يعرض 1 - 11 نتائج من 11 نتيجة بحث عن '"msc:46E22"', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Abkar, Ali

    وصف الملف: application/pdf

    Relation: mr:MR4151701; zbl:07250685; reference:[1] Abkar, A.: Norm approximation by polynomials in some weighted Bergman spaces.J. Funct. Anal. 191 (2002), 224-240. Zbl 1059.30049, MR 1911185, 10.1006/jfan.2001.3851; reference:[2] Abkar, A.: Application of a Riesz-type formula to weighted Bergman spaces.Proc. Am. Math. Soc. 131 (2003), 155-164. Zbl 1037.31002, MR 1929035, 10.1090/S0002-9939-02-06491-2; reference:[3] Abkar, A.: On the commutant of certain operators in the Bergman space.Bull. Malays. Math. Sci. Soc. (2) 35 (2012), 499-502. Zbl 1238.47023, MR 2912884; reference:[4] Chattopadhyay, A., Das, A. B. Krishna, Sarkar, J., Sarkar, S.: Wandering subspaces of the Bergman space and the Dirichlet space over $\mathbb{D}^n$.Integral Equations Oper. Theory 79 (2014), 567-577. Zbl 1328.47010, MR 3231245, 10.1007/s00020-014-2128-y; reference:[5] Chung, Y.-B., Na, H.-G.: Toeplitz operators on Hardy and Bergman spaces over bounded domains in the plane.Honam Math. J. 39 (2017), 143-159. Zbl 06798549, MR 3700286, 10.5831/HMJ.2017.39.2.143; reference:[6] Dan, H., Huang, H.: Multiplication operators defined by a class of polynomials on $L^2_a(\mathbb{D}^2)$.Integral Equations Oper. Theory 80 (2014), 581-601. Zbl 1302.47061, MR 3279517, 10.1007/s00020-014-2176-3; reference:[7] Ding, X., Sang, Y.: The pluriharmonic Hardy space and Toeplitz operators.Result. Math. 72 (2017), 1473-1497. Zbl 06814121, MR 3721626, 10.1007/s00025-017-0728-y; reference:[8] Douglas, R. G.: Banach Algebra Techniques in Operator Theory.Pure and Applied Mathematics 49, Academic Press, New York (1972). Zbl 0247.47001, MR 0361893; reference:[9] Duren, P., Schuster, A.: Bergman Spaces.Mathematical Surveys and Monographs 100, American Mathematical Society, Providence (2004). Zbl 1059.30001, MR 2033762, 10.1090/surv/100; reference:[10] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces.Graduate Texts in Mathematics 199, Springer, New York (2000). Zbl 0955.32003, MR 1758653, 10.1007/978-1-4612-0497-8; reference:[11] Shi, Y., Lu, Y.: Reducing subspaces for Toeplitz operators on the polydisk.Bull. Korean Math. Soc. 50 (2013), 687-696. Zbl 1280.47039, MR 3137713, 10.4134/BKMS.2013.50.2.687; reference:[12] Zhu, K.: Reducing subspaces for a class of multiplication operators.J. Lond. Math. Soc., II. Ser. 62 (2000), 553-568. Zbl 1158.47309, MR 1783644, 10.1112/S0024610700001198; reference:[13] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball.Graduate Texts in Mathematics 226, Springer, New York (2005). Zbl 1067.32005, MR 2115155, 10.1007/0-387-27539-8

  2. 2
    Academic Journal

    المؤلفون: Casseli, Irène

    وصف الملف: application/pdf

    Relation: mr:MR4111848; zbl:07217140; reference:[1] Abreu, L. D.: On the structure of Gabor and super Gabor spaces.Monatsh. Math. 161 (2010), 237-253. Zbl 1206.46029, MR 2726212, 10.1007/s00605-009-0177-0; reference:[2] Aleman, A., Pott, S., Reguera, M. C.: Sarason conjecture on the Bergman space.Int. Math. Res. Not. 2017 (2017), 4320-4349. Zbl 1405.30055, MR 3674172, 10.1093/imrn/rnw134; reference:[3] Askour, N., Intissar, A., Mouayn, Z.: Espaces de Bargmann généralisés et formules explicites pour leurs noyaux reproduisants.C. R. Acad. Sci., Paris, Sér. I, Math. 325 (1997), 707-712 French. Zbl 0892.32018, MR 1483703, 10.1016/S0764-4442(97)80045-6; reference:[4] Balk, M. B.: Polyanalytic Functions.Mathematical Research 63. Akademie Verlag, Berlin (1991). Zbl 0764.30038, MR 1184141; reference:[5] Bommier-Hato, H., Youssfi, E. H., Zhu, K.: Sarason's Toeplitz product problem for a class of Fock spaces.Bull. Sci. Math. 141 (2017), 408-442. Zbl 1377.47010, MR 3667593, 10.1016/j.bulsci.2017.03.002; reference:[6] Cho, H. R., Park, J.-D., Zhu, K.: Products of Toeplitz operators on the Fock space.Proc. Am. Math. Soc. 142 (2014), 2483-2489. Zbl 1303.47035, MR 3195769, 10.1090/S0002-9939-2014-12110-1; reference:[7] Haimi, A., Hedenmalm, H.: The polyanalytic Ginibre ensembles.J. Stat. Phys. 153 (2013), 10-47. Zbl 1278.82068, MR 3100813, 10.1007/s10955-013-0813-x; reference:[8] Nazarov, F.: A counterexample to Sarason's conjecture.Available at http://users.math.msu.edu/users/fedja/prepr.html.; reference:[9] Sarason, D.: Exposed points in $H^1$. I.The Gohberg Anniversary Collection, Vol. II Operator Theory: Advances and Applications 41. Birkhäuser, Basel (1989), 485-496. Zbl 0678.46019, MR 1038352; reference:[10] Sarason, D.: Products of Toeplitz operators.Linear and Complex Analysis. Problem Book 3, Part I V. P. Havin, N. K. Nikolskii Lecture Notes in Mathematics 1573. Springer, Berlin (1994), 318-319. Zbl 0893.30036, MR 1334345, 10.1007/BFb0100208

  3. 3
    Academic Journal

    المؤلفون: Ghobber, Saifallah

    وصف الملف: application/pdf

    Relation: mr:MR3336037; zbl:Zbl 06433733; reference:[1] Bonami, A., Demange, B., Jaming, P.: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms.Rev. Mat. Iberoam. 19 (2003), 23-55. MR 1993414, 10.4171/RMI/337; reference:[2] Jeu, M. F. E. de: The Dunkl transform.Invent. Math. 113 (1993), 147-162. Zbl 0789.33007, MR 1223227, 10.1007/BF01244305; reference:[3] Demange, B.: Uncertainty principles for the ambiguity function.J. Lond. Math. Soc., II. Ser. 72 (2005), 717-730. Zbl 1090.42004, MR 2190333, 10.1112/S0024610705006903; reference:[4] Donoho, D. L., Stark, P. B.: Uncertainty principles and signal recovery.SIAM J. Appl. Math. 49 (1989), 906-931. Zbl 0689.42001, MR 0997928, 10.1137/0149053; reference:[5] Dunkl, C. F.: Integral kernels with reflection group invariance.Can. J. Math. 43 (1991), 1213-1227. Zbl 0827.33010, MR 1145585, 10.4153/CJM-1991-069-8; reference:[6] Dunkl, C. F.: Differential-difference operators associated to reflection groups.Trans. Am. Math. Soc. 311 (1989), 16-183. Zbl 0652.33004, MR 0951883, 10.1090/S0002-9947-1989-0951883-8; reference:[7] Faris, W. G.: Inequalities and uncertainty principles.J. Math. Phys. 19 (1978), 461-466. MR 0484134, 10.1063/1.523667; reference:[8] Ghobber, S., Jaming, P.: Uncertainty principles for integral orperators.Stud. Math. 220 (2014), 197-220. MR 3173045, 10.4064/sm220-3-1; reference:[9] Gröchenig, K.: Uncertainty principles for time-frequency representations.Advances in Gabor Analysis H. G. Feichtinger et al. Applied and Numerical Harmonic Analysis Birkhäuser, Basel (2003), 11-30. Zbl 1039.42004, MR 1955930; reference:[10] Havin, V., Jöricke, B.: The Uncertainty Principle in Harmonic Analysis.Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. 28 Springer, Berlin (1994). MR 1303780; reference:[11] Hogan, J. A., Lakey, J. D.: Time-Frequency and Time-Scale Methods: Adaptive Decompositions, Uncertainty Principles, and Sampling.Applied and Numerical Harmonic Analysis Birkhäuser, Boston (2005). Zbl 1079.42027, MR 2107799; reference:[12] Lapointe, L., Vinet, L.: Exact operator solution of the Calogero-Sutherland model.Commun. Math. Phys. 178 (1996), 425-452. Zbl 0859.35103, MR 1389912, 10.1007/BF02099456; reference:[13] Mejjaoli, H.: Practical inversion formulas for the Dunkl-Gabor transform on $\mathbb R^d$.Integral Transforms Spec. Funct. 23 (2012), 875-890. MR 2998902, 10.1080/10652469.2011.647015; reference:[14] Mejjaoli, H., Sraieb, N.: Uncertainty principles for the continuous Dunkl Gabor transform and the Dunkl continuous wavelet transform.Mediterr. J. Math. 5 (2008), 443-466. Zbl 1181.26036, MR 2465571, 10.1007/s00009-008-0161-2; reference:[15] Polychronakos, A. P.: Exchange operator formalism for integrable systems of particles.Phys. Rev. Lett. 69 (1992), 703-705. Zbl 0968.37521, MR 1174716, 10.1103/PhysRevLett.69.703; reference:[16] Rösler, M.: An uncertainty principle for the Dunkl transform.Bull. Aust. Math. Soc. 59 (1999), 353-360. Zbl 0939.33012, MR 1698045, 10.1017/S0004972700033025; reference:[17] Rösler, M., Voit, M.: Markov processes related with Dunkl operators.Adv. Appl. Math. 21 (1998), 575-643. Zbl 0919.60072, MR 1652182, 10.1006/aama.1998.0609; reference:[18] Shimeno, N.: A note on the uncertainty principle for the Dunkl transform.J. Math. Sci., Tokyo 8 (2001), 33-42. Zbl 0976.33015, MR 1818904; reference:[19] Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform.Doc. Math., J. DMV (electronic) 5 (2000), 201-226. Zbl 0947.42024, MR 1758876

  4. 4
    Academic Journal

    المؤلفون: Cahen, Benjamin

    وصف الملف: application/pdf

    Relation: mr:MR3233725; zbl:Zbl 1304.22005; reference:[1] Ali, S.T., Englis, M.: Quantization methods: a guide for physicists and analysts.Rev. Math. Phys., 17, 4, 2005, 391-490, Zbl 1075.81038, MR 2151954, 10.1142/S0129055X05002376; reference:[2] Arazy, J., Upmeier, H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmetric domains. Function spaces, interpolation theory and related topics (Lund, 2000) 151--211.2002, De Gruyter, Berlin, MR 1943284; reference:[3] Arazy, J., Upmeier, H.: Weyl Calculus for Complex and Real Symmetric Domains, Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001).Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13, 3--4, 2002, 165-181, MR 1984098; reference:[4] Berceanu, S.: A holomorphic representation of the Jacobi algebra.Rev. Math. Phys., 18, 2006, 163-199, Zbl 1099.81036, MR 2228923, 10.1142/S0129055X06002619; reference:[5] Berceanu, S., Gheorghe, A.: On the geometry of Siegel-Jacobi domains.Int. J. Geom. Methods Mod. Phys., 8, 2011, 1783-1798, Zbl 1250.22010, MR 2876095; reference:[6] Berezin, F.A.: Quantization.Math. USSR Izv., 8, 5, 1974, 1109-1165, Zbl 0312.53049; reference:[7] Berezin, F.A.: Quantization in complex symmetric domains.Math. USSR Izv., 9, 2, 1975, 341-379, 10.1070/IM1975v009n02ABEH001480; reference:[8] Berndt, R., Böcherer, S.: Jacobi forms and discrete series representations of the Jacobi group.Math. Z., 204, 1990, 13-44, Zbl 0695.10024, MR 1048065, 10.1007/BF02570858; reference:[9] Berndt, R., Schmidt, R.: Elements of the representation theory of the Jacobi group, Progress in Mathematics 163.1998, Birkhäuser Verlag, Basel, MR 1634977; reference:[10] Cahen, B.: Berezin quantization for discrete series.Beiträge Algebra Geom., 51, 2010, 301-311, MR 2682458; reference:[11] Cahen, B.: Stratonovich-Weyl correspondence for compact semisimple Lie groups.Rend. Circ. Mat. Palermo, 59, 2010, 331-354, Zbl 1218.22008, MR 2745515, 10.1007/s12215-010-0026-y; reference:[12] Cahen, B.: Stratonovich-Weyl correspondence for discrete series representations.Arch. Math. (Brno), 47, 2011, 41-58, Zbl 1240.22011, MR 2813546; reference:[13] Cahen, B.: Berezin Quantization and Holomorphic Representations.Rend. Sem. Mat. Univ. Padova, 129, 2013, 277-297, Zbl 1272.22007, MR 3090642, 10.4171/RSMUP/129-16; reference:[14] Cahen, B.: Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 52, 2013, 35-48, Zbl 1296.22007, MR 3202747; reference:[15] Cariñena, J.F., Gracia-Bondìa, J.M., Vàrilly, J.C.: Relativistic quantum kinematics in the Moyal representation.J. Phys. A: Math. Gen., 23, 1990, 901-933, Zbl 0706.60108, MR 1048769, 10.1088/0305-4470/23/6/015; reference:[16] Davidson, M., Òlafsson, G., Zhang, G.: Laplace and Segal-Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials.J. Funct. Anal., 204, 2003, 157-195, Zbl 1035.32014, MR 2004748, 10.1016/S0022-1236(03)00101-0; reference:[17] Figueroa, H., Gracia-Bondìa, J.M., Vàrilly, J.C.: Moyal quantization with compact symmetry groups and noncommutative analysis.J. Math. Phys., 31, 1990, 2664-2671, MR 1075750, 10.1063/1.528967; reference:[18] Folland, B.: Harmonic Analysis in Phase Space.1989, Princeton Univ. Press, Zbl 0682.43001, MR 0983366; reference:[19] Gracia-Bondìa, J.M.: Generalized Moyal quantization on homogeneous symplectic spaces, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), 93--114, Contemp. Math., 134.1992, Amer. Math. Soc., Providence, RI, MR 1187280; reference:[20] Gracia-Bondìa, J.M., V¸rilly, J.C.: The Moyal Representation for Spin.Ann. Physics, 190, 1989, 107-148, MR 0994048; reference:[21] Kirillov, A.A.: Lectures on the Orbit Method, Graduate Studies in Mathematics, Vol. 64.2004, American Mathematical Society, Providence, Rhode Island, MR 2069175, 10.1090/gsm/064; reference:[22] Neeb, K-H.: Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, Vol. 28.2000, Walter de Gruyter, Berlin, New-York, MR 1740617; reference:[23] Nomura, T.: Berezin Transforms and Group representations.J. Lie Theory, 8, 1998, 433-440, Zbl 0919.43008, MR 1650386; reference:[24] Ørsted, B., Zhang, G.: Weyl Quantization and Tensor Products of Fock and Bergman Spaces.Indiana Univ. Math. J., 43, 2, 1994, 551-583, Zbl 0805.46053, MR 1291529, 10.1512/iumj.1994.43.43023; reference:[25] Peetre, J., Zhang, G.: A weighted Plancherel formula III. The case of a hyperbolic matrix ball.Collect. Math., 43, 1992, 273-301, MR 1252736; reference:[26] Satake, I.: Algebraic structures of symmetric domains.1971, Iwanami Sho-ten, Tokyo and Princeton Univ. Press, Princeton, NJ, MR 0591460; reference:[27] Stratonovich, R.L.: On distributions in representation space.Soviet Physics. JETP, 4, 1957, 891-898, MR 0088173; reference:[28] Unterberger, A., Upmeier, H.: Berezin transform and invariant differential operators.Commun. Math. Phys., 164, 3, 1994, 563-597, Zbl 0843.32019, MR 1291245, 10.1007/BF02101491; reference:[29] Zhang, G.: Berezin transform on compact Hermitian symmetric spaces.Manuscripta Math., 97, 1998, 371-388, Zbl 0920.22008, MR 1654800, 10.1007/s002290050109

  5. 5
    Academic Journal

    المؤلفون: Sontz, Stephen Bruce

    وصف الملف: application/pdf

    Relation: mr:MR3159286; zbl:Zbl 06296534; reference:[1] Aronszajn, N.: Theory of reproducing kernels.Trans. Am. Math. Soc., 108, 1950, 337-404. Zbl 0037.20701, MR 0051437, 10.1090/S0002-9947-1950-0051437-7; reference:[2] Bargmann, V.: On a Hilbert space of analytic functions and its associated integral transform. I.Commun. Pure Appl. Math., 14, 1961, 187-214. MR 0157250, 10.1002/cpa.3160140303; reference:[3] Baz, M. El, Fresneda, R., Gazeau, J-P., Hassouni, Y.: Coherent state quantization of paragrassmann algebras.J. Phys. A: Math. Theor., 43, 2010, 385202 (15pp). Also see the Erratum for this article in arXiv:1004.4706v3. Zbl 1198.81124, MR 2718322; reference:[4] Gazeau, J-P.: Coherent States in Quantum Physics.2009, Wiley-VCH.; reference:[5] Kassel, C.: Quantum Groups.1995, Springer. Zbl 0808.17003, MR 1321145; reference:[6] Khalkhali, M.: Basic Noncommutative Geometry.2009, European Math. Soc. Zbl 1210.58006, MR 2567651; reference:[7] Reed, M., Simon, B.: Mathematical Methods of Modern Physics, Vol. I, Functional Analysis.1972, Academic Press.; reference:[8] Saitoh, S.: Theory of reproducing kernels and its applications, Pitman Research Notes, Vol. 189.1988, Longman Scientific & Technical, Essex. MR 0983117; reference:[9] Sontz, S.B.: Paragrassmann Algebras as Quantum Spaces, Part I: Reproducing Kernels, Geometric Methods in Physics.XXXI Workshop 2012. Trends in Mathematics, 2013, 47-63, arXiv:1204.1033v3. MR 3159286; reference:[10] Sontz, S.B.: Paragrassmann Algebras as Quantum Spaces, Part II: Toeplitz Operators.Journal of Operator Theory. To appear. arXiv:1205.5493.

  6. 6
    Academic Journal

    المؤلفون: Cahen, Benjamin

    وصف الملف: application/pdf

    Relation: mr:MR2813546; zbl:Zbl 1240.22011; reference:[1] Ali, S. T., Englis, M.: Quantization methods: a guide for physicists and analysts.Rev. Math. Phys. 17 (4) (2005), 391–490. Zbl 1075.81038, MR 2151954, 10.1142/S0129055X05002376; reference:[2] Arazy, J., Upmeier, H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains.Function spaces, interpolation theory and related topics, Lund, de Gruyter, Berlin, 2002, pp. 151–211. MR 1943284; reference:[3] Arazy, J., Upmeier, H.: Weyl Calculus for Complex and Real Symmetric Domains.Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13 (3–4), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2002, pp. 165–181. Zbl 1150.43302, MR 1984098; reference:[4] Arnal, D., Cahen, M., Gutt, S.: Exponential and holomorphic discrete series.Bull. Soc. Math. Belg. Sér. B 41 (1989), 207–227. Zbl 0697.22010, MR 1022747; reference:[5] Arratia, O., Del Olmo, M. A.: Moyal quantization on the cylinder.Rep. Math. Phys. 40 (1997), 149–157. Zbl 0904.58022, MR 1614685, 10.1016/S0034-4877(97)85911-3; reference:[6] Ballesteros, A., Gadella, M., Del Olmo, M. A.: Moyal quantization of $2+1$–dimensional Galilean systems.J. Math. Phys. 33 (1992), 3379–3386. Zbl 0788.22025, MR 1182909, 10.1063/1.529939; reference:[7] Berezin, F. A.: Quantization.Math. USSR–Izv. 8 (1974), 1109–1165, Russian. Zbl 0312.53049; reference:[8] Berezin, F. A.: Quantization in complex symmetric domains.Math. USSR–Izv. 9 (1975), 341–379.; reference:[9] Brif, C., Mann, A.: Phase–space formulation of quantum mechanics and quantum–state reconstruction for physical systems with Lie–group symmetries.Phys. Rev. A 59 (2) (1999), 971–987. MR 1679730, 10.1103/PhysRevA.59.971; reference:[10] Cahen, B.: Contraction de $SU(1,1)$ vers le groupe de Heisenberg.Mathematical works, Part XV, Luxembourg: Université du Luxembourg, Séminaire de Mathématique, 2004, pp. 19–43. Zbl 1074.22005, MR 2143420; reference:[11] Cahen, B.: Weyl quantization for semidirect products.Differential Geom. Appl. 25 (2007), 177–190. Zbl 1117.81087, MR 2311733, 10.1016/j.difgeo.2006.08.005; reference:[12] Cahen, B.: Berezin quantization on generalized flag manifolds.Math. Scand. 105 (2009), 66–84. Zbl 1183.22006, MR 2549798; reference:[13] Cahen, B.: Contraction of discrete series via Berezin quantization.J. Lie Theory 19 (2009), 291–310. Zbl 1185.22007, MR 2572131; reference:[14] Cahen, B.: Berezin quantization for discrete series.Beiträge Algebra Geom. 51 (2010), 301–311. MR 2682458; reference:[15] Cahen, B.: Stratonovich–Weyl correspondence for compact semisimple Lie groups.Rend. Circ. Mat. Palermo (2) 59 (2010), 331–354. Zbl 1218.22008, MR 2745515, 10.1007/s12215-010-0026-y; reference:[16] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds IV.Lett. Math. Phys. 34 (1995), 159–168. MR 1335583, 10.1007/BF00739094; reference:[17] Cariñena, J. F., Gracia–Bondìa, J. M., Vàrilly, J. C.: Relativistic quantum kinematics in the Moyal representation.J. Phys. A 23 (1990), 901–933. 10.1088/0305-4470/23/6/015; reference:[18] Davidson, M., Òlafsson, G., Zhang, G.: Laplace and Segal–Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials.J. Funct. Anal. 204 (2003), 157–195. Zbl 1035.32014, MR 2004748, 10.1016/S0022-1236(03)00101-0; reference:[19] Figueroa, H., Gracia–Bondìa, J. M., Vàrilly, J. C.: Moyal quantization with compact symmetry groups and noncommutative analysis.J. Math. Phys. 31 (1990), 2664–2671. MR 1075750, 10.1063/1.528967; reference:[20] Folland, B.: Harmonic Analysis in Phase Space.Princeton Univ. Press, 1989. Zbl 0682.43001, MR 0983366; reference:[21] Gracia–Bondìa, J. M.: Generalized Moyal quantization on homogeneous symplectic spaces.Deformation theory and quantum groups with applications to mathematical physics, vol. 134, Amherst, MA, 1990, Contemp. Math., 1992, pp. 93–114. MR 1187280; reference:[22] Gracia–Bondìa, J. M., Vàrilly, J. C.: The Moyal representation for spin.Ann. Physics 190 (1989), 107–148. MR 0994048, 10.1016/0003-4916(89)90262-5; reference:[23] Helgason, S.: Differential geometry, Lie groups and symmetric spaces.Grad. Stud. Math. 34 (2001). Zbl 0993.53002, MR 1834454; reference:[24] Herb, R. A., Wolf, J. A.: Wave packets for the relative discrete series I. The holomorphic case.J. Funct. Anal. 73 (1987), 1–37. Zbl 0625.22010, MR 0890655, 10.1016/0022-1236(87)90057-7; reference:[25] Hua, L. K.: Harmonic analysis of functions of several complex variables in the classical domains.American Mathematical Society, Providence, R.I., 1963. MR 0171936; reference:[26] Kirillov, A. A.: Lectures on the orbit method.Grad. Stud. Math. 64 (2004). Zbl 1229.22003, MR 2069175; reference:[27] Knapp, A. W.: Representation theory of semi–simple groups. An overview based on examples.Princeton Math. Ser. 36 (1986).; reference:[28] Moore, C. C.: Compactifications of symmetric spaces II: The Cartan domains.Amer. J. Math. 86 (2) (1964), 358–378. MR 0161943, 10.2307/2373170; reference:[29] Neeb, K.–H.: Holomorphy and Convexity in Lie Theory.de Gruyter Exp. Math. 28 (2000), xxii+778 pp. MR 1740617; reference:[30] Nomura, T.: Berezin transforms and group representations.J. Lie Theory 8 (1998), 433–440. Zbl 0919.43008, MR 1650386; reference:[31] Oliveira, M. P. De: Some formulas for the canonical Kernel function.Geom. Dedicata 86 (2001), 227–247. Zbl 0996.32011, MR 1856428, 10.1023/A:1011915708964; reference:[32] Ørsted, B., Zhang, G.: Weyl quantization and tensor products of Fock and Bergman spaces.Indiana Univ. Math. J. 43 (2) (1994), 551–583. MR 1291529, 10.1512/iumj.1994.43.43023; reference:[33] Peetre, J., Zhang, G.: A weighted Plancherel formula III. The case of a hyperbolic matrix ball.Collect. Math. 43 (1992), 273–301. MR 1252736; reference:[34] Satake, I.: Algebraic structures of symmetric domains.Iwanami Sho–ten, Tokyo and Princeton Univ. Press, 1971. MR 0591460; reference:[35] Stratonovich, R. L.: On distributions in representation space.Soviet Physics JETP 4 (1957), 891–898. MR 0088173; reference:[36] Unterberger, A., Upmeier, H.: Berezin transform and invariant differential operators.Comm. Math. Phys. 164 (3) (1994), 563–597. Zbl 0843.32019, MR 1291245, 10.1007/BF02101491; reference:[37] Varadarajan, V. S.: Lie groups, Lie algebras and their representations.Grad. Texts in Math. 102 (1984), xiii+430 pp. Zbl 0955.22500, MR 0746308; reference:[38] Wildberger, N. J.: On the Fourier transform of a compact semisimple Lie group.J. Austral. Math. Soc. Ser. A 56 (1994), 64–116. Zbl 0842.22015, MR 1250994, 10.1017/S1446788700034741; reference:[39] Zhang, G.: Berezin transform on compact Hermitian symmetric spaces.Manuscripta Math. 97 (1998), 371–388. Zbl 0920.22008, MR 1654800, 10.1007/s002290050109

  7. 7
    Academic Journal

    المؤلفون: Abkar, A., Jafarzadeh, B.

    وصف الملف: application/pdf

    Relation: mr:MR2657960; zbl:Zbl 1220.47033; reference:[1] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces.Graduate Texts in Mathematics, Vol. 199, Springer-Verlag, New York (2000). Zbl 0955.32003, MR 1758653, 10.1007/978-1-4612-0497-8_1; reference:[2] Sarason, D.: Sub-Hardy Hilbert Spaces in the Unit Disk.John Wiley and Sons Inc., New York (1994). MR 1289670; reference:[3] Saitoh, S.: Thoery of Reproducing Kernels and its Applications.Pitman Research Notes in Mathematics, Vol. 189, New York (1988). MR 0983117; reference:[4] Sultanic, S.: Sub-Bergman Hilbert spaces.J. Math. Anal. Appl. 324 (2006), 639-649. Zbl 1115.46021, MR 2262497, 10.1016/j.jmaa.2005.12.035; reference:[5] Zhu, K.: Sub-Bergman Hilbert spaces in the unit disk.Indiana Univ. Math. J. 45 (1996), 165-176. MR 1406688; reference:[6] Zhu, K.: Sub-Bergman Hilbert spaces in the unit disk II.J. Func. Anal. 202 (2003), 327-341. Zbl 1039.47019, MR 1990528, 10.1016/S0022-1236(02)00086-1; reference:[7] Zhu, K.: Operator Theory in Function Spaces.Dekker, New York (1990). Zbl 0706.47019, MR 1074007

  8. 8
  9. 9
    Academic Journal

    المؤلفون: Yousefi, B., Tabatabaie, B.

    وصف الملف: application/pdf

    Relation: mr:MR2153100; zbl:Zbl 1081.47041; reference:[1] G. T. Adams, P. J. McGuire and V. I. Paulsen: Analytic reproducing kernels and multiplication operators.Illinois J. Math. 36 (1992), 404–419. MR 1161974, 10.1215/ijm/1255987417; reference:[2] N. Aronszajn: Theory of reproducing kernels.Trans. Amer. Math. Soc. 68 (1950), 337–404. Zbl 0037.20701, MR 0051437, 10.1090/S0002-9947-1950-0051437-7; reference:[3] N. Bari: Biorthogonal systems and bases in Hilbert space.Matematika 4 (1951), 69–107 (in Russian). MR 0050171; reference:[4] J. B. Conway: The Theory of Subnormal Operators. Math. Surveys Monographs 36.Amer. Math. Soc., , 1991. MR 1112128; reference:[5] R. G. Douglas: Banach Algebra Techniques in Operator Theory.Academic Press, New York, 1972. Zbl 0247.47001, MR 0361893; reference:[6] J. B. Garnet: Bounded Analytic Functions.Academic Press, New York, 1981. MR 0628971; reference:[7] I. Schur: Bemerkungen zur Theorie der beschrönkten Biline arformen mit undendlich vielen Veränderlichen.Journal für die Reine und Angewandte Mathematik 140 (1911), 1–28.; reference:[8] K. Seddighi: Operators Acting on Hilbert Spaces of Analytic Functions. A series of lectures.Dept. of Math., Univ. of Calgary, , 1991.; reference:[9] K. Seddighi and S. M. Vaezpour: Commutants of certain multiplication operators on Hilbert spaces of analytic functions.Studia Mathematica 133 (1999), 121–130. MR 1686692, 10.4064/sm-133-2-121-130; reference:[10] H. S. Shapiro and A. L. Shields: On some interpolation problems for analytic functions.Amer. J. Math. 83 (1961), 513–532. MR 0133446, 10.2307/2372892; reference:[11] B. Yousefi: Interpolating sequence on certain Banach spaces of analytic functions.Bull. Austral. Math. Soc. 65 (2002), 177–182. Zbl 1045.47024, MR 1898531, 10.1017/S0004972700020219; reference:[12] K. Zhu: Operator Theory in Function Spaces.Marcel Dekker, New York, 1990. Zbl 0706.47019, MR 1074007; reference:[13] K. Zhu: A class of operators associated with reproducing kernels.J. Operator Theory 38 (1997), 19–24. Zbl 0892.47030, MR 1462013

  10. 10
    Academic Journal

    المؤلفون: Kůrková, Věra

    وصف الملف: application/pdf

    Relation: zbl:Zbl 1265.68146; reference:[1] Aronszajn, N.: Theory of reproducing kernels.Trans. Amer. Math. Soc. 68 (1950), 33–404. Zbl 0037.20701, MR 0051437, 10.1090/S0002-9947-1950-0051437-7; reference:[2] Berg, C., Christensen, J. P. R., Ressel, P.: Harmonic Analysis on Semigroups.Springer-Verlag, New York 1984. Zbl 0619.43001, MR 0747302; reference:[3] Bertero, M.: Linear inverse and ill-posed problems.Advances in Electronics and Electron Physics 75 (1989), 1–120.; reference:[4] Bjorck, A.: Numerical methods for least squares problem.SIAM 1996. MR 1386889; reference:[5] Cucker, F., Smale, S.: On the mathematical foundations of learning.Bull. Amer. Math. Soc. 39 (2001), 1–49. MR 1864085, 10.1090/S0273-0979-01-00923-5; reference:[6] Friedman, A.: Modern Analysis.Dover, New York 1982. Zbl 0557.46001, MR 0663003; reference:[7] Girosi, F.: An equivalence between sparse approximation and support vector machines.Neural Computation 10 (1998), 1455–1480 (AI Memo No 1606, MIT). 10.1162/089976698300017269; reference:[8] Groetch, C. W.: Generalized Inverses of Linear Operators.Dekker, New York 1977.; reference:[9] Kůrková, V.: High-dimensional approximation by neural networks.Chapter 4 in Advances in Learning Theory: Methods, Models and Applications (J. Stuykens et al., ed.) (2003), 69–88. IOS Press, Amsterdam.; reference:[10] Kůrková, V.: Learning from data as an inverse problem.In Proc. of COMPSTAT 2004 (J. Antoch, ed.), Physica-Verlag, Heidelberg, 1377–1384. MR 2173152; reference:[11] Kůrková, V., Sanguineti, M.: Error estimates for approximate optimization by the extended Ritz method.SIAM J. Optim. (to appear). MR 2144176; reference:[12] Kůrková, V., Sanguineti, M.: Learning with generalization capability by kernel methods with bounded complexity.J. Compl. (to appear). MR 2138445; reference:[13] Moore, E. H.: Abstract.Bulletin AMS 26 (1920), 394–395.; reference:[14] Narcowich, F. J., Sivakumar, N., Ward, J. D.: On condition numbers associated with radial-function interpolation.J. Math. Anal. Appl. 186 (1994), 457–485. Zbl 0813.65005, MR 1293005, 10.1006/jmaa.1994.1311; reference:[15] Parzen, E.: An approach to time series analysis.Annals Math. Statistics 32 (1966), 951–989. MR 0143315, 10.1214/aoms/1177704840; reference:[16] Penrose, R.: A generalized inverse for matrices.Proc. Cambridge Philos. Soc. 52 (1955), 406–413. Zbl 0065.24603, MR 0069793; reference:[17] Poggio, T., Girosi, F.: Networks for approximation and learning.Proc. IEEE 78 (1990), 1481–1497.; reference:[18] Poggio, T., Smale, S.: The mathematics of learning: dealing with data.Notices Amer. Math. Soc. 50 (2003), 536–544. Zbl 1083.68100, MR 1968413; reference:[19] Sejnowski, T. J., Rosenberg, C.: Parallel networks that learn to pronounce English text.Complex Systems 1 (1987), 145–168. Zbl 0655.68107; reference:[20] Tichonov, A. N., Arsenin, V. Y.: Solutions of Ill-posed Problems.W. H. Winston, Washington, D. C. 1977.; reference:[21] Wahba, G.: Splines Models for Observational Data.SIAM, Philadelphia 1990. MR 1045442; reference:[22] Werbos, P. J.: Backpropagation: Basics and New Developments.The Handbook of Brain Theory and Neural Networks (M. Arbib, ed.), 134–139. MIT Press, Cambridge 1995.

  11. 11
    Academic Journal

    المؤلفون: Mancera, Carmen H., Paúl, Pedro J.

    وصف الملف: application/pdf

    Relation: mr:MR1844313; zbl:Zbl 0983.47019; reference:[1] P. Alegría: Parametrization and Schur algorithm for the integral representation of Hankel forms in $\mathbb{T}^3$.Collect. Math. 43 (1992), 253–272. MR 1252735; reference:[2] J. Arazy, S. D. Fisher, J. Peetre: Hankel operators on weighted Bergman spaces.Amer. J. Math. 110 (1988), 989–1053. MR 0970119, 10.2307/2374685; reference:[3] S. Axler: Bergman spaces and their operators.Surveys of Some Recent Results in Operator Theory, I, J. B. Conway, B. B. Morrel (eds.), Res. Notes Math. vol. 171, Pitman, Boston, London and Melbourne, 1988. Zbl 0681.47006, MR 0958569; reference:[4] S. Axler, J. B. Conway, G. McDonald: Toeplitz operators on Bergman spaces.Canad. J. Math. 34 (1982), 466–483. MR 0658979, 10.4153/CJM-1982-031-1; reference:[5] J. Barría: The commutative product $V^*_{1}V_{2}=V_{2}V_{1}^* $ for isometries $V_{1}$ and $V_{2}$.Indiana Univ. Math. J. 28 (1979), 581–586. Zbl 0428.47019, MR 0542945; reference:[6] E. L. Basor, I. Gohberg: Toeplitz Operators and Related Topics.Operator Theory: Adv. Appl., vol. 71, Birkhäuser-Verlag, Basel, Berlin and Boston, 1994. MR 1300205; reference:[7] C. A. Berger, L. A. Coburn: Toeplitz operators on the Segal-Bargmann space.Trans. Amer. Math. Soc. 301 (1987), 813–829. MR 0882716, 10.1090/S0002-9947-1987-0882716-4; reference:[8] F. F. Bonsall, S. C. Power: A proof of Hartman’s theorem on compact Hankel operators.Math. Proc. Cambridge Philos. Soc. 78 (1975), 447–450. MR 0383133, 10.1017/S0305004100051914; reference:[9] A. Böttcher, B. Silbermann: Analysis of Toeplitz Operators.Springer-Verlag, Berlin, Heidelberg and New York, 1990. MR 1071374; reference:[10] A. Brown, P. R. Halmos: Algebraic properties of Toeplitz operators.J. Reine Angew. Math. 213 (1963), 89–102. MR 0160136; reference:[11] J. B. Conway, J. Duncan, A. L. T. Paterson: Monogenic inverse semigroups and their $C^*$-algebras.Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), 13–24. MR 0765485; reference:[12] M. Cotlar, C. Sadosky: Prolongements des formes de Hankel généralisées et formes de Toeplitz.C. R. Acad. Sci. Paris, Ser. I 305 (1987), 167–170. MR 0903954; reference:[13] Ž. Čučković: Commutants of Toeplitz operators on the Bergman space.Pacific J. Math. 162 (1994), 277–285. MR 1251902, 10.2140/pjm.1994.162.277; reference:[14] Ž. Čučković: Commuting Toeplitz operators on the Bergman space of an annulus.Michigan Math. J. 43 (1996), 355–365. MR 1398160, 10.1307/mmj/1029005468; reference:[15] K. R. Davidson: Approximate unitary equivalence of power partial isometries.Proc. Amer. Math. Soc. 91 (1984), 81–84. Zbl 0521.47010, MR 0735569, 10.1090/S0002-9939-1984-0735569-1; reference:[16] A. Devinatz: Toeplitz operators on $H^2$ spaces.Trans. Amer. Math. Soc. 112 (1964), 307–317. MR 0163174; reference:[17] R. G. Douglas: On majorization, factorization, and range inclusion of operators on Hilbert space.Proc. Amer. Math. Soc. 17 (1966), 413–415. Zbl 0146.12503, MR 0203464, 10.1090/S0002-9939-1966-0203464-1; reference:[18] R. G. Douglas: On the operator equation $S^*XT=X$ and related topics.Acta Sci. Math. (Szeged) 30 (1969), 19–32. Zbl 0177.19204, MR 0250106; reference:[19] R. G. Douglas: Banach Algebra Techniques in Operator Theory.Academic Press, New York, 1972. Zbl 0247.47001, MR 0361893; reference:[20] P. R. Halmos: Introduction to Hilbert Space and the Theory of Spectral Multiplicity.Second edition, Chelsea, New York, 1957. Zbl 0079.12404, MR 1653399; reference:[21] P. R. Halmos: A Hilbert Space Problem Book.Second edition, Springer-Verlag, Berlin, Heidelberg and New York, 1982. Zbl 0496.47001, MR 0675952; reference:[22] P. R. Halmos, L. J. Wallen: Powers of partial isometries.J. Math. Mech. 19 (1969/1970), 657–663. MR 0251574; reference:[23] D. A. Herrero: Quasidiagonality, similarity and approximation by nilpotent operators.Indiana Univ. Math. J. 30 (1981), 199–233. Zbl 0497.47010, MR 0604280, 10.1512/iumj.1981.30.30017; reference:[24] T. B. Hoover, A. Lambert: Equivalence of power partial isometries.Duke Math. J. 41 (1974), 855–864. MR 0361872, 10.1215/S0012-7094-74-04185-4; reference:[25] J. Janas, K. Rudol: Toeplitz operators in infinitely many variables.Topics in Operator Theory, Operator Algebras and Applications (Timisoara, 1994), Rom. Acad., Bucharest, 1995, pp. 147–160. MR 1421121; reference:[26] C. H. Mancera, P. J. Paúl: Compact and finite rank operators satisfying a Hankel type equation $T_2X=XT_1^*$.Integral Equations Operator Theory (to appear), . MR 1829281; reference:[27] C. H. Mancera, P. J. Paúl: Properties of generalized Toeplitz operators.Integral Equations Operator Theory (to appear), . MR 1829517; reference:[28] C. H. Mancera, P. J. Paúl: Remarks, examples and spectral properties of generalized Toeplitz operators.Acta Sci. Math. (Szeged) 66 (2000), 737–753. MR 1804222; reference:[29] C. Le Merdy: Formes bilinéaires hankéliennes compactes sur $H^2(X) \times H^2(Y)$.Math. Ann. 293 (1992), 371-384. MR 1166127, 10.1007/BF01444721; reference:[30] G. L. Murphy: Inner functions and Toeplitz operators.Canad. Math. Bull. 36 (1993), 324–331. Zbl 0792.47029, MR 1245817, 10.4153/CMB-1993-045-9; reference:[31] Z. Nehari: On bounded bilinear forms.Ann. Math. 65 (1957), 153–162. Zbl 0077.10605, MR 0082945, 10.2307/1969670; reference:[32] N. K. Nikolskii: Treatise on the Shift Operator.Springer-Verlag, Berlin, Heidelberg and New York, 1986. MR 0827223; reference:[33] L. Page: Bounded and compact vectorial Hankel operators.Trans. Amer. Math. Soc. 150 (1970), 529–539. Zbl 0203.45701, MR 0273449, 10.1090/S0002-9947-1970-0273449-3; reference:[34] V. V. Peller: Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class $\sigma _p$.Integral Equations Operator Theory 5 (1982), 244–272. MR 0647702, 10.1007/BF01694041; reference:[35] S. C. Power: Hankel Operators on Hilbert Space.Res. Notes Math., vol. 64, Pitman, Boston, London and Melbourne, 1982. Zbl 0489.47011, MR 0666699; reference:[36] V. Pták: Factorization of Toeplitz and Hankel operators.Math. Bohem. 122 (1997), 131–145. MR 1460943; reference:[37] V. Pták, P. Vrbová: Operators of Toeplitz and Hankel type.Acta Sci. Math. (Szeged) 52 (1988), 117–140. MR 0957795; reference:[38] V. Pták, P. Vrbová: Lifting intertwining dilations.Integral Equations Operator Theory 11 (1988), 128–147. MR 0920738, 10.1007/BF01236657; reference:[39] M. Rosenblum: Self-adjoint Toeplitz operators.Summer Institute of Spectral Theory and Statistical Mechanics 1965 (1966), Broohhaven National Laboratory, Upton, N. Y. Zbl 0165.47703; reference:[40] B. Sz.-Nagy, C. Foiaş: Harmonic Analysis of Operators on Hilbert Space.Akadémiai Kiadó and North-Holland, Budapest and Amsterdam, 1970. MR 0275190; reference:[41] B. Sz.-Nagy, C. Foiaş: An application of dilation theory to hyponormal operators.Acta Sci. Math. (Szeged) 37 (1975), 155–159. MR 0383131; reference:[42] B. Sz.-Nagy, C. Foiaş: Toeplitz type operators and hyponormality.Dilation Theory, Toeplitz Operators and Other Topics, Operator Theory: Adv. Appl. vol. 11, Birkhäuser-Verlag, Basel, Berlin and Boston, 1983, pp. 371–378. MR 0789650; reference:[43] N. Young: An Introduction to Hilbert Space.Cambridge University Press, Cambridge, 1988. Zbl 0645.46024, MR 0949693; reference:[44] D. Zheng: Hankel operators and Toeplitz operators on the Bergman space.J. Funct. Anal. 83 (1989), 98–120. Zbl 0678.47026, MR 0993443, 10.1016/0022-1236(89)90032-3; reference:[45] D. Zheng: Toeplitz operators and Hankel operators on the Hardy space of the unit sphere.J. Funct. Anal. 149 (1997), 1–24. Zbl 0909.47020, MR 1471097, 10.1006/jfan.1997.3110; reference:[46] K. Zhu: Operator Theory in Function Spaces.Pure Appl, Math. vol. 139, Marcel Dekker, Basel and New York, 1990. Zbl 0706.47019, MR 1074007