invariant function spaces.J. Funct. Anal. 7 (1971), 267-284. Zbl 0224.46038, MR 0412793, 10.1016/0022-1236(71)90035-8
-
8Academic Journal
المؤلفون: Shi, Siyu, Shi, Zhongrui, Wu, Shujun
مصطلحات موضوعية: keyword:compact set, keyword:weak topology, keyword:Banach space, keyword:dual space, keyword:Orlicz sequence spaces, msc:46B20, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR4339103; zbl:Zbl 07442466; reference:[1] Aleksandrov, P. S., Kolmogorov, A. N.: Introduction to the Theory of Sets and the Theory of Functions. 1. Introduction to the General Theory of Sets and Functions.Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (1948), Russian. Zbl 0037.03404, MR 0040369; reference:[2] Andô, T.: Weakly compact sets in Orlicz spaces.Can. J. Math. 14 (1962), 170-176. Zbl 0103.32902, MR 0157228, 10.4153/CJM-1962-012-7; reference:[3] Arzelà, C.: Funzioni di linee.Rom. Acc. L. Rend. (4) 5 (1889), 342-348 Italian \99999JFM99999 21.0424.01.; reference:[4] Batt, J., Schlüchtermann, G.: Eberlein compacts in $L_1(X)$.Stud. Math. 83 (1986), 239-250. Zbl 0555.46014, MR 0850826, 10.4064/sm-83-3-239-250; reference:[5] Brouwer, L. E. J.: Beweis der Invarianz des $n$-dimensionalen Gebiets.Math. Ann. 71 (1911), 305-313 German \99999JFM99999 42.0418.01. MR 1511658, 10.1007/BF01456846; reference:[6] Cheng, L., Cheng, Q., Shen, Q., Tu, K., Zhang, W.: A new approach to measures of noncompactness of Banach spaces.Stud. Math. 240 (2018), 21-45. Zbl 06828572, MR 3719465, 10.4064/sm8448-2-2017; reference:[7] Cheng, L., Cheng, Q., Zhang, J.: On super fixed point property and super weak compactness of convex subsets in Banach spaces.J. Math. Anal. Appl. 428 (2015), 1209-1224. Zbl 1329.46015, MR 3334975, 10.1016/j.jmaa.2015.03.061; reference:[8] Darbo, G.: Punti uniti in trasformazioni a codominio non compatto.Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92 Italian. Zbl 0064.35704, MR 0070164; reference:[9] Dodds, P. G., Sukochev, F. A., Schlüchtermann, G.: Weak compactness criteria in symmetric spaces of measurable operators.Math. Proc. Camb. Philos. Soc. 131 (2001), 363-384. Zbl 1004.46038, MR 1857125, 10.1017/S0305004101005114; reference:[10] Fabian, M., Montesinos, V., Zizler, V.: On weak compactness in $L_1$ spaces.Rocky Mt. J. Math. 39 (2009), 1885-1893. Zbl 1190.46011, MR 2575884, 10.1216/RMJ-2009-39-6-1885; reference:[11] Foralewski, P., Hudzik, H., Kolwicz, P.: Non-squareness properties of Orlicz-Lorentz sequence spaces.J. Funct. Anal. 264 (2013), 605-629. Zbl 1263.46015, MR 2997393, 10.1016/j.jfa.2012.10.014; reference:[12] Gale, D.: The game of Hex and the Brouwer fixed-point theorem.Am. Math. Mon. 86 (1979), 818-827. Zbl 0448.90097, MR 0551501, 10.2307/2320146; reference:[13] James, R. C.: Weakly compact sets.Trans. Am. Math. Soc. 113 (1964), 129-140. Zbl 0129.07901, MR 0165344, 10.1090/S0002-9947-1964-0165344-2; reference:[14] James, R. C.: The Eberlein-Šmulian theorem.Functional Analysis. Selected Topics Narosa Publishing House, New Delhi (1998), 47-49. Zbl 1010.46011, MR 1668790; reference:[15] Kelley, J. L.: General Topology.The University Series in Higher Mathematics. D. van Nostrand, New York (1955). Zbl 0066.16604, MR 0070144; reference:[16] Kolmogorov, A. N., Tikhomirov, V. M.: $\epsilon$-entropy and $\epsilon$-capacity of sets in function spaces.Usp. Mat. Nauk 14 (1959), 3-86 Russian. Zbl 0090.33503, MR 0112032; reference:[17] Krasnosel'skij, M. A., Rutitskij, Y. B.: Convex Functions and Orlicz Spaces.P. Noordhoff, Groningen (1961). Zbl 0095.09103, MR 0126722; reference:[18] Leray, J., Schauder, J.: Topologie et équations fonctionnelles.Ann. Sci. Éc. Norm. Supér., III. Ser. 51 (1934), 45-78 French. Zbl 0009.07301, MR 1509338, 10.24033/asens.836; reference:[19] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034. Springer, Berlin (1983). Zbl 0557.46020, MR 0724434, 10.1007/BFb0072210; reference:[20] Schlüchtermann, G.: Weak compactness in $L_\infty(\mu,X)$.J. Funct. Anal. 125 (1994), 379-388. Zbl 0828.46036, MR 1297673, 10.1006/jfan.1994.1129; reference:[21] Shi, S., Shi, Z.: On generalized Young's inequality.Function Spaces XII Banach Center Publications 119. Polish Academy of Sciences, Institute of Mathematics. Warsaw (2019), 295-309. Zbl 1444.46024, 10.4064/bc119-17; reference:[22] Shi, Z., Wang, Y.: Uniformly non-square points and representation of functionals of Orlicz-Bochner sequence spaces.Rocky Mt. J. Math. 48 (2018), 639-660. Zbl 1402.46013, MR 3810210, 10.1216/RMJ-2018-48-2-639; reference:[23] Šmulian, V.: On compact sets in the space of measurable functions.Mat. Sb., N. Ser. 15 (1944), 343-346 Russian. Zbl 0060.27602, MR 0012210; reference:[24] Wu, Y.: Normed compact sets and weakly $H$-compact in Orlicz space.J. Nature 3 (1982), 234 Chinese.; reference:[25] Wu, C., Wang, T.: Orlicz Spaces and Applications.Heilongjiang Sci. & Tech. Press, Harbin (1983), Chinese.; reference:[26] Zhang, X., Shi, Z.: A criterion of compact set in Orlicz sequence space $l_{(M)}$.J. Changchun Post Telcommunication Institute 15 (1997), 64-67 Chinese.
-
9Academic Journal
المؤلفون: Hassaine, Slimane, Boulahia, Fatiha
مصطلحات موضوعية: keyword:Besicovitch--Orlicz space, keyword:extreme point, keyword:strict convexity, keyword:almost periodic function, msc:39A24, msc:46B20, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR4270467; zbl:Zbl 07396211; reference:[1] Bedouhene F., Morsli M., Smaali M.: On some equivalent geometric properties in the Besicovitch–Orlicz space of almost periodic functions with Luxemburg norm.Comment. Math. Univ. Carolin. 51 (2010), no. 1, 25–35. MR 2666078; reference:[2] Besicovitch A. S.: Almost Periodic Functions.Dover Publications, New York, 1955. Zbl 0065.07102, MR 0068029; reference:[3] Boulahia F., Morsli M.: Uniform non-squareness and property $(\beta)$ of Besicovitch–Orlicz spaces of almost periodic functions with Orlicz norm.Comment. Math. Univ. Carolin. 51 (2010), no. 3, 417–426. MR 2741874; reference:[4] Chen S.: Geometry of Orlicz spaces.Dissertationes Math. (Rozprawy Mat.) 356 (1996), 204 pages. Zbl 1089.46500, MR 1410390; reference:[5] Diestel J.: Geometry of Banach Spaces---Selected Topics.Lecture Notes in Mathematics, 485, Springer, Berlin, 1975. MR 0461094, 10.1007/BFb0082079; reference:[6] Foralewski P., Hudzik H., Płuciennik R.: Orlicz spaces without extreme points.J. Math. Anal. Appl. 361 (2010), no. 2, 506–519. MR 2568714, 10.1016/j.jmaa.2009.07.015; reference:[7] Hillmann T. R.: Besicovitch–Orlicz spaces of almost periodic functions.Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., Wiley, New York, 1986, pages 119–167. MR 0856581; reference:[8] Morsli M.: On some convexity properties of the Besicovitch–Orlicz space of almost periodic functions.Comment. Math. (Prace Mat.) 34 (1994), 137–152. MR 1325081; reference:[9] Morsli M.: On modular approximation property in the Besicovitch–Orlicz space of almost periodic functions.Comment. Math. Univ. Carolin. 38 (1997), no. 3, 485–496. MR 1485070; reference:[10] Morsli M., Boulahia F.: Uniformly non-$l_n^1$ Besicovitch–Orlicz space of almost periodic functions.Comment. Math. (Prace Mat.) 45 (2005), no. 1, 25–34. MR 2199891; reference:[11] Morsli M., Bedouhene F.: On the strict convexity of the Besicovitch–Orlicz space of almost periodic functions with Orlicz norm.Rev. Mat. Complut. 16 (2003), no. 2, 399–415. MR 2032925, 10.5209/rev_REMA.2003.v16.n2.16812; reference:[12] Shang S., Cui Y., Fu Y.: Extreme points and rotundity in Musielak–Orlicz–Bochner function spaces endowed with Orlicz norm.Abstr. Appl. Anal. 2010 (2010), Art. ID 914183, 13 pages. MR 2720027; reference:[13] Wisła M.: Geometric properties of Orlicz spaces equipped with $p$-Amemiya norms---results and open questions.Comment. Math. 55 (2015), no. 2, 183–209. MR 3518965
-
10Academic Journal
المؤلفون: Maeda, Fumi-Yuki, Mizuta, Yoshihiro, Ohno, Takao, Shimomura, Tetsu
مصطلحات موضوعية: keyword:Riesz potential, keyword:Trudinger's inequality, keyword:Musielak-Orlicz-Morrey space, keyword:double phase functional, msc:31C15, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR4263183; zbl:07361082; reference:[1] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory.Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1996). Zbl 0834.46021, MR 1411441, 10.1007/978-3-662-03282-4; reference:[2] Ahmida, Y., Chlebicka, I., Gwiazda, P., Youssfi, A.: Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces.J. Funct. Anal. 275 (2018), 2538-2571. Zbl 1405.42042, MR 3847479, 10.1016/j.jfa.2018.05.015; reference:[3] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes.St. Petersbg. Math. J. 27 (2016), 347-379. Zbl 1335.49057, MR 3570955, 10.1090/spmj/1392; reference:[4] Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase.Calc. Var. Partial Differ. Equ. 57 (2018), Article ID 62, 48 pages. Zbl 1394.49034, MR 3775180, 10.1007/s00526-018-1332-z; reference:[5] Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals.Arch. Ration. Mech. Anal. 218 (2015), 219-273. Zbl 1325.49042, MR 3360738, 10.1007/s00205-015-0859-9; reference:[6] Colombo, M., Mingione, G.: Regularity for double phase variational problems.Arch. Ration. Mech. Anal. 215 (2015), 443-496. Zbl 1322.49065, MR 3294408, 10.1007/s00205-014-0785-2; reference:[7] Futamura, T., Mizuta, Y.: Continuity properties of Riesz potentials for functions in $L^{p(\cdot)}$ of variable exponent.Math. Inequal. Appl. 8 (2005), 619-631. Zbl 1087.31004, MR 2174890, 10.7153/mia-08-58; reference:[8] Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embedding for variable exponent Riesz potentials on metric spaces.Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. Zbl 1100.31002, MR 2248828; reference:[9] Futamura, T., Mizuta, Y., Shimomura, T.: Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent.J. Math. Anal. Appl. 366 (2010), 391-417. Zbl 1193.46016, MR 2600488, 10.1016/j.jmaa.2010.01.053; reference:[10] Hästö, P.: The maximal operator on generalized Orlicz spaces.J. Funct. Anal. 269 (2015), 4038-4048 corrigendum ibid. 271 240-243 2016. Zbl 1338.47032, MR 3418078, 10.1016/j.jfa.2015.10.002; reference:[11] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces.Bull. Sci. Math. 137 (2013), 76-96. Zbl 1267.46045, MR 3007101, 10.1016/j.bulsci.2012.03.008; reference:[12] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Trudinger's inequality and continuity of potentials on Musielak-Orlicz-Morrey spaces.Potential Anal. 38 (2013), 515-535. Zbl 1268.46024, MR 3015362, 10.1007/s11118-012-9284-y; reference:[13] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequality for double phase functionals with variable exponents.Forum Math. 31 (2019), 517-527. Zbl 1423.46049, MR 3918454, 10.1515/forum-2018-0077; reference:[14] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents.Complex Var. Elliptic Equ. 56 (2011), 671-695. Zbl 1228.31004, MR 2832209, 10.1080/17476933.2010.504837; reference:[15] Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potential spaces of variable exponents near 1 and Sobolev's exponent.Bull. Sci. Math. 134 (2010), 12-36. Zbl 1192.46027, MR 2579870, 10.1016/j.bulsci.2009.09.004; reference:[16] Mizuta, Y., Shimomura, T.: Differentiability and Hölder continuity of Riesz potentials of Orlicz functions.Analysis, München 20 (2000), 201-223. Zbl 0955.31002, MR 1778254, 10.1524/anly.2000.20.3.201; reference:[17] Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent.J. Math. Soc. Japan 60 (2008), 583-602. Zbl 1161.46305, MR 2421989, 10.2969/jmsj/06020583; reference:[18] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034. Springer, Berlin (1983). Zbl 0557.46020, MR 0724434, 10.1007/BFb0072210; reference:[19] Nakai, E.: Generalized fractional integrals on Orlicz-Morrey spaces.Banach and Function Spaces Yokohama Publishers, Yokohama (2004), 323-333. Zbl 1118.42005, MR 2146936; reference:[20] Ohno, T., Shimomura, T.: Trudinger's inequality for Riesz potentials of functions in Musielak-Orlicz spaces.Bull. Sci. Math. 138 (2014), 225-235. Zbl 1305.46022, MR 3175020, 10.1016/j.bulsci.2013.05.007
-
11Academic Journal
المؤلفون: Djabri, Yousra, Bedouhene, Fazia, Boulahia, Fatiha
مصطلحات موضوعية: keyword:Bohr almost periodic, keyword:Bochner transform, keyword:Stepanov--Orlicz almost periodic function, keyword:semilinear evolution equations, keyword:Nemytskii operator, msc:34C27, msc:35B15, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR4186113; zbl:Zbl 07286010; reference:[1] Albrycht J.: The theory of Marcinkiewic–Orlicz spaces.Rozprawy Mat. 27 (1962), 56 pages. MR 0139935; reference:[2] Amerio L., Prouse G.: Almost-Periodic Functions and Functional Equations.Van Nostrand Reinhold, New York, Ont.-Melbourne, 1971. MR 0275061; reference:[3] Andres J., Bersani A. M., Grande R. F.: Hierarchy of almost-periodic function spaces.Rend. Mat. Appl. (7) 26 (2006), no. 2, 121–188. Zbl 1133.42002, MR 2275292; reference:[4] Andres J., Pennequin D.: On Stepanov almost-periodic oscillations and their discretizations.J. Difference Equ. Appl. 18 (2012), no. 10, 1665–1682. MR 2979829, 10.1080/10236198.2011.587813; reference:[5] Andres J., Pennequin D.: On the nonexistence of purely Stepanov almost-periodic solutions of ordinary differential equations.Proc. Amer. Math. Soc. 140 (2012), no. 8, 2825–2834. MR 2910769; reference:[6] Bedouhene F., Challali N., Mellah O., Raynaud de Fitte P., Smaali M.: Almost periodic solution in distribution for stochastic differential equations with Stepanov almost periodic coefficients.available at arXiv: 1703.00282v3 [math.PR] (2017), 42 pages.; reference:[7] Bugajewski D., Nawrocki A.: Some remarks on almost periodic functions in view of the Lebesgue measure with applications to linear differential equations.Ann. Acad. Sci. Fenn., Math. 42 (2017), no. 2, 809–836. MR 3701650, 10.5186/aasfm.2017.4250; reference:[8] Chen S.: Geometry of Orlicz Spaces.Dissertationes Math. (Rozprawy Mat.), 356, 1996. MR 1410390; reference:[9] Cichoń M., Metwali M. M. A.: On quadratic integral equations in Orlicz spaces.J. Math. Anal. Appl. 387 (2012), no. 1, 419–432. MR 2845761, 10.1016/j.jmaa.2011.09.013; reference:[10] Corduneanu C.: Almost Periodic Functions.Interscience Tracts in Pure and Applied Mathematics, 22, Interscience Publishers, John Wiley, New York, 1968. MR 0481915; reference:[11] Dads A. E. H., Es-Sebbar B., Ezzinbi K., Ziat M.: Behavior of bounded solutions for some almost periodic neutral partial functional differential equations.Math. Methods Appl. Sci. 40 (2017), no. 7, 2377–2397. MR 3636701, 10.1002/mma.4145; reference:[12] Danilov L. I.: On the uniform approximation of a function that is almost periodic in the sense of Stepanov.Izv. Vyssh. Uchebn. Zaved. Mat (1998), no. 5, 10–18. MR 1639154; reference:[13] Diagana T.: Stepanov-like pseudo-almost periodicity and its applications to some nonautonomous differential equations.Nonlinear Anal. 69 (2008), no. 12, 4277–4285. MR 2467232, 10.1016/j.na.2007.10.051; reference:[14] Diagana T., Zitane M.: Stepanov-like pseudo-almost automorphic functions in Lebesgue spaces with variable exponents ${L}^{p(x)}$.Electron. J. Differential Equations 2013 (2013), No. 188, 20 pages. MR 3104964; reference:[15] Ding H.-S., Long W., N'Guérékata G. M.: Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients.J. Comput. Anal. Appl. 13 (2011), no. 2, 231–242. MR 2807574; reference:[16] Hillmann T. R.: Besicovitch–Orlicz spaces of almost periodic functions.Real and stochastic analysis, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., Wiley, 1986, 119–167. MR 0856581; reference:[17] Hu Z.: Boundedness and Stepanov's almost periodicity of solutions.Electron. J. Differential. Equations 2005 (2005), no. 35, 7 pages. MR 2135246; reference:[18] Hu Z., Mingarelli A. B.: Bochner's theorem and Stepanov almost periodic functions.Ann. Mat. Pura Appl. (4) 187 (2008), no. 4, 719–736. MR 2413376, 10.1007/s10231-008-0066-5; reference:[19] Hudzik H.: Uniform convexity of Musielak–Orlicz spaces with Luxemburg's norm.Comment. Math. Prace Mat. 23 (1983), no. 1, 21–32. MR 0709167; reference:[20] Kasprzak P., Nawrocki A., Signerska-Rynkowska J.: Integrate-and-fire models with an almost periodic input function.J. Differential Equations 264 (2018), no. 4, 2495–2537. MR 3737845, 10.1016/j.jde.2017.10.025; reference:[21] Kourat H.: Caractérisation de quelques propriétés géométriques locales dans les espaces de type Musielak–Orlicz.PhD. Thesis, Mouloud Mammeri University of Tizi–Ouzou, Tizi–Ouzou, 2016 (French).; reference:[22] Kozlowski W. M.: Modular Function Spaces.Monographs and Textbooks in Pure and Applied Mathematics, 122, Marcel Dekker, New York, 1988. Zbl 0718.41049, MR 1474499; reference:[23] Kufner A., John O., Fučík S.: Function Spaces.Monographs and Textsbooks on Mechanics of Solids and Fluids, Mechanics: Analysis, Noordhoff International Publishing, Leyden, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1977. MR 0482102; reference:[24] Levitan B. M., Zhikov V. V.: Almost Periodic Functions and Differential Equations.Cambridge University Press, Cambridge, 1982. Zbl 0499.43005, MR 0690064; reference:[25] Luxemburg W. A. J.: Banach Function Spaces.PhD. Dissertation, Delft University of Technology, Delft, 1955. Zbl 0162.44701, MR 0072440; reference:[26] Musielak J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983. Zbl 0557.46020, MR 0724434; reference:[27] Pankov A. A.: Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations.Mathematics and Its Applications (Soviet Series), 55, Kluwer Academic Publishers Group, Dordrecht, 1990. MR 1120781, 10.1007/978-94-011-9682-6_5; reference:[28] Radová L.: Theorems of Bohr–Neugebauer-type for almost-periodic differential equations.Math. Slovaca 54 (2004), no. 2, 191–207. Zbl 1068.34042, MR 2074215; reference:[29] Rao A. S.: On the Stepanov-almost periodic solution of a second-order operator differential equation.Proc. Edinburgh Math. Soc. (2) 19 (1974/75), 261–263. MR 0407409; reference:[30] Stepanoff W.: Über einige Verallgemeinerungen der fast periodischen Funktionen.Math. Ann. 95 (1926), no. 1, 473–498 (German). MR 1512290, 10.1007/BF01206623; reference:[31] Stoiński S.: Almost periodic functions in the Lebesgue measure.Comment. Math. (Prace Mat.) 34 (1994), 189–198. MR 1325086; reference:[32] Zaidman S.: An existence result for Stepanoff almost-periodic differential equations.Canad. Math. Bull. 14 (1971), 551–554. MR 0310382, 10.4153/CMB-1971-097-5
-
12Academic Journal
المؤلفون: Karapetyants, Alexey, Restrepo, Joel Esteban
مصطلحات موضوعية: keyword:Hölder space, keyword:harmonic function, keyword:variable exponent space, keyword:modulus of continuity, msc:42B35, msc:46E15, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR4151698; zbl:07250682; reference:[1] Arsenović, M., Kojić, V., Mateljević, M.: On Lipschitz continuity of harmonic quasiregular maps on the unit ball in $\mathbb R^n$.Ann. Acad. Sci. Fenn., Math. 33 (2008), 315-318. Zbl 1140.31003, MR 2386855; reference:[2] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory.Graduate Texts in Mathematics 137, Springer, New York (2001). Zbl 0959.31001, MR 1805196, 10.1007/b97238; reference:[3] Blumenson, L. E.: A derivation of $n$-dimensional spherical coordinates.Am. Math. Mon. 67 (1960), 63-66. MR 1530579, 10.2307/2308932; reference:[4] Chacón, G. R., Rafeiro, H.: Variable exponent Bergman spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105 (2014), 41-49. Zbl 1288.30059, MR 3200739, 10.1016/j.na.2014.04.001; reference:[5] Chacón, G. R., Rafeiro, H.: Toeplitz operators on variable exponent Bergman spaces.Mediterr. J. Math. 13 (2016), 3525-3536. Zbl 1354.30049, MR 3554324, 10.1007/s00009-016-0701-0; reference:[6] Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis.Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg (2013). Zbl 1268.46002, MR 3026953, 10.1007/978-3-0348-0548-3; reference:[7] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017, Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8; reference:[8] Duren, P., Schuster, A.: Bergman Spaces.Mathematical Surveys and Monographs 100, American Mathematical Society, Providence (2004). Zbl 1059.30001, MR 2033762, 10.1090/surv/100; reference:[9] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces.Graduate Texts in Mathematics 199, Springer, New York (2000). Zbl 0955.32003, MR 1758653, 10.1007/978-1-4612-0497-8; reference:[10] Karapetyants, A., Rafeiro, H., Samko, S.: Boundedness of the Bergman projection and some properties of Bergman type spaces.Complex Anal. Oper. Theory 13 (2019), 275-289. Zbl 1421.30070, MR 3905593, 10.1007/s11785-018-0780-y; reference:[11] Karapetyants, A., Samko, S.: Spaces $ BMO_{p(\cdot)}(\Bbb D)$ of a variable exponent $p(z)$.Georgian Math. J. 17 (2010), 529-542. Zbl 1201.30072, MR 2719633, 10.1515/gmj.2010.028; reference:[12] Karapetyants, A., Samko, S.: Mixed norm Bergman-Morrey-type spaces on the unit disc.Math. Notes 100 (2016), 38-48. Zbl 1364.30063, MR 3588827, 10.1134/S000143461607004X; reference:[13] Karapetyants, A., Samko, S.: Mixed norm variable exponent Bergman space on the unit disc.Complex Var. Elliptic Equ. 61 (2016), 1090-1106. Zbl 1351.30042, MR 3500518, 10.1080/17476933.2016.1140750; reference:[14] Karapetyants, A., Samko, S.: Mixed norm spaces of analytic functions as spaces of generalized fractional derivatives of functions in Hardy type spaces.Fract. Calc. Appl. Anal. 20 (2017), 1106-1130. Zbl 1386.30052, MR 3721891, 10.1515/fca-2017-0059; reference:[15] Karapetyants, A., Samko, S.: On boundedness of Bergman projection operators in Banach spaces of holomorphic functions in half-plane and harmonic functions in half-space.J. Math. Sci., New York 226 (2017), 344-354. Zbl 1386.30051, MR 3705149, 10.1007/s10958-017-3538-6; reference:[16] Karapetyants, A., Samko, S.: Generalized Hölder spaces of holomorphic functions in domains in the complex plane.Mediterr. J. Math. 15 (2018), Paper No. 226, 17 pages. Zbl 1411.30039, MR 3878666, 10.1007/s00009-018-1272-z; reference:[17] Karapetyants, A., Samko, S.: On mixed norm Bergman-Orlicz-Morrey spaces.Georgian Math. J. 25 (2018), 271-282. Zbl 1392.30023, MR 3808288, 10.1515/gmj-2018-0027; reference:[18] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 1. Variable Exponent Lebesgue and Amalgam Spaces.Operator Theory: Advances and Applications 248, Birkhäuser/Springer, Basel (2016). Zbl 1385.47001, MR 3559400, 10.1007/978-3-319-21015-5; reference:[19] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 2. Variable Exponent Hölder, Morrey-Campanato and Grand Spaces.Operator Theory: Advances and Applications 249, Birkhäuser/Springer, Basel (2016). Zbl 1367.47004, MR 3559401, 10.1007/978-3-319-21018-6; reference:[20] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball.Graduate texts in Mathematics 226, Springer, New York (2005). Zbl 1067.32005, MR 2115155, 10.1007/0-387-27539-8; reference:[21] Zhu, K.: Operator Theory in Function Spaces.Mathematical Surveys and Monographs 138, American Mathematical Society, Providence (2007). Zbl 1123.47001, MR 2311536, 10.1090/surv/138
-
13Academic Journal
المؤلفون: Ruan, Jianmiao, Fan, Dashan, Li, Hongliang
مصطلحات موضوعية: keyword:Hausdorff operator, keyword:Morrey space, keyword:Campanato space, msc:42B30, msc:42B35, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR4111856; zbl:07217148; reference:[1] Chen, J., Fan, D., Li, J.: Hausdorff operators on function spaces.Chin. Ann. Math., Ser. B 33 (2012), 537-556. Zbl 1261.42036, MR 2996530, 10.1007/s11401-012-0724-1; reference:[2] Chen, J., Fan, D., Wang, S.: Hausdorff operators on Euclidean spaces.Appl. Math., Ser. B (Engl. Ed.) 28 (2013), 548-564. Zbl 1299.42078, MR 3143905, 10.1007/s11766-013-3228-1; reference:[3] Chen, J., Zhu, X.: Boundedness of multidimensional Hausdorff operators on $H^{1}(R^{n})$.J. Math. Anal. Appl. 409 (2014), 428-434. Zbl 1309.42026, MR 3095051, 10.1016/j.jmaa.2013.07.042; reference:[4] Fefferman, C., Stein, E. M.: $H^p$ spaces of several variables.Acta Math. 129 (1972), 137-193. Zbl 0257.46078, MR 0447953, 10.1007/BF02392215; reference:[5] Fu, Z., Grafakos, L., Lu, S., Zhao, F.: Sharp bounds for $m$-linear Hardy and Hilbert operators.Houston J. Math. 38 (2012), 225-244. Zbl 1248.42020, MR 2917283; reference:[6] Lerner, A. K., Liflyand, E.: Multidimensional Hausdorff operators on the real Hardy space.J. Aust. Math. Soc. 83 (2007), 79-86. Zbl 1143.47023, MR 2378435, 10.1017/S1446788700036399; reference:[7] Liflyand, E.: Open problems on Hausdorff operators.Complex Analysis and Potential Theory World Scientific, Hackensack (2007), 280-285. Zbl 1156.30002, MR 2368363, 10.1142/9789812778833_0030; reference:[8] Liflyand, E.: Boundedness of multidimensional Hausdorff operators on $H^1({\mathbb R}^n)$.Acta Sci. Math. 74 (2008), 845-851. Zbl 1199.47155, MR 2487949; reference:[9] Liflyand, E.: Hausdorff operators on Hardy spaces.Eurasian Math. J. 4 (2013), 101-141. Zbl 1328.47039, MR 3382905; reference:[10] Liflyand, E., Miyachi, A.: Boundedness of the Hausdorff operators in $H^p$ spaces, $0; reference:[11] Liflyand, E., Móricz, F.: The Hausdorff operator is bounded on the real Hardy space $H^1({\mathbb R})$.Proc. Am. Math. Soc. 128 (2000), 1391-1396. Zbl 0951.47038, MR 1641140, 10.1090/S0002-9939-99-05159-X; reference:[12] Liflyand, E., Móricz, F.: Commuting relations for Hausdorff operators and Hilbert transforms on real Hardy spaces.Acta Math. Hung. 97 (2002), 133-143. Zbl 1012.47011, MR 1932800, 10.1023/A:1020867130612; reference:[13] Móricz, F.: Multivariate Hausdorff operators on the spaces $H^{1}({\mathbb R}^{n})$ and ${\rm BMO({\mathbb R}^{n})}$.Anal. Math. 31 (2005), 31-41. Zbl 1093.47036, MR 2145404, 10.1007/s10476-005-0003-4; reference:[14] Ruan, J., Fan, D.: Hausdorff operators on the power weighted Hardy spaces.J. Math. Anal. Appl. 433 (2016), 31-48. Zbl 1331.42018, MR 3388780, 10.1016/j.jmaa.2015.07.062; reference:[15] Ruan, J., Fan, D., Wu, Q.: Weighted Herz space estimates for Hausdorff operators on the Heisenberg group.Banach J. Math. Anal. 11 (2017), 513-535. Zbl 1370.42020, MR 3679894, 10.1215/17358787-2017-0004; reference:[16] Weisz, F.: The boundedness of the Hausdorff operator on multi-dimensional Hardy spaces.Analysis, München 24 (2004), 183-195. Zbl 1071.47033, MR 2085955, 10.1524/anly.2004.24.14.183; reference:[17] Xiao, J.: $L^{p}$ and BMO bounds of weighted Hardy-Littlewood averages.J. Math. Anal. Appl. 262 (2001), 660-666. Zbl 1009.42013, MR 1859331, 10.1006/jmaa.2001.7594
-
14Academic Journal
المؤلفون: Youssfi, Ahmed, Ahmida, Youssef
مصطلحات موضوعية: keyword:approximate identity, keyword:Musielak-Orlicz space, keyword:density of smooth functions, msc:46B10, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR4111853; zbl:07217145; reference:[1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces.Pure and Applied Mathematics 140, Academic Press, New York (2003). Zbl 1098.46001, MR 2424078, 10.1016/S0079-8169(13)62896-2; reference:[2] Benkirane, A., Douieb, J., Val, M. Ould Mohamedhen: An approximation theorem in Musielak-Orlicz-Sobolev spaces.Commentat. Math. 51 (2011), 109-120. Zbl 1294.46025, MR 2849685, 10.14708/cm.v51i1.5313; reference:[3] Benkirane, A., Val, M. Ould Mohamedhen: Some approximation properties in Musielak-Orlicz-Sobolev spaces.Thai J. Math. 10 (2012), 371-381. Zbl 1264.46024, MR 3001860; reference:[4] Bennett, C., Sharpley, R.: Interpolation of Operators.Pure and Applied Mathematics 129, Academic Press, Boston (1988). Zbl 0647.46057, MR 0928802, 10.1016/S0079-8169(13)62909-8; reference:[5] Cruz-Uribe, D., Fiorenza, A.: Approximate identities in variable $L^{p}$ spaces.Math. Nachr. 280 (2007), 256-270. Zbl 1178.42022, MR 2292148, 10.1002/mana.200410479; reference:[6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017, Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8; reference:[7] Hudzik, H.: A generalization of Sobolev spaces. II.Funct. Approximatio, Comment. Math. 3 (1976), 77-85. Zbl 0355.46011, MR 0467279; reference:[8] Kamińska, A.: On some compactness criterion for Orlicz subspace $E_{\Phi}(\Omega)$.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 22 (1981), 245-255. Zbl 0504.46024, MR 0641438, 10.14708/cm.v22i2.6021; reference:[9] Kamińska, A.: Some convexity properties of Musielak-Orlicz spaces of Bochner type.Rend. Circ. Mat. Palermo, II. Ser. Suppl. 10 (1985), 63-73. Zbl 0609.46015, MR 0894273; reference:[10] Kamińska, A., Hudzik, H.: Some remarks on convergence in Orlicz space.Commentat. Math. 21 (1980), 81-88. Zbl 0436.46022, MR 0577673, 10.14708/cm.v21i1.5965; reference:[11] Kamińska, A., Kubiak, D.: The Daugavet property in the Musielak-Orlicz spaces.J. Math. Anal. Appl. 427 (2015), 873-898. Zbl 1325.46012, MR 3323013, 10.1016/j.jmaa.2015.02.035; reference:[12] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. Zbl 0784.46029, MR 1134951, 10.21136/CMJ.1991.102493; reference:[13] Krasnosel'skiĭ, M. A., Rutitskiĭ, J. B.: Convex Functions and Orlicz Spaces.P. Noordhoff, Groningen (1961). Zbl 0095.09103, MR 0126722; reference:[14] Kufner, A., John, O., Fučík, S.: Function Spaces.Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis, Noordhoff International Publishing, Leyden; Academia, Prague (1977). Zbl 0364.46022, MR 0482102; reference:[15] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034, Springer, Berlin (1983). Zbl 0557.46020, MR 0724434, 10.1007/BFb0072210; reference:[16] Nakano, H.: Modulared Semi-Ordered Linear Spaces.Tokyo Math. Book Series 1, Maruzen, Tokyo (1950). Zbl 0041.23401, MR 0038565; reference:[17] Orlicz, W.: Über konjugierte Exponentenfolgen.Studia Math. German 3 (1931), 200-211. Zbl 0003.25203, 10.4064/sm-3-1-200-211
-
15Academic Journal
المؤلفون: Chacón, Gerardo R., Chacón, Gerardo A.
مصطلحات موضوعية: keyword:Fock space, keyword:variable exponent Lebesgue space, keyword:Bergman projection, msc:30H20, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR4078353; zbl:07217128; reference:[1] Chacón, G. R., Rafeiro, H.: Variable exponent Bergman spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105 (2014), 41-49. Zbl 1288.30059, MR 3200739, 10.1016/j.na.2014.04.001; reference:[2] Chacón, G. R., Rafeiro, H.: Toeplitz operators on variable exponent Bergman spaces.Mediterr. J. Math. 13 (2016), 3525-3536. Zbl 1354.30049, MR 3554324, 10.1007/s00009-016-0701-0; reference:[3] Chacón, G. R., Rafeiro, H., Vallejo, J. C.: Carleson measures for variable exponent Bergman spaces.Complex Anal. Oper. Theory 11 (2017), 1623-1638. Zbl 1387.30081, MR 3702967, 10.1007/s11785-016-0573-0; reference:[4] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis.Applied and Numerical Harmonic Analysis, Birkhäuser, Basel (2013). Zbl 1268.46002, MR 3026953, 10.1007/978-3-0348-0548-3; reference:[5] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017, Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8; reference:[6] Harjulehto, P., Hästö, P., Klén, R.: Generalized Orlicz spaces and related PDE.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 143 (2016), 155-173. Zbl 1360.46029, MR 3516828, 10.1016/j.na.2016.05.002; reference:[7] Isralowitz, J.: Invertible Toeplitz products, weighted norm inequalities, and $ A_p$ weights.J. Oper. Theory 71 (2014), 381-410. Zbl 1313.47059, MR 3214643, 10.7900/jot.2012apr10.1989; reference:[8] Karapetyants, A., Samko, S.: Spaces $ BMO^{p(\cdot)}(\mathbb D)$ of a variable exponent $p(z)$.Georgian Math. J. 17 (2010), 529-542. Zbl 1201.30072, MR 2719633, 10.1515/GMJ.2010.028; reference:[9] Karapetyants, A. N., Samko, S. G.: Mixed norm Bergman-Morrey-type spaces on the unit disc.Math. Notes 100 (2016), 38-48 translation from Mat. Zametki 100 2016 47-58. Zbl 1364.30063, MR 3588827, 10.1134/S000143461607004X; reference:[10] Karapetyants, A. N., Samko, S. G.: Mixed norm variable exponent Bergman space on the unit disc.Complex Var. Elliptic Equ. 61 (2016), 1090-1106. Zbl 1351.30042, MR 3500518, 10.1080/17476933.2016.1140750; reference:[11] Kokilashvili, V., Paatashvili, V.: On Hardy classes of analytic functions with a variable exponent.Proc. A. Razmadze Math. Inst. 142 (2006), 134-137. Zbl 1126.47031, MR 2294576; reference:[12] Kokilashvili, V., Paatashvili, V.: On the convergence of sequences of functions in Hardy classes with a variable exponent.Proc. A. Razmadze Math. Inst. 146 (2008), 124-126. Zbl 1166.47033, MR 2464049; reference:[13] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. Zbl 0784.46029, MR 1134951, 10.21136/CMJ.1991.102493; reference:[14] Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L.: Composition operators on Hardy-Orlicz spaces.Mem. Am. Math. Soc. 207 (2010), 74 pages. Zbl 1200.47035, MR 2681410, 10.1090/S0065-9266-10-00580-6; reference:[15] Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L.: Compact composition operators on Bergman-Orlicz spaces.Trans. Am. Math. Soc. 365 (2013), 3943-3970. Zbl 1282.47033, MR 3055685, 10.1090/S0002-9947-2013-05922-3; reference:[16] Motos, J., Planells, M. J., Talavera, C. F.: On variable exponent Lebesgue spaces of entire analytic functions.J. Math. Anal. Appl. 388 (2012), 775-787. Zbl 1244.46008, MR 2869787, 10.1016/j.jmaa.2011.09.069; reference:[17] Orlicz, W.: Über konjugierte Exponentenfolgen.Stud. Math. 3 (1931), 200-211 German. Zbl 0003.25203, 10.4064/sm-3-1-200-211; reference:[18] Tung, Y.-C. J.: Fock Spaces.Ph.D. Thesis, The University of Michigan (2005). MR 2706955; reference:[19] Zhu, K.: Analysis on Fock Spaces.Graduate Texts in Mathematics 263, Springer, New York (2012). Zbl 1262.30003, MR 2934601, 10.1007/978-1-4419-8801-0
-
16Academic Journal
المؤلفون: Sato, Shuichi
مصطلحات موضوعية: keyword:Littlewood-Paley function, keyword:non-isotropic dilation, msc:42B25, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR3959948; zbl:Zbl 07088788; reference:[1] Benedek, A., Calderón, A. P., Panzone, R.: Convolution operators on Banach space valued functions.Proc. Natl. Acad. Sci. USA 48 (1962), 356-365. Zbl 0103.33402, MR 0133653, 10.1073/pnas.48.3.356; reference:[2] Calderón, A. P.: Inequalities for the maximal function relative to a metric.Stud. Math. 57 (1976), 297-306. Zbl 0341.44007, MR 0442579, 10.4064/sm-57-3-297-306; reference:[3] Calderón, A. P., Torchinsky, A.: Parabolic maximal functions associated with a distribution.Adv. Math. 16 (1975), 1-64. Zbl 0315.46037, MR 0417687, 10.1016/0001-8708(75)90099-7; reference:[4] Capri, O. N.: On an inequality in the theory of parabolic $H^p$ spaces.Rev. Unión Mat. Argent. 32 (1985), 17-28. Zbl 0643.42013, MR 0873913; reference:[5] Cheng, L. C.: On Littlewood-Paley functions.Proc. Am. Math. Soc. 135 (2007), 3241-3247. Zbl 1124.42013, MR 2322755, 10.1090/S0002-9939-07-08917-4; reference:[6] Ding, Y., Sato, S.: Littlewood-Paley functions on homogeneous groups.Forum Math. 28 (2016), 43-55. Zbl 1332.42007, MR 3441105, 10.1515/forum-2014-0058; reference:[7] Duoandikoetxea, J.: Weighted norm inequalities for homogeneous singular integrals.Trans. Am. Math. Soc. 336 (1993), 869-880. Zbl 0770.42011, MR 1089418, 10.2307/2154381; reference:[8] Duoandikoetxea, J.: Sharp $L^p$ boundedness for a class of square functions.Rev. Mat. Complut. 26 (2013), 535-548. Zbl 1334.42040, MR 3068610, 10.1007/s13163-012-0106-y; reference:[9] Duoandikoetxea, J., Francia, J. L. Rubio de: Maximal and singular integral operators via Fourier transform estimates.Invent. Math. 84 (1986), 541-561. Zbl 0568.42012, MR 0837527, 10.1007/BF01388746; reference:[10] Duoandikoetxea, J., Seijo, E.: Weighted inequalities for rough square functions through extrapolation.Stud. Math. 149 (2002), 239-252. Zbl 1015.42016, MR 1890732, 10.4064/sm149-3-2; reference:[11] Fan, D., Sato, S.: Remarks on Littlewood-Paley functions and singular integrals.J. Math. Soc. Japan 54 (2002), 565-585. Zbl 1029.42010, MR 1900957, 10.2969/jmsj/1191593909; reference:[12] Garcia-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies 116, Notas de Matemática 104, North-Holland, Amsterdam (1985). Zbl 0578.46046, MR 0807149, 10.1016/s0304-0208(08)x7154-3; reference:[13] Hörmander, L.: Estimates for translation invariant operators in $L^p$ spaces.Acta Math. 104 (1960), 93-140. Zbl 0093.11402, MR 0121655, 10.1007/BF02547187; reference:[14] Rivière, N.: Singular integrals and multiplier operators.Ark. Mat. 9 (1971), 243-278. Zbl 0244.42024, MR 0440268, 10.1007/BF02383650; reference:[15] Francia, J. L. Rubio de: Factorization theory and $A_p$ weights.Am. J. Math. 106 (1984), 533-547. Zbl 0558.42012, MR 0745140, 10.2307/2374284; reference:[16] Sato, S.: Remarks on square functions in the Littlewood-Paley theory.Bull. Aust. Math. Soc. 58 (1998), 199-211. Zbl 0914.42012, MR 1642027, 10.1017/S0004972700032172; reference:[17] Sato, S.: Estimates for Littlewood-Paley functions and extrapolation.Integral Equations Oper. Theory 62 (2008), 429-440. Zbl 1166.42009, MR 2461129, 10.1007/s00020-008-1631-4; reference:[18] Sato, S.: Estimates for singular integrals along surfaces of revolution.J. Aust. Math. Soc. 86 (2009), 413-430. Zbl 1182.42019, MR 2529333, 10.1017/S1446788708000773; reference:[19] Sato, S.: Littlewood-Paley equivalence and homogeneous Fourier multipliers.Integral Equations Oper. Theory 87 (2017), 15-44. Zbl 1364.42025, MR 3609237, 10.1007/s00020-016-2333-y; reference:[20] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton Mathematical Series 30, Princeton University Press, Princeton (1970). Zbl 0207.13501, MR 0290095, 10.1515/9781400883882; reference:[21] Stein, E. M., Wainger, S.: Problems in harmonic analysis related to curvature.Bull. Am. Math. Soc. 84 (1978), 1239-1295. Zbl 0393.42010, MR 0508453, 10.1090/S0002-9904-1978-14554-6
-
17Academic Journal
المؤلفون: Hashimoto, Daiki, Ohno, Takao, Shimomura, Tetsu
مصطلحات موضوعية: keyword:Orlicz space, keyword:Riesz potential, keyword:fractional integral, keyword:metric measure space, keyword:lower Ahlfors regular, msc:31B15, msc:46E30, msc:46E35
وصف الملف: application/pdf
Relation: mr:MR3923585; zbl:Zbl 07088780; reference:[1] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces.EMS Tracts in Mathematics 17, European Mathematical Society, Zürich (2011). Zbl 1231.31001, MR 2867756, 10.4171/099; reference:[2] Cianchi, A.: Strong and weak type inequalities for some classical operators in Orlicz spaces.J. Lond. Math. Soc., II. Ser. 60 (1999), 187-202. Zbl 0940.46015, MR 1721824, 10.1112/S0024610799007711; reference:[3] DeJarnette, N.: Is an Orlicz-Poincaré inequality an open ended condition, and what does that mean?.J. Math. Anal. Appl. 423 (2015), 358-376. Zbl 1333.46034, MR 3273185, 10.1016/j.jmaa.2014.09.064; reference:[4] Dyda, B.: Embedding theorems for Lipschitz and Lorentz spaces on lower Ahlfors regular sets.Stud. Math. 197 (2010), 247-256. Zbl 1202.46037, MR 2607491, 10.4064/sm197-3-3; reference:[5] Eridani, Gunawan, H., Nakai, E.: On generalized fractional integral operators.Sci. Math. Jpn. 60 (2004), 539-550. Zbl 1058.42007, MR 2099586; reference:[6] Futamura, T., Shimomura, T.: Boundary behavior of monotone Sobolev functions in Orlicz spaces on John domains in a metric space.J. Geom. Anal. 28 (2018), 1233-1244. Zbl 06902266, MR 3790498, 10.1007/s12220-017-9860-x; reference:[7] García-Cuerva, J., Gatto, A. E.: Boundedness properties of fractional integral operators associated to non-doubling measures.Stud. Math. 162 (2004), 245-261. Zbl 1045.42006, MR 2047654, 10.4064/sm162-3-5; reference:[8] Gunawan, H.: A note on the generalized fractional integral operators.J. Indones. Math. Soc. 9 (2003), 39-43. Zbl 1129.42380, MR 2013135; reference:[9] Haj{ł}asz, P., Koskela, P.: Sobolev met Poincaré.Mem. Am. Math. Soc. 145 (2000), No. 688, 101 pages. Zbl 0954.46022, MR 1683160, 10.1090/memo/0688; reference:[10] Hedberg, L. I.: On certain convolution inequalities.Proc. Am. Math. Soc. 36 (1972), 505-510. Zbl 0283.26003, MR 0312232, 10.2307/2039187; reference:[11] Heinonen, J.: Lectures on Analysis on Metric Spaces.Universitext, Springer, New York (2001). Zbl 0985.46008, MR 1800917, 10.1007/978-1-4613-0131-8; reference:[12] Hyt{ö}nen, T.: A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa.Publ. Mat., Barc. 54 (2010), 485-504. Zbl 1246.30087, MR 2675934, 10.5565/PUBLMAT_54210_10; reference:[13] Lisini, S.: Absolutely continuous curves in extended Wasserstein-Orlicz spaces.ESAIM, Control Optim. Calc. Var. 22 (2016), 670-687. Zbl 1348.49048, MR 3527938, 10.1051/cocv/2015020; reference:[14] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials.J. Math. Soc. Japan 62 (2010), 707-744. Zbl 1200.26007, MR 2648060, 10.2969/jmsj/06230707; reference:[15] Mizuta, Y., Shimomura, T.: Differentiability and Hölder continuity of Riesz potentials of Orlicz functions.Analysis, München 20 (2000), 201-223. Zbl 0955.31002, MR 1778254, 10.1524/anly.2000.20.3.201; reference:[16] Mizuta, Y., Shimomura, T., Sobukawa, T.: Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces.Osaka J. Math. 46 (2009), 255-271. Zbl 1186.31003, MR 2531149; reference:[17] Nakai, E.: On generalized fractional integrals.Taiwanese J. Math. 5 (2001), 587-602. Zbl 0990.26007, MR 1849780, 10.11650/twjm/1500574952; reference:[18] Nakai, E.: On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type.Sci. Math. Jpn. 54 (2001), 473-487. Zbl 1007.42013, MR 1874169; reference:[19] Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. No. 15 (1997), 703-726. Zbl 0889.42013, MR 1470373, 10.1155/S1073792897000469; reference:[20] Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. No. 9 (1998), 463-487. Zbl 0918.42009, MR 1626935, 10.1155/S1073792898000312; reference:[21] Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces.Czech. Math. J. 64 (2014), 209-228. Zbl 1340.31009, MR 3247456, 10.1007/s10587-014-0095-8; reference:[22] Ohno, T., Shimomura, T.: Trudinger's inequality and continuity for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces on metric measure spaces.Nonlinear Anal., Theory Methods Appl., Ser. A 106 (2014), 1-17. Zbl 1306.46039, MR 3209682, 10.1016/j.na.2014.04.008; reference:[23] Ohno, T., Shimomura, T.: Musielak-Orlicz-Sobolev spaces on metric measure spaces.Czech. Math. J. 65 (2015), 435-474. Zbl 1363.46027, MR 3360438, 10.1007/s10587-015-0187-0; reference:[24] O'Neil, R.: Fractional integration in Orlicz spaces. I.Trans. Am. Math. Soc. 115 (1965), 300-328. Zbl 0132.09201, MR 0194881, 10.2307/1994271; reference:[25] Sawano, Y., Shimomura, T.: Sobolev embeddings for generalized Riesz potentials of functions in Morrey spaces $L^{(1,\varphi)}(G)$ over nondoubling measure spaces.J. Funct. Spaces Appl. 2013 (2013), Article ID 984259, 12 pages. Zbl 1275.46017, MR 3040574, 10.1155/2013/984259; reference:[26] Sawano, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents.Collect. Math. 64 (2013), 313-350. Zbl 1280.31001, MR 3084400, 10.1007/s13348-013-0082-7; reference:[27] Sawano, Y., Shimomura, T.: Boundedness of the generalized fractional integral operators on generalized Morrey spaces over metric measure spaces.Z. Anal. Anwend. 36 (2017), 159-190. Zbl 1364.26012, MR 3632252, 10.4171/ZAA/1584; reference:[28] Sawano, Y., Shimomura, T.: Generalized fractional integral operators over non-doubling metric measure spaces.Integral Transforms Spec. Funct. 28 (2017), 534-546. Zbl 1372.42011, MR 3645968, 10.1080/10652469.2017.1318281; reference:[29] Tolsa, X.: BMO, $H^1$, and Calderón-Zygmund operators for nondoubling measures.Math. Ann. 319 (2001), 89-149. Zbl 0974.42014, MR 1812821, 10.1007/s002080000144
-
18Academic Journal
المؤلفون: Harjulehto, Petteri, Hästö, Peter
مصطلحات موضوعية: keyword:generalized Orlicz space, keyword:Musielak-Orlicz space, keyword:nonstandard growth, keyword:variable exponent, keyword:double phase, keyword:uniform convexity, keyword:associate space, msc:46A25, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR3881892; zbl:Zbl 07031693; reference:[1] Adams, R.: Sobolev Spaces.Pure and Applied Mathematics 65, Academic Press, New York (1975). Zbl 0314.46030, MR 0450957; reference:[2] Avci, M., Pankov, A.: Multivalued elliptic operators with nonstandard growth.Adv. Nonlinear Anal. 7 (2018), 35-48. Zbl 06837817, MR 3757454, 10.1515/anona-2016-0043; reference:[3] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes.St. Petersbg. Math. J. 27 (2016), 347-379 translation from Algebra Anal. 27 2015 6-50. Zbl 1335.49057, MR 3570955, 10.1090/spmj/1392; reference:[4] Colombo, M., Mingione, G.: Regularity for double phase variational problems.Arch. Ration. Mech. Anal. 215 (2015), 443-496. Zbl 1322.49065, MR 3294408, 10.1007/s00205-014-0785-2; reference:[5] Cruz-Uribe, D., Hästö, P.: Extrapolation and interpolation in generalized Orlicz spaces.Trans. Am. Math. Soc. 370 (2018), 4323-4349. Zbl 06853979, MR 3811530, 10.1090/tran/7155; reference:[6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017, Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8; reference:[7] Fan, X.-L., Guan, C.-X.: Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications.Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 163-175. Zbl 1198.46010, MR 2645841, 10.1016/j.na.2010.03.010; reference:[8] Gwiazda, P., Wittbold, P., Wróblewska-Kamińska, A., Zimmermann, A.: Renormalized solutions to nonlinear parabolic problems in generalized Musielak-Orlicz spaces.Nonlinear Anal., Theory Methods Appl., Ser. A 129 (2015), 1-36. Zbl 1331.35173, MR 3414919, 10.1016/j.na.2015.08.017; reference:[9] Harjulehto, P., Hästö, P.: Riesz potential in generalized Orlicz spaces.Forum Math. 29 (2017), 229-244. MR 3592600, 10.1515/forum-2015-0239; reference:[10] Harjulehto, P., Hästö, P., Klén, R.: Generalized Orlicz spaces and related PDE.Nonlinear Anal., Theory Methods Appl., Ser. A 143 (2016), 155-173. Zbl 1360.46029, MR 3516828, 10.1016/j.na.2016.05.002; reference:[11] Harjulehto, P., Hästö, P., Toivanen, O.: Hölder regularity of quasiminimizers under generalized growth conditions.Calc. Var. Partial Differ. Equ. 56 (2017), Article No. 2, 26 pages. Zbl 1366.35036, MR 3606780, 10.1007/s00526-017-1114-z; reference:[12] Hästö, P.: The maximal operator on generalized Orlicz spaces.J. Funct. Anal. 269 (2015), 4038-4048. Zbl 1338.47032, MR 3418078, 10.1016/j.jfa.2015.10.002; reference:[13] Hudzik, H.: Uniform convexity of Musielak-Orlicz spaces with Luxemburg's norm.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 23 (1983), 21-32. Zbl 0595.46027, MR 0709167; reference:[14] Hudzik, H.: A criterion of uniform convexity of Musielak-Orlicz spaces with Luxemburg norm.Bull. Pol. Acad. Sci., Math. 32 (1984), 303-313. Zbl 0565.46020, MR 0785989; reference:[15] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces.Bull. Sci. Math. 137 (2013), 76-96. Zbl 1267.46045, MR 3007101, 10.1016/j.bulsci.2012.03.008; reference:[16] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034, Springer, Berlin (1983). Zbl 0557.46020, MR 0724434, 10.1007/BFb0072210; reference:[17] Ok, J.: Gradient estimates for elliptic equations with $L^{p(\cdot)}\log L$ growth.Calc. Var. Partial Differ. Equ. 55 (2016), Article No. 26, 30 pages. Zbl 1342.35090, MR 3465442, 10.1007/s00526-016-0965-z; reference:[18] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces.Pure and Applied Mathematics 146, Marcel Dekker, New York (1991). Zbl 0724.46032, MR 1113700
-
19Academic Journal
المؤلفون: Kakizawa, Ryôhei
مصطلحات موضوعية: keyword:Helmholtz decomposition, keyword:Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces, keyword:variational estimate, msc:35Q30, msc:46E30, msc:76D05
وصف الملف: application/pdf
Relation: mr:MR3851890; zbl:Zbl 06986971; reference:[1] Rham, G. de: Variétés différentiables. Formes, courants, formes harmoniques.Publications de l'Institut de Mathématique de l'Université de Nancago III. Actualités Scientifiques et Industrielles 1222 b, Hermann, Paris (1973), French. Zbl 0284.58001, MR 0346830; reference:[2] Fabes, E., Mendez, O., Mitrea, M.: Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains.J. Funct. Anal. 159 (1998), 323-368. Zbl 0930.35045, MR 1658089, 10.1006/jfan.1998.3316; reference:[3] Farwig, R.: Weighted $L^{q}$-Helmholtz decompositions in infinite cylinders and in infinite layers.Adv. Differ. Equ. 8 (2003), 357-384. Zbl 1038.35068, MR 1948530; reference:[4] Farwig, R., Kozono, H., Sohr, H.: An $L^{q}$-approach to Stokes and Navier-Stokes equations in general domains.Acta Math. 195 (2005), 21-53. Zbl 1111.35033, MR 2233684, 10.1007/BF02588049; reference:[5] Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains.Arch. Math. 88 (2007), 239-248. Zbl 1121.35097, MR 2305602, 10.1007/s00013-006-1910-8; reference:[6] Farwig, R., Sohr, H.: Weighted $L^q$-theory for the Stokes resolvent in exterior domains.J. Math. Soc. Japan 49 (1997), 251-288. Zbl 0918.35106, MR 1601373, 10.2969/jmsj/04920251; reference:[7] Fröhlich, A.: The Helmholtz decomposition of weighted $L^{q}$-spaces for Muckenhoupt weights.Ann. Univ. Ferrara, Nuova Ser., Sez. VII 46 (2000), 11-19. Zbl 1034.35089, MR 1896920; reference:[8] Fröhlich, A.: Maximal regularity for the non-stationary Stokes system in an aperture domain.J. Evol. Equ. 2 (2002), 471-493. Zbl 1040.35059, MR 1941038, 10.1007/PL00012601; reference:[9] Fröhlich, A.: The Stokes operator in weighted $L^{q}$-spaces I. Weighted estimates for the Stokes resolvent problem in a half space.J. Math. Fluid Mech. 5 (2003), 166-199. Zbl 1040.35060, MR 1982327, 10.1007/s00021-003-0080-8; reference:[10] Fröhlich, A.: The Stokes operator in weighted $L^{q}$-spaces II. Weighted resolvent estimates and maximal $L^{p}$-regularity.Math. Ann. 339 (2007), 287-316. Zbl 1126.35041, MR 2324721, 10.1007/s00208-007-0114-2; reference:[11] García-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies 116, North-Holland, Amsterdam (1985). Zbl 0578.46046, MR 0807149, 10.1016/s0304-0208(08)x7154-3; reference:[12] Geng, J., Shen, Z.: The Neumann problem and Helmholtz decomposition in convex domains.J. Funct. Anal. 259 (2010), 2147-2164. Zbl 1195.35128, MR 2671125, 10.1016/j.jfa.2010.07.005; reference:[13] Kim, A. S., Shen, Z.: The Neumann problem in $L^{p}$ on Lipschitz and convex domains.J. Funct. Anal. 255 (2008), 1817-1830. Zbl 1180.35202, MR 2442084, 10.1016/j.jfa.2008.06.032; reference:[14] Kobayashi, T., Kubo, T.: Weighted $L^{p}$-$L^{q}$ estimates of the Stokes semigroup in some unbounded domains.Tsukuba J. Math. 37 (2013), 179-205. Zbl 1282.35103, MR 3161575, 10.21099/tkbjm/1389972027; reference:[15] Lang, J., Méndez, O.: Potential techniques and regularity of boundary value problems in exterior non-smooth domains. Regularity in exterior domains.Potential Anal. 24 (2006), 385-406. Zbl 1220.35120, MR 2224756, 10.1007/s11118-006-9008-2; reference:[16] Maekawa, Y., Miura, H.: Remark on the Helmholtz decomposition in domains with noncompact boundary.Math. Ann. 359 (2014), 1077-1095. Zbl 1295.35184, MR 3231025, 10.1007/s00208-014-1033-7; reference:[17] Simader, C. G., Sohr, H., Varnhorn, W.: Necessary and sufficient conditions for the existence of Helmholtz decompositions in general domains.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 60 (2014), 245-262. Zbl 1304.35506, MR 3208796, 10.1007/s11565-013-0193-9
-
20Academic Journal
المؤلفون: Gogatishvili, Amiran, Mustafayev, Rza, Ünver, Tuğçe
مصطلحات موضوعية: keyword:Cesàro and Copson function spaces, keyword:embedding, keyword:iterated Hardy inequalities, msc:26D10, msc:46E30
وصف الملف: application/pdf
Relation: mr:MR3736022; zbl:Zbl 06819576; reference:[1] R. Askey, R. P. Boas, Jr.: Some integrability theorems for power series with positive coefficients.Math. Essays Dedicated to A. J. Macintyre Ohio Univ. Press, Athens (1970), 23-32. Zbl 0212.41401, MR 0277956; reference:[2] Astashkin, S. V.: On the geometric properties of Cesàro spaces.Sb. Math. 203 (2012), 514-533. English. Russian original translation from Mat. Sb. 203 2012 61-80. Zbl 1253.46022, MR 2976287, 10.1070/SM2012v203n04ABEH004232; reference:[3] Astashkin, S. V., Maligranda, L.: Cesàro function spaces fail the fixed point property.Proc. Am. Math. Soc. 136 (2008), 4289-4294. Zbl 1168.46014, MR 2431042, 10.1090/S0002-9939-08-09599-3; reference:[4] Astashkin, S. V., Maligranda, L.: Structure of Cesàro function spaces.Indag. Math., New Ser. 20 (2009), 329-379. Zbl 1200.46027, MR 2639977, 10.1016/S0019-3577(10)00002-9; reference:[5] Astashkin, S. V., Maligranda, L.: Rademacher functions in Cesàro type spaces.Stud. Math. 198 (2010), 235-247. Zbl 1202.46031, MR 2650988, 10.4064/sm198-3-3; reference:[6] Astashkin, S. V., Maligranda, L.: Geometry of Cesàro function spaces.Funct. Anal. Appl. 45 (2011), 64-68. English. Russian original translation from Funkts. Anal. Prilozh. 45 2011 79-83. Zbl 1271.46027, MR 2848742, 10.1007/s10688-011-0007-8; reference:[7] Astashkin, S. V., Maligranda, L.: A short proof of some recent results related to Cesàro function spaces.Indag. Math., New Ser. 24 (2013), 589-592. Zbl 1292.46008, MR 3064562, 10.1016/j.indag.2013.03.001; reference:[8] Astashkin, S. V., Maligranda, L.: Interpolation of Cesàro sequence and function spaces.Stud. Math. 215 (2013), 39-69. Zbl 06172508, MR 3071806, 10.4064/sm215-1-4; reference:[9] Astashkin, S. V., Maligranda, L.: Interpolation of Cesàro and Copson spaces.Proc. Int. Symp. on Banach and Function Spaces IV (ISBFS 2012), Kitakyushu 2012 M. Kato et al. Yokohama Publishers, Yokohama (2014), 123-133. Zbl 1338.46034, MR 3289767; reference:[10] Astashkin, S. V., Maligranda, L.: Structure of Cesàro function spaces: a survey.Function Spaces X H. Hudzik et al. Proc. Int. Conf., Poznań 2012, Polish Academy of Sciences, Institute of Mathematics, Warszawa; Banach Center Publications 102 (2014), 13-40. Zbl 1327.46028, MR 3330604, 10.4064/bc102-0-1; reference:[11] Belinskii, E. S., Liflyand, E. R., Trigub, R. M.: The Banach algebra $A^*$ and its properties.J. Fourier Anal. Appl. 3 (1997), 103-129. Zbl 0882.42002, MR 1438893, 10.1007/BF02649131; reference:[12] Bennett, G.: Factorizing the classical inequalities.Mem. Am. Math. Soc. 120 (1996), 130 pages. Zbl 0857.26009, MR 1317938, 10.1090/memo/0576; reference:[13] R. P. Boas, Jr.: Integrability Theorems for Trigonometric Transforms.Ergebnisse der Mathematik und ihrer Grenzgebiete 38, Springer, New York (1967). Zbl 0145.06804, MR 0219973, 10.1007/978-3-642-87108-5; reference:[14] R. P. Boas, Jr.: Some integral inequalities related to Hardy's inequality.J. Anal. Math. 23 (1970), 53-63. Zbl 0206.06803, MR 0274685, 10.1007/BF02795488; reference:[15] Carro, M., Gogatishvili, A., Martín, J., Pick, L.: Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces.J. Oper. Theory 59 (2008), 309-332. Zbl 1150.26001, MR 2411048; reference:[16] Cui, S. Chen,Y., Hudzik, H., Sims, B.: Geometric properties related to fixed point theory in some Banach function lattices.Handbook of Metric Fixed Point Theory W. Kirk et al. Kluwer Academic Publishers, Dordrecht (2001), 339-389. Zbl 1013.46015, MR 1904283, 10.1007/978-94-017-1748-9_12; reference:[17] Cui, Y., Hudzik, H.: Some geometric properties related to fixed point theory in Cesàro spaces.Collect. Math. 50 (1999), 277-288. Zbl 0955.46007, MR 1744077; reference:[18] Cui, Y., Hudzik, H.: Packing constant for Cesaro sequence spaces.Nonlinear Anal., Theory Methods Appl. 47 (2001), 2695-2702. Zbl 1042.46505, MR 1972393, 10.1016/S0362-546X(01)00389-3; reference:[19] Cui, Y., Hudzik, H., Li, Y.: On the García-Falset coefficient in some Banach sequence spaces.Function Spaces. Proc. Int. Conf. (Poznań 1998) H. Hudzik et al. Lect. Notes Pure Appl. Math. 213, Marcel Dekker, New York (2000), 141-148. Zbl 0962.46011, MR 1772119; reference:[20] Cui, Y., Meng, C.-H., Płuciennik, R.: Banach-Saks property and property $(\beta)$ in Cesàro sequence spaces.Southeast Asian Bull. Math. 24 (2000), 201-210. Zbl 0956.46003, MR 1810056, 10.1007/s100120070003; reference:[21] Cui, Y., Płuciennik, R.: Local uniform nonsquareness in Cesàro sequence spaces.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997), 47-58. Zbl 0898.46006, MR 1608225; reference:[22] Evans, W. D., Gogatishvili, A., Opic, B.: The reverse Hardy inequality with measures.Math. Inequal. Appl. 11 (2008), 43-74. Zbl 1136.26004, MR 2376257, 10.7153/mia-11-03; reference:[23] Gilbert, J. E.: Interpolation between weighted $L^{p}$-spaces.Ark. Mat. 10 (1972), 235-249. Zbl 0264.46027, MR 0324393, 10.1007/BF02384812; reference:[24] Gogatishvili, A., Mustafayev, R. Ch.: Iterated Hardy-type inequalities involving suprema.Math. Inequal. Appl. 20 (2017), 901-927. MR 3711402; reference:[25] Gogatishvili, A., Mustafayev, R. Ch.: Weighted iterated Hardy-type inequalities.Math. Inequal. Appl. 20 (2017), 683-728. MR 3653914, dx.doi.org/10.7153/mia-20-45; reference:[26] Gogatishvili, A., Mustafayev, R. Ch., Persson, L.-E.: Some new iterated Hardy-type inequalities.J. Funct. Spaces Appl. 2012 (2012), Article ID 734194, 30 pages. Zbl 1260.26023, MR 3000818, 10.1155/2012/734194; reference:[27] Gogatishvili, A., Opic, B., Pick, L.: Weighted inequalities for Hardy-type operators involving suprema.Collect. Math. 57 (2006), 227-255. Zbl 1116.47041, MR 2264321; reference:[28] Gogatishvili, A., Persson, L.-E., Stepanov, V. D., Wall, P.: Some scales of equivalent conditions to characterize the Stieltjes inequality: the case $q< p$.Math. Nachr. 287 (2014), 242-253. Zbl 1298.26052, MR 3163577, 10.1002/mana.201200118; reference:[29] Grosse-Erdmann, K.-G.: The Blocking Technique, Weighted Mean Operators and Hardy's Inequality.Lecture Notes in Mathematics 1679, Springer, Berlin (1998). Zbl 0888.26014, MR 1611898, 10.1007/BFb0093486; reference:[30] Hassard, B. D., Hussein, D. A.: On Cesàro function spaces.Tamkang J. Math. 4 (1973), 19-25. Zbl 0284.46023, MR 0333700; reference:[31] Jagers, A. A.: A note on Cesàro sequence spaces.Nieuw Arch. Wiskd., III. Ser. 22 (1974), 113-124. Zbl 0286.46017, MR 0348444; reference:[32] Johnson, R.: Lipschitz spaces, Littlewood-Paley spaces, and convoluteurs.Proc. Lond. Math. Soc., III. Ser. 29 (1974), 127-141. Zbl 0295.46051, MR 0355578, 10.1112/plms/s3-29.1.127; reference:[33] Kamińska, A., Kubiak, D.: On the dual of Cesàro function space.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2760-2773. Zbl 1245.46024, MR 2878472, 10.1016/j.na.2011.11.019; reference:[34] Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequality. About Its History and Some Related Results.Vydavatelský Servis, Plzeň (2007). Zbl 1213.42001, MR 2351524; reference:[35] Kufner, A., Persson, L.-E.: Weighted Inequalities of Hardy Type.World Scientific Publishing, Singapore (2003). Zbl 1065.26018, MR 1982932, 10.1142/5129; reference:[36] Mustafayev, R., Ünver, T.: Reverse Hardy-type inequalities for supremal operators with measures.Math. Inequal. Appl. 18 (2015), 1295-1311. Zbl 1331.26032, MR 3414598, 10.7153/mia-18-101; reference:[37] Opic, B., Kufner, A.: Hardy-Type Inequalities.Pitman Research Notes in Mathematics 219, Longman Scientific & Technical, New York (1990). Zbl 0698.26007, MR 1069756; reference:[38] : Programma van Jaarlijkse Prijsvragen (Annual Problem Section).Nieuw Arch. Wiskd. 16 (1968), 47-51.; reference:[39] Shiue, J.-S.: A note on Cesàro function space.Tamkang J. Math. 1 (1970), 91-95. Zbl 0215.19601, MR 0276751; reference:[40] Sy, P. W., Zhang, W. Y., Lee, P. Y.: The dual of Cesàro function spaces.Glas. Mat., III Ser. 22(42) (1987), 103-112. Zbl 0647.46033, MR 0940098