-
1Academic Journal
مصطلحات موضوعية: keyword:numerical radius, keyword:inner product space, keyword:$C^*$-algebra, msc:46C05, msc:47A12, msc:47C10
وصف الملف: application/pdf
Relation: mr:MR4512173; zbl:Zbl 07655826; reference:[1] Bhunia, P., Bag, S., Paul, K.: Numerical radius inequalities and its applications in estimation of zeros of polynomials.Linear Algebra Appl. 573 (2019), 166-177. Zbl 07060568, MR 3933295, 10.1016/j.laa.2019.03.017; reference:[2] Dragomir, S. S.: Some refinements of Schwarz inequality.Proceedings of the Simpozionul de Matematici si Aplicatii, Timisoara, Romania (1985), 13-16.; reference:[3] Dragomir, S. S.: A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces.Banach J. Math. Anal. 1 (2007), 154-175. Zbl 1136.47006, MR 2366098, 10.15352/bjma/1240336213; reference:[4] Dragomir, S. S.: Inequalities for the norm and numerical radius of composite operator in Hilbert spaces.Inequalities and Applications International Series of Numerical Mathematics 157. Birkhäuser, Basel (2009), 135-146. Zbl 1266.26036, MR 2758975, 10.1007/978-3-7643-8773-0_13; reference:[5] Dragomir, S. S.: Power inequalities for the numerical radius of a product of two operators in Hilbert spaces.Sarajevo J. Math. 5 (2009), 269-278. Zbl 1225.47008, MR 2567758; reference:[6] Goldberg, M., Tadmor, E.: On the numerical radius and its applications.Linear Algebra Appl. 42 (1982), 263-284. Zbl 0479.47002, MR 0656430, 10.1016/0024-3795(82)90155-0; reference:[7] Goldstein, A. A., Ryff, J. V., Clarke, L. E.: Problems and solutions: Solutions of advanced problems 5473.Am. Math. Mon. 75 (1968), 309-310. MR 1534789, 10.2307/2314992; reference:[8] Gustafson, K. E., Rao, D. K. M.: Numerical Range: The Field of Values of Linear Operators and Matrices.Universitext. Springer, New York (1997). Zbl 0874.47003, MR 1417493, 10.1007/978-1-4613-8498-4; reference:[9] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities.Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). Zbl 0634.26008, MR 0944909; reference:[10] Hosseini, M. S., Omidvar, M. E., Moosavi, B., Moradi, H. R.: Some inequalities for the numerical radius for Hilbert $C^*$-modules space operators.Georgian Math. J. 28 (2021), 255-260. Zbl 07339609, MR 4235824, 10.1515/gmj-2019-2053; reference:[11] Kadison, R. V., Ringrose, J. R.: Fundamentals of the Theory of Operator Algebras. Vol. 1. Elementary Theory.Pure and Applied Mathematics 100. Academic Press, New York (1983). Zbl 0518.46046, MR 0719020; reference:[12] Kaplansky, I.: Modules over operator algebras.Am. J. Math. 75 (1953), 839-858. Zbl 0051.09101, MR 0058137, 10.2307/2372552; reference:[13] Kittaneh, F.: Notes on some inequalities for Hilbert space operators.Publ. Res. Inst. Math. Sci. 24 (1988), 283-293. Zbl 0655.47009, MR 0944864, 10.2977/prims/1195175202; reference:[14] Kittaneh, F.: Numerical radius inequalities for Hilbert space operators.Stud. Math. 168 (2005), 73-80. Zbl 1072.47004, MR 2133388, 10.4064/sm168-1-5; reference:[15] Lance, E. C.: Hilbert $C^*$-Module: A Toolkit for Operator Algebraists.London Mathematical Society Lecture Note Series 210. Cambridge University Press, Cambridge (1995). Zbl 0822.46080, MR 1325694, 10.1017/CBO9780511526206; reference:[16] McCarthy, C. A.: $C_p$.Isr. J. Math. 5 (1967), 249-271. Zbl 0156.37902, MR 0225140, 10.1007/BF02771613; reference:[17] Mehrazin, M., Amyari, M., Omidvar, M. E.: A new type of numerical radius of operators on Hilbert $C^*$-module.Rend. Circ. Mat. Palermo (2) 69 (2020), 29-37. Zbl 07193605, MR 4148774, 10.1007/s12215-018-0385-3; reference:[18] Mirmostafaee, A. K., Rahpeyma, O. P., Omidvar, M. E.: Numerical radius ineqalities for finite sums of operators.Demonstr. Math. 47 (2014), 963-970. Zbl 1304.47007, MR 3290398, 10.2478/dema-2014-0076; reference:[19] Moosavi, B., Hosseini, M. S.: Some inequalities for the numerical radius for operators in Hilbert $C^*$-modules space.J. Inequal. Spec. Funct. 10 (2019), 77-84. MR 4016178; reference:[20] Murphy, G. J.: $C^*$-Algebras and Operator Theory.Academic Press, Boston (1990). Zbl 0714.46041, MR 1074574; reference:[21] Paschke, W. L.: Inner product modules over $B^*$-algebras.Trans. Am. Math. Soc. 182 (1973), 443-468. Zbl 0239.46062, MR 0355613, 10.1090/S0002-9947-1973-0355613-0; reference:[22] Rieffel, M. A.: Induced representations of $C^*$-algebras.Adv. Math. 13 (1974), 176-257. Zbl 0284.46040, MR 0353003, 10.1016/0001-8708(74)90068-1; reference:[23] Sattari, M., Moslehian, M. S., Yamazaki, T.: Some generalized numerical radius ineqalities for Hilbert space operators.Linear Algebra Appl. 470 (2015), 216-227. Zbl 1322.47010, MR 3314313, 10.1016/j.laa.2014.08.003; reference:[24] Yamazaki, T.: On upper and lower bounds of the numerical radius and an equality condition.Stud. Math. 178 (2007), 83-89. Zbl 1114.47003, MR 2282491, 10.4064/sm178-1-5
-
2Academic Journal
المؤلفون: Pangalela, Yosafat E. P., Gunawan, Hendra
مصطلحات موضوعية: keyword:$\ell^p$ space, keyword:$n$-normed space, keyword:$n$-dual space, msc:46B20, msc:46B99, msc:46C05, msc:46C15, msc:46C99
وصف الملف: application/pdf
Relation: mr:MR3231098; zbl:Zbl 06260044; reference:[1] Batkunde, H., Gunawan, H., Pangalela, Y. E. P.: Bounded linear functionals on the $n$-normed space of $p$-summable sequences.(to appear) in Acta Univ. M. Belii Ser. Math.; reference:[2] Gähler, S.: Investigations on generalized $m$-metric spaces. I.German Math. Nachr. 40 (1969), 165-189.; reference:[3] Gähler, S.: Investigations on generalized $m$-metric spaces. II.German Math. Nachr. 40 (1969), 229-264.; reference:[4] Gähler, S.: Investigations on generalized $m$-metric spaces. III.German Math. Nachr. 41 (1969), 23-26.; reference:[5] Gozali, S. M., Gunawan, H., Neswan, O.: On $n$-norms and bounded $n$-linear functionals in a Hilbert space.Ann. Funct. Anal. AFA 1 (2010), 72-79, electronic only. Zbl 1208.46006, MR 2755461; reference:[6] Gunawan, H.: The space of $p$-summable sequences and its natural $n$-norm.Bull. Aust. Math. Soc. 64 (2001), 137-147. Zbl 1002.46007, MR 1848086, 10.1017/S0004972700019754; reference:[7] Gunawan, H., Setya-Budhi, W., Mashadi, M., Gemawati, S.: On volumes of $n$-dimensional parallelepipeds in $\ell^p$ spaces.Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 16 (2005), 48-54. MR 2164275; reference:[8] Kreyszig, E.: Introductory Functional Analysis with Applications.Wiley Classics Library. John Wiley & Sons New York (1978). Zbl 0368.46014, MR 0467220; reference:[9] Miličić, P. M.: On the Gram-Schmidt projection in normed spaces.Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 4 (1993), 89-96. Zbl 0819.46010, MR 1295606; reference:[10] Pangalela, Y. E. P.: Representation of linear 2-functionals on space $\ell^p$.Indonesian Master Thesis, Institut Teknologi Bandung (2012).; reference:[11] White, A. G.: $2$-Banach spaces.Math. Nachr. 42 (1969), 43-60. Zbl 0185.20003, MR 0257716, 10.1002/mana.19690420104; reference:[12] Wibawa-Kusumah, R. A., Gunawan, H.: Two equivalent $n$-norms on the space of $p$-summable sequences.Period. Math. Hung. 67 (2013), 63-69. MR 3090825, 10.1007/s10998-013-6129-4
-
3Academic Journal
المؤلفون: Buhagiar, David, Chetcuti, Emanuel
مصطلحات موضوعية: keyword:Hilbert space, keyword:inner product space, keyword:orthogonally closed subspace, keyword:complete and cocomplete subspaces, keyword:finitely and $\sigma $-additive state, msc:03G12, msc:28A12, msc:46C05, msc:46N50, msc:81P10
وصف الملف: application/pdf
Relation: mr:MR2125153; zbl:Zbl 1099.81010; reference:[1] J. Amemiya, H. Araki: A remark on Piron’s paper.Publ. Res. Inst. Math. Sci., Kyoto Univ., Ser. A 2 (1966), 423–427. MR 0213266, 10.2977/prims/1195195769; reference:[2] G. Birkhoff, J. von Neumann: The logic of quantum mechanics.Ann. Math. 37 (1936), 823–843. MR 1503312, 10.2307/1968621; reference:[3] A. Dvurečenskij: Gleason’s Theorem and Its Applications.Kluwer Acad. Publ., Ister Science Press, Dordrecht, Bratislava, 1993. MR 1256736; reference:[4] A. Dvurečenskij, P. Pták: On states on orthogonally closed subspaces of an inner product space.Lett. Math. Phys. 62 (2002), 63–70. MR 1952116, 10.1023/A:1021653216049; reference:[5] A. M. Gleason: Measures on the closed subspaces of a Hilbert space.J. Math. Mech. 6 (1957), 885–893. Zbl 0078.28803, MR 0096113; reference:[6] J. Hamhalter, P. Pták: A completeness criterion for inner product spaces.Bull. London Math. Soc. 19 (1987), 259–263. MR 0879514, 10.1112/blms/19.3.259; reference:[7] G. Kalmbach: Measures and Hilbert Lattices.World Sci. Publ. Co., Singapoore, 1986. Zbl 0656.06012, MR 0867884; reference:[8] P. Pták: ${\mathrm FAT}\leftrightarrow {\mathrm CAT}$ (in the state space of quantum logics).Proceedings of “Winter School of Measure Theory”, Liptovský Ján, Czechoslovakia, 1988, pp. 113–118. MR 1000201; reference:[9] P. Pták, H. Weber: Lattice properties of subspace families in an inner product spaces.Proc. Am. Math. Soc. 129 (2001), 2111–2117. MR 1825924, 10.1090/S0002-9939-01-05855-5
-
4Academic Journal
المؤلفون: Pták, Pavel, Weber, Hans
مصطلحات موضوعية: keyword:(weak) state on quantum logic, keyword:Greechie paste job, keyword:Boolean algebra, msc:03G12, msc:46C05, msc:81P10
وصف الملف: application/pdf
Relation: mr:MR2176895; zbl:Zbl 1121.03085; reference:[1] Beran L.: Orthomodular Lattices. Algebraic Approach.Academia, Praha, 1984. Zbl 0558.06008, MR 0785005; reference:[2] Binder J., Pták P.: A representation of orthomodular lattices.Acta Univ. Carolin. - Math. Phys. 31 (1990), 21-26. MR 1098124; reference:[3] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer/Dordrecht & Ister/Bratislava, 2000. MR 1861369; reference:[4] Greechie R.J.: Orthomodular lattices admitting no states.J. Combin. Theory Ser. A 10 (1971), 119-132. Zbl 0219.06007, MR 0274355; reference:[5] Harding J., Pták P.: On the set representation of an orthomodular poset.Colloquium Math. 89 (2001), 233-240. Zbl 0984.06005, MR 1854706; reference:[6] Kallus M., Trnková V.: Symmetries and retracts of quantum logics.Internat. J. Theoret. Phys. 26 (1987), 1-9. MR 0890206; reference:[7] Katrnoška F.: A representation of orthoposets.Comment. Math. Univ. Carolinae 23 (1982), 489-498. MR 0677857; reference:[8] Navara M.: An orthomodular lattice admitting no group-valued measure.Proc. Amer. Math. Soc. 122 (1994), 7-12. Zbl 0809.06008, MR 1191871; reference:[9] Navara M., Pták P., Rogalewicz V.: Enlargements of quantum logics.Pacific J. Math. 135 (1988), 361-369. MR 0968618; reference:[10] Navara M., Rogalewicz V.: The pasting constructions for orthomodular posets.Math. Nachr. 154 (1991), 157-168. Zbl 0767.06009, MR 1138377; reference:[11] Ovchinnikov P.G.: Exact topological analogs to orthoposets.Proc. Amer. Math. Soc. 125 (1997), 2839-2841. Zbl 0880.06003, MR 1415360; reference:[12] Pták P.: Weak dispersion-free states and the hidden variables hypothesis.J. Math. Phys. 24 (1983), 839-840. MR 0700618; reference:[13] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics.Kluwer Academic Publishers, Dordrecht, 1991. MR 1176314; reference:[14] Sultanbekov F.F.: Set logics and their representations.Internat. J. Theoret. Phys. 32 (1993), 11 2177-2186. Zbl 0799.03081, MR 1254335; reference:[15] Tkadlec J.: Partially additive states on orthomodular posets.Colloquium Math. 62 (1991), 7-14. Zbl 0784.03037, MR 1114613; reference:[16] Trnková V.: Automorphisms and symmetries of quantum logics.Internat. J. Theoret. Phys. 28 (1989), 1195-1214. MR 1031603; reference:[17] Varadarajan V.: Geometry of Quantum Theory I, II.Van Nostrand, Princeton, 1968, 1970.; reference:[18] Weber H.: There are orthomodular lattices without non-trivial group valued states; a computer-based construction.J. Math. Anal. Appl. 183 (1994), 89-94. Zbl 0797.06010, MR 1273434
-
5Academic Journal
المؤلفون: Pták, Pavel, Weber, Hans
وصف الملف: application/pdf
Relation: mr:MR2074209; zbl:Zbl 1065.03048; reference:[1] AMEMIYA L.-ARAKI H.: A remark on Pirorís paper.Publ. Res. Inst. Math. Sci. 2 (1966), 423-427. MR 0213266; reference:[2] CHETCUTI E.-DVUREČENSKIJ A.: A finitely additive state criterion for the completeness of inner product spaces.Lett. Math. Phys. 64 (2003), 221-227. Zbl 1041.46014, MR 2009260; reference:[3] DVUREČENSKIJ A.: A new algebraic criterion for completeness of inner product spaces.Lett. Math. Phys. 58 (2001), 205-208. Zbl 1005.46012, MR 1892920; reference:[4] DVUREČENSKIJ A.: Gleason's Theorem and Applications.Kluwer Acad. Publ., Dordrecht-Boston-London, 1993. MR 1256736; reference:[5] DVUREČENSKIJ A.-PTÁK P.: Quantum logics with the Riesz Interpolation Property.Math. Nachr. 271 (2004) (To appear). Zbl 1051.03052, MR 2068880; reference:[6] DVUREČENSKIJ A.-NEUBRUNN T.-PULMANNOVÁ S.: Finitely additive states and completeness of inner product spaces.Found. Phys. 20 (1990), 1091-1102. Zbl 0752.46008, MR 1078957; reference:[7] FRENICHE F.: The Vitali-Hahn-Sachs theorem for Boolean algebras with the subsequential interpolation property.Proc. Amer. Math. Soc. 92 (1984), 312-366. MR 0759653; reference:[8] GOODEARL K. R.: Partially ordered Abelian groups with interpolation.Math. Surveys Monogr. 20, Amer. Math. Soc, Providence, RI, 1986. Zbl 0589.06008, MR 0845783; reference:[9] HAMHALТER J.-PТÁK P.: A completeness criterion for inner product spaces.Bull. London Math. Soc. 19 (1987), 259-263. MR 0879514; reference:[10] HARDING J.: Decompositions in quantum logics.Тrans. Amer. Math. Soc. 348 (1996), 1839-1862. MR 1340177; reference:[11] HARDING J.: Regularity in quantum logics.Internat. J. Тheoret. Phys. 37 (1998), 1173-1212. MR 1626771; reference:[12] HOLLAND S. S. JR.: Orthomodularity in infinite dimensions - a theorem of M. Solér.Bull. Amer. Math. Soc. 32 (1995), 205-234. Zbl 0856.11021, MR 1307904; reference:[13] KALMBACH G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0528.06012, MR 0716496; reference:[14] KELLER H.: Ein nicht-klassischer Hilbertischen Raum.Math. Z. 272 (1980), 42-49. MR 0576294; reference:[15] MAEDA F.-MAEDA S.: Theory of Symmetric Lattices.Springer-Verlag, Berlin, 1970. Zbl 0219.06002, MR 0282889; reference:[16] PIZIAK R.: Lattice theory, quadratic spaces, and quantum proposition systems.Found. Phys. 20 (1990), 651-665. MR 1067796; reference:[17] PТÁK P.-PULMANNOVÁ S.: Orthomodular Structures as Quantum Logics.Kluwer Acad. Publ., Dordrecht, 1991. MR 1176314; reference:[18] PTÁK P.-WEBER H.: Lattice properties of subspace families in an inner product space.Proc. Amer. Math. Soc. 129 (2001), 2111-2117. Zbl 0968.03077, MR 1825924; reference:[19] SOLER M.: Characterization of Hilbert space by orthomodular spaces.Comm. Algebra 23 (1995), 219-243. MR 1311786; reference:[20] VARADARAJAN V.: Geometry of Quantum Theory I; II.Van Nostrand, Princeton, 1968; 1970.; reference:[21] WEBER H.: Compactness in spaces of group-valued contents, the Vitali-Hahn-Sachs theorem and Nikodym boundedness theorem.Rocky Mountain J. Math. 16 (1986), 253-275. MR 0843053
-
6Academic Journal
المؤلفون: Misiak, Aleksander, Ryż, Alicja
مصطلحات موضوعية: keyword:$n$-inner product space, keyword:$n$-normed space, keyword:$n$-norm of projection, msc:46C05, msc:46C50
وصف الملف: application/pdf
Relation: mr:MR1752081; zbl:Zbl 0970.46013; reference:[1] C. Diminnie S. Gähler A. White: 2-inner product spaces.Demonstratio Math. 6 (1973), 525-536. MR 0365099; reference:[2] S. Gähler: Lineare 2-normierte Räume.Math. Nachr. 28 (1965), 1-43. MR 0169021, 10.1002/mana.19640280102; reference:[3] S. Gähler Z. Żekanowski: Tensors, 2-inner products and projections.Demonstratio Math. 19 (1986), 747-766. MR 0902931; reference:[4] S. Gähler Z. Żekanowski: Remarks on tensors and families of projections.Math. Nachr. 143 (1989), 277-290. MR 1018248, 10.1002/mana.19891430121; reference:[5] A. Misiak: n-inner product spaces.Math. Nachr. 140 (1989), 299-319. Zbl 0708.46025, MR 1015402, 10.1002/mana.19891400121; reference:[6] A. Misiak: Orthogonality and orthonormality in n-inner product spaces.Math. Nachr. 143 (1989), 249-261. Zbl 0708.46025, MR 1018246, 10.1002/mana.19891430119; reference:[7] A. Misiak: Simple n-inner product spaces.Prace Naukowe Politechniki Szczecińskiej 12 (1991), 63-74. Zbl 0754.15027; reference:[8] Z. Żekanowski: On some generalized 2-inner products in the Riemannian manifolds.Demonstratio Math. 12 (1979), 833-836. MR 0560371
-
7Academic Journal
-
8Academic Journal
المؤلفون: Alsina, C., Guijarro, P., Tomás, M. S.
مصطلحات موضوعية: keyword:inner product space, keyword:norm derivative $\rho ^{\prime }_{\pm }$, keyword:bisectrix, keyword:perpendicular bisector, msc:46B20, msc:46C05, msc:46C15, msc:51M04, msc:52A10
وصف الملف: application/pdf
Relation: mr:MR1421858; zbl:Zbl 0909.46020; reference:[1] Alsina, C., Guijarro, P. and Tom s, M. S.: On heights in real normed spaces and characterizations of inner product structures.Jour. Int. Math. & Comp. Sci. Vol. 6, N. 2, 151-159 (1993). MR 1239743; reference:[2] Alsina, C., Guijarro, P. and Tom s, M. S.: A characterization of inner product spaces based on a property of height’s transform.Arch. Math. 61 (1993), 560-566. MR 1254068; reference:[3] Alsina, C. and Garcia Roig, J. L.: On a functional equation characterizing inner product spaces.Publ. Math. Debrecen 39 (1991), 299-304. MR 1154261; reference:[4] Alsina, C., Guijarro, P. and Tom s, M. S.: Some remarkable lines of a triangle in real normed spaces and characterizations of inner product structures.(Accepted for publication in Aequationes Mathematicae).; reference:[5] Amir, D.: Characterization of inner product spaces.Basel-Boston (1986). Zbl 0384.46007, MR 0941812; reference:[6] James, R. C.: Inner products in normed linear spaces.Bull. Amer. Math. Soc. Vol. 53 (1947), 559-566. Zbl 0041.43701, MR 0021242; reference:[7] Tapia, R. A.: A characterization of inner product spaces.Proc. Amer. Math. Soc. Vol. 41 (1973), 569-574. Zbl 0286.46025, MR 0341041
-
9Academic Journal
المؤلفون: Keller, Hans A., Ochsenius A., Hermina
وصف الملف: application/pdf
Relation: mr:MR1387058; zbl:Zbl 0855.46049; reference:[Fa] FÄSSLER-ULLMANN A.: Untersuchungen zu nichtklassischen Hilbertraumen.Ph.D. Thesis, Univ. of Zürich, 1982.; reference:[G-Kii] GROSS H., KÜNZI U. M.: On a class of orthomodular quadratic spaces.Enseign. Math. (2) 31 (1985), 187-212. Zbl 0603.46030, MR 0819350; reference:[Ke] KELLER H. A.: Ein nicht-klassischer Hilbertscher Raum.Math. Z. 172 (1980), 41-49. Zbl 0414.46018, MR 0576294; reference:[Kii] KÜNZI U. M.: Nonclassical Hilbert spaces over valued fields.Master's Thesis, Univ. of Zurich, 1980.; reference:[Ri] RIBENBOIM P.: Théorie des valuations.Les Presses de l'Université de Montreal, 1965. Zbl 0139.26201, MR 0249425
-
10Academic Journal
المؤلفون: Franců, Jan
وصف الملف: application/pdf
Relation: mr:MR1309063; zbl:Zbl 0862.46007; reference:[1] Kolmogorov A. N., Fomin S. V.: Introductory real analysis.Prentice Hall, New York, 1970. Zbl 0213.07305, MR 0267052; reference:[2] Fučík S., Kufner A.: Nonlinear differential equations.Elsevieг, Amsterdam, 1980.; reference:[3] Franců J.: Weakly continuous operators.Application of mathematics 39 (1994), 45-56. MR 1254746; reference:[4] Franců J.: Monotone operators. A survey directed to applications to differential equations.Aplikace matematiky 35 (1990), 257-301. MR 1065003
-
11Academic Journal
-
12Academic Journal
المؤلفون: Alvarez, J. Antonio
مصطلحات موضوعية: keyword:non-archimedean Hilbert space, keyword:non-archimedean $C^\ast $-algebra, msc:46C05, msc:46L05, msc:46S10, msc:47S10
وصف الملف: application/pdf
Relation: mr:MR1240177; zbl:Zbl 0784.46063; reference:[1] Alvarez García J.A.: Involutions on non-archimedean fields and algebras.Actas XIII Jornadas Hispano-Lusas de Matemáticas, Valladolid, 1988, to appear.; reference:[2] Bayod Bayod J.M.: Productos internos en espacios normados no arquimedianos.Doctoral dissertation, Universidad de Bilbao, 1976.; reference:[3] Keller H.A.: Measures on orthomodular vector space lattices.Studia Mathematica 88 (1988), 183-195. Zbl 0656.46051, MR 0931041; reference:[4] Keller H.A.: Measures on infinite-dimensional orthomodular spaces.Foundations of Physics 20 (1990), 575-604. MR 1060623; reference:[5] Monna A.F.: Analyse non-Archimedienne.Springer-Verlag, 1970. Zbl 0207.12402, MR 0295033; reference:[6] Murphy G.J.: Commutative non-archimedean $C^\ast $-algebras.Pacific J. Math. 78 (1978), 433-446. Zbl 0393.46054, MR 0519764; reference:[7] Narici L., Beckenstein E., Bachman G.: Functional Analysis and Valuation Theory.Marcel Dekker, 1971. Zbl 0218.46004, MR 0361697; reference:[8] Paschke W.L.: Inner product modules over $B^\ast $-algebras.Trans. Amer. Math. Soc. 182 (1973), 443-468. Zbl 0239.46062, MR 0355613; reference:[9] Rooij A.C.M. Van: Nonarchimedean Functional Analysis.Marcel Dekker, 1978.
-
13Academic Journal
المؤلفون: Fitzpatrick, Simon, Calvert, Bruce
مصطلحات موضوعية: keyword:inner product space, keyword:two dimensional subspace, keyword:projection, msc:46A03, msc:46A55, msc:46C05, msc:46C15, msc:52A07, msc:52A15
وصف الملف: application/pdf
Relation: mr:MR1137784; zbl:Zbl 0756.46010; reference:[1] Amir D.: Characterizations of Inner Product Spaces.Birkhäuser Verlag, Basel, Boston, Stuttgart, 1986. Zbl 0617.46030, MR 0897527; reference:[2] Calvert B., Fitzpatrick S.: Nonexpansive projections onto two dimensional subspaces of Banach spaces.Bull. Aust. Math. Soc. 37 (1988), 149-160. Zbl 0634.46013, MR 0926986; reference:[3] Fitzpatrick S., Calvert B.: Sets invariant under projections onto one dimensional subspaces.Comment. Math. Univ. Carolinae 32 (1991), 227-232. Zbl 0756.52002, MR 1137783
-
14Academic Journal
المؤلفون: Dvurečenskij, Anatolij
وصف الملف: application/pdf
Relation: mr:MR1046444; zbl:Zbl 0715.46031
-
15
-
16
-
17Academic Journal
المؤلفون: Kuczumow, Tadeusz, Stachura, Adam
وصف الملف: application/pdf
Relation: mr:MR0972824; zbl:Zbl 0672.47036; reference:[1] T. FRANZONI E. VESENTINI: Holomorphic maps and invariant distances.North-Holland, Amsterdam, 1980. MR 0563329; reference:[2] A. GENEL J. LINDENSTRAUSS: An example concerning fixed points.Israel J. Math. 22 (1975), 81-85. MR 0390847; reference:[3] K. GOEBEL T. SĘK0WSKI A. STACHURA: Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball.Nonlinear Analysis 4 (1980), 1011-1021. MR 0586863; reference:[4] K. GOEBEL W. A. KIRK: Iteration processes for nonexpansive mappings.Contemporary Mathematics 21 (1983), 115-123. MR 0729507; reference:[5] T. L. HAYDEN T. J. SUFFRIOGE: Biholomorphic maps in Hilbert space have a fixed point.Pacif. J. Math. 38 (1971), 419-422. MR 0305158; reference:[6] E. HELLY: Über Mengen konvexer Körper mit gemeinschaftlichen Pubkten.Über. Deutsch. Math. Verein 32 (1923), 175-176.; reference:[7] S. KOBAYASHI: Invariant distances for projective structures.Istituto Nazionale di Alta Matematica Francesco Severi, XXVI (1982), 153-161. Zbl 0482.51015, MR 0663030; reference:[8] T. KUCZUMOW: Fixed points of holomorphic mappings in the Hilbert ball.Colloq. Math., in print. Zbl 0674.47039, MR 0964327; reference:[9] T. KUCZUMOW A. STACHURA: Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. Part I.Comment. Math. Univ. Carolinae 29 (1988), 399-402. MR 0972824; reference:[10] S. REICH: Averaged mappings in the Hilbert ball.J. Math. Anal. Appl. 109(1985), 199-206. Zbl 0588.47061, MR 0796053; reference:[11] I. J. SCHOENBERG: On a theorem of Kirszbraun and Valentine.Amer. Math. Monthly 60 (1953), 620-622. MR 0058232; reference:[12] T. J. SUFFRIDGE: Common fixed points of commuting holomorphic mappings.The Michigan Math. 3. 21 (1975), 309-314. MR 0367661
-
18Academic Journal
المؤلفون: Kuczumow, Tadeusz, Stachura, Adam
وصف الملف: application/pdf
Relation: mr:MR972824; zbl:Zbl 0672.47035; reference:[1] T. FRANZONI E. VESENTINI: Holomorphic maps and invariant distances.North-Holland, Amsterdam 1980. MR 0563329; reference:[2] K. GOEBEL: Uniform convexity of Caratheodory's metric on the Hilbert ball and its consequences.Istituto Nazionale di Alta Matematica Francesco Severi, Symposia Mathematica XXVI (1982), 163-179. Zbl 0488.47026, MR 0663031; reference:[3] K. GOEBEL T. SĘK0WSKI A. STACHURA: Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball.Nonlinear Analysis 4 (1980), 1011-1021. MR 0586863; reference:[4] E. HELLY: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten.über. Deutsch. Math. Verein 32 (1923), 175-176.; reference:[5] T. KUCZUMOW: Fixed points of holomorphic mappings in the Hilbert ball.Colloq. Math., in print. Zbl 0674.47039, MR 0964327; reference:[6] Z. OPIAL: Nonexpansive and monotone mappings in Banach spaces.Lecture Notes, Brown University, 1967.
-
19Academic Journal
المؤلفون: Wójcicka, Małgorzata
وصف الملف: application/pdf
Relation: mr:MR912573; zbl:Zbl 0634.46017; reference:[A] A. V. ARHANGELSKIĬ: On R-factor mappings of spaces with countable base.Dokl. Akad. Nauk SSSR 287 (1986), 14-17. MR 0834933; reference:[HJ] J. HOFFMANN-JÖRGENSEN: The theory of analytic spaces.Aarhus Various Publ. Series, no. 10, 1970. MR 0409748; reference:[M1] E. MICHAEL: $\chi_0$-spaces.J. Math. Mech. 15 (1966), 983-1002. MR 0206907; reference:[M2] E. MICHAEL: On k-spaces, $k_R$-spaces and $k(X)$.Pacific J. Math. 47 (1973), 487-498. Zbl 0262.54017, MR 0331328; reference:[V] V. S. VARADARAJAN: Measures on topological spaces.Mat. Sbornik 55 (97) (1961), 35-100. Amer. Math. Soc. Transl. (2) 48 (1965), 161-228. MR 0148838
-
20Academic Journal
المؤلفون: Daneš, Josef
وصف الملف: application/pdf
Relation: mr:MR768823; zbl:Zbl 0568.46018; reference:[1] J. DANEŠ: On densifying and related mappings and their application in nonlinear functional analysis.in "Theory of Nonlinear Operators", Proceedings of Summer School (G. D. R., Neuendorf, 1972), Akademie-Verlag, Berlin (1974), 15-56. MR 0361946; reference:[2] J. DANEŠ: Some remarks on nonlinear functional analysis.Summer School on "Nonlinear Functional Analysis and Mechanics", Stará Lesná, High Tatras, Czechoslovakia, Sept. 23-27 (1974).; reference:[3] H. W. E. JUNG: Über die kleinste Kugel, die eine räumliche Figur einschliesst.J. Reine Angew. Math. 123 (1901), 241-257.; reference:[4] H. STEINLEIN: .A private communication (1978).