-
1Academic Journal
المؤلفون: Hidalgo Linares, Rodrigo, Okunev, Oleg
مصطلحات موضوعية: keyword:free locally convex space, keyword:$L$-equivalence, keyword:retraction, msc:46A03
وصف الملف: application/pdf
Relation: mr:MR4631788; zbl:Zbl 07790580; reference:[1] Arhangel'skii A. V.: Linear homomorphisms of function spaces.Dokl. Akad. Nauk SSSR 264 (1982), no. 6, 1289–1292 (Russian). MR 0664477; reference:[2] Arhangel'skiĭ A. V.: Topological Function Spaces.Math. Appl. (Soviet Ser.), 78, Kluwer Academic Publishers Group, Dordrecht, 1992.; reference:[3] Arhangel'skii A. V.: Paracompactness and Metrization. The Method of Covers in the Classification of Spaces.General Topology, III, Encyclopaedia Math. Sci., 51, Springer, Berlin, 1995. 10.1007/978-3-662-07413-8_1; reference:[4] Cauty R.: Un espace métrique linéaire qui n'est pas un rétracte absolu.Fund. Math. 146 (1994), no. 1, 85–99 (French. English summary). MR 1305261, 10.4064/fm-146-1-85-99; reference:[5] Collins P. J., Roscoe A. W.: Criteria for metrizability.Proc. Amer. Math. Soc. 90 (1984), no. 4, 631–640. MR 0733418, 10.1090/S0002-9939-1984-0733418-9; reference:[6] Engelking R.: General Topology.Sigma Ser. Pure Math., 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321; reference:[7] Flood J.: Free Topological Vector Spaces.Dissertationes Math. (Rozprawy Mat.) 221 (1984), 95 pages. MR 0741750; reference:[8] Gabriyelyan S. S., Morris S. A.: Free topological vector spaces.Topology Appl. 223 (2017), 30–49. MR 3633732, 10.1016/j.topol.2017.03.006; reference:[9] Hoshina T., Yamazaki K.: Weak $C$-embedding and $P$-embedding, and product spaces.Topology Appl. 125 (2002), no. 2, 233–247. MR 1933574, 10.1016/S0166-8641(01)00275-9; reference:[10] Karnik S. M., Willard S.: Natural covers and $R$-quotient maps.Canad. Math. Bull. 25 (1982), no. 4, 456–461. MR 0674562, 10.4153/CMB-1982-065-1; reference:[11] Michael E.: Some extension theorems for continuous functions.Pacific J. Math. 3 (1953), 789–806. MR 0059541, 10.2140/pjm.1953.3.789; reference:[12] Okunev O. G.: A method for constructing examples of $M$-equivalent spaces.Seminar on General Topology and Topological Algebra, Moscow, 1988/1989, Topology Appl. 36 (1990), no. 2, 157–171. MR 1068167, 10.1016/0166-8641(90)90006-N; reference:[13] Okunev O. G.: $M$-equivalence of products.Trudy Moskov. Mat. Obshch. 56 (1995), 192–205, 351 (Russian); translation in Trans. Moscow Math. Soc. (1995), 149–158. MR 1468468; reference:[14] Schaefer H. H.: Topological Vector Spaces.Graduate Texts in Mathematics, 3, Springer, New York, 1971. Zbl 0983.46002, MR 0342978; reference:[15] Sennott L. I.: A necessary condition for a Dugundji extension property.Proc. of the 1984 Topology Conf., Auburn, Ala., 1984, Topology Proc. 2 (1977), no. 1, 265–280. MR 0540611; reference:[16] Uspenskiĭ V. V.: On the topology of a free locally convex space.Dokl. Akad. Nauk SSSR 270 (1983), no. 6, 1334–1337 (Russian). MR 0712944; reference:[17] Yamazaki K.: Extending pointwise bounded equicontinuous collections of functions.Tsukuba J. Math. 29 (2005), no. 1, 197–213. MR 2162836, 10.21099/tkbjm/1496164899
-
2Academic Journal
المؤلفون: Kramar, Edvard
مصطلحات موضوعية: keyword:locally convex space, keyword:commutator, keyword:nilpotent operator, keyword:compact operator, keyword:Riesz operator, msc:46A03, msc:47B06, msc:47B47
وصف الملف: application/pdf
Relation: mr:MR3513442; zbl:Zbl 06604499; reference:[1] Bonsall F.F., Duncan J.: Complete Normed Algebras.Springer, New York-Heidelberg-Berlin, 1973. Zbl 0271.46039, MR 0423029; reference:[2] Chilana A.K.: Invariant subspaces for linear operators in locally convex spaces.J. London Math. Soc. 2 (1970), 493–503. Zbl 0198.45703, MR 0423095, 10.1112/jlms/2.Part_3.493; reference:[3] Bračič J., Kuzma B.: Localizations of the Kleinecke-Shirokov Theorem.Oper. Matrices 1 (2007), 385–389. Zbl 1136.47025, MR 2344682, 10.7153/oam-01-22; reference:[4] de Bruyn G.F.C.: Asymptotic properties of linear operators.Proc. London Math. Soc. 18 (1968), 405–427. Zbl 0172.16801, MR 0226442, 10.1112/plms/s3-18.3.405; reference:[5] Kramar E.: On reducibility of sets of algebraic operators on locally convex spaces.Acta Sci. Math. (Szeged) 74 (2008), 729–742. Zbl 1199.47037, MR 2487942; reference:[6] Lin C.S.: A note on the Kleinecke-Shirokov theorem and the Wintner-Halmos theorem.Proc. Amer. Math. Soc. 27 (1971), 529–530. MR 0284846, 10.1090/S0002-9939-1971-0284846-0; reference:[7] Pietsch A.: Zur Theorie der $\sigma $-Transformationen in lokalkonvexen Vektorräumen.Math. Nachr. 21 (1960), 347–369. Zbl 0095.30903, MR 0123185, 10.1002/mana.19600210604; reference:[8] Ruston A.F.: Operators with a Fredholm theory.J. London Math. Soc. 29 (1954), 318–326. Zbl 0055.10902, MR 0062345, 10.1112/jlms/s1-29.3.318
-
3Academic Journal
المؤلفون: Farkas, Bálint
مصطلحات موضوعية: keyword:not strongly continuous semigroups, keyword:bi-continuous semigroups, keyword:adjoint semigroup, keyword:mixed-topology, keyword:strict topology, keyword:one-parameter semigroups on the space of measures, msc:46A03, msc:47D03, msc:47D06, msc:47D99
وصف الملف: application/pdf
Relation: mr:MR2905405; zbl:Zbl 1249.47021; reference:[1] Albanese, A. A., Manco, V., Lorenzi, L.: Mean ergodic theorems for bi-continuous semigroups.Semigroup Forum 82 (2011), 141-171. MR 2753839, 10.1007/s00233-010-9260-z; reference:[2] Albanese, A. A., Mangino, E.: Trotter-Kato theorems for bi-continuous semigroups and applications to Feller semigroups.J. Math. Anal. Appl. 289 (2004), 477-492. Zbl 1071.47043, MR 2026919, 10.1016/j.jmaa.2003.08.032; reference:[3] Alber, J.: On implemented semigroups.Semigroup Forum 63 (2001), 371-386. Zbl 1041.47028, MR 1851817, 10.1007/s002330010082; reference:[4] Alexandroff, A. D.: Additive set-functions in abstract spaces.Mat. Sb. N. Ser. 13 (1943), 169-238. Zbl 0060.13502, MR 0012207; reference:[5] Cerrai, S.: A Hille-Yosida theorem for weakly continuous semigroups.Semigroup Forum 49 (1994), 349-367. MR 1293091, 10.1007/BF02573496; reference:[6] Dorroh, J. R., Neuberger, J. W.: Lie generators for semigroups of transformations on a Polish space.Electronic J. Diff. Equ. 1 (1993), 1-7. Zbl 0807.54033, MR 1234797; reference:[7] Dorroh, J. R., Neuberger, J. W.: A theory of strongly continuous semigroups in terms of Lie generators.J. Funct. Anal. 136 (1996), 114-126. Zbl 0848.22005, MR 1375155, 10.1006/jfan.1996.0023; reference:[8] Edgar, G. A.: Measurability in a Banach space, II.Indiana Univ. Math. J. 28 (1979), 559-579. Zbl 0418.46034, MR 0542944, 10.1512/iumj.1979.28.28039; reference:[9] Es-Sarhir, A., Farkas, B.: Perturbation for a class of transition semigroups on the Hölder space $C^\theta_{b, loc}(H)$.J. Math. Anal. Appl. 315 (2006), 666-685. Zbl 1097.47042, MR 2202608, 10.1016/j.jmaa.2005.04.024
-
4Academic Journal
المؤلفون: Ferrando, J. C., Kąkol, J., Lopez Pellicer, M.
مصطلحات موضوعية: keyword:$K$-analytic space, keyword:web space, keyword:quasi-Suslin space, msc:46A03, msc:46A30, msc:54C05, msc:54C14, msc:54D08
وصف الملف: application/pdf
Relation: mr:MR2563582; zbl:Zbl 1224.46004; reference:[1] Cascales, B.: On $K$-analytic locally convex spaces.Arch. Math. 49 (1987), 232-244. Zbl 0617.46014, MR 0906738, 10.1007/BF01271663; reference:[2] Cascales, B., Orihuela, J.: On compactness in locally convex spaces.Math. Z. 195 (1987), 365-381. Zbl 0604.46011, MR 0895307, 10.1007/BF01161762; reference:[3] Christensen, J. P. R.: Topology and Borel Structure. Descriptive Topology and Set Theory with Applications to Functional Analysis and Measure Theory, Vol. 10.North Holland Amsterdam (1974). MR 0348724; reference:[4] Comfort, W. W., Remus, D.: Compact groups of Ulam-measurable cardinality: Partial converse theorems of Arkhangel'skii and Varopoulos.Math. Jap. 39 (1994), 203-210. MR 1270627; reference:[5] Dierolf, P., Dierolf, S., Drewnowski, L.: Remarks and examples concerning unordered Baire-like and ultrabarrelled spaces.Colloq. Math. 39 (1978), 109-116. Zbl 0386.46008, MR 0507270, 10.4064/cm-39-1-109-116; reference:[6] Drewnowski, L.: Resolutions of topological linear spaces and continuity of linear maps.J. Math. Anal. Appl. 335 (2007), 1177-1194. Zbl 1133.46002, MR 2346899, 10.1016/j.jmaa.2007.02.032; reference:[7] Drewnowski, L.: The dimension and codimension of analytic subspaces in topological vector spaces, with applications to the constructions of some pathological topological vector spaces. Liège 1982 (unpublished Math. talk).; reference:[8] Drewnowski, L., Labuda, I.: Sequence $F$-spaces of $L_0$-type over submeasures of $\Bbb N$.(to appear).; reference:[9] Kąkol, J., Pellicer, M. López: Compact coverings for Baire locally convex spaces.J. Math. Anal. Appl. 332 (2007), 965-974. MR 2324313, 10.1016/j.jmaa.2006.10.045; reference:[10] Kelley, J. L., al., I. Namioka et: Linear Topological Spaces.Van Nostrand London (1963). Zbl 0115.09902, MR 0166578; reference:[11] Kōmura, Y.: On linear topological spaces.Kumamoto J. Sci., Ser. A 5 (1962), 148-157. MR 0151817; reference:[12] Nakamura, M.: On quasi-Suslin space and closed graph theorem.Proc. Japan Acad. 46 (1970), 514-517. MR 0282325; reference:[13] Nakamura, M.: On closed graph theorem.Proc. Japan Acad. 46 (1970), 846-849. Zbl 0223.46008, MR 0291757; reference:[14] Carreras, P. Perez, Bonet, J.: Barrelled Locally Convex Spaces, Vol. 131.North Holland Amsterdam (1987). MR 0880207; reference:[15] Rogers, C. A., Jayne, J. E., Dellacherie, C., Topsøe, F., Hoffman-Jørgensen, J., Martin, D. A., Kechris, A. S., Stone, A. H.: Analytic Sets.Academic Press London (1980).; reference:[16] Talagrand, M.: Espaces de Banach faiblement $K$-analytiques.Ann. Math. 110 (1979), 407-438. MR 0554378, 10.2307/1971232; reference:[17] Tkachuk, V. V.: A space $C_p(X) $ is dominated by irrationals if and only if it is $K$-analytic.Acta Math. Hungar. 107 (2005), 253-265. Zbl 1081.54012, MR 2150789, 10.1007/s10474-005-0194-y; reference:[18] Valdivia, M.: Topics in Locally Convex Spaces.North-Holland Amsterdam (1982). Zbl 0489.46001, MR 0671092; reference:[19] Valdivia, M.: Quasi-LB-spaces.J. Lond. Math. Soc. 35 (1987), 149-168. Zbl 0625.46006, MR 0871772
-
5Academic Journal
المؤلفون: Monterde, I., Montesinos, V.
مصطلحات موضوعية: keyword:weakly compact sets, keyword:convex-compact sets, keyword:Banach discs, msc:46A03, msc:46A50
وصف الملف: application/pdf
Relation: mr:MR2545655; zbl:Zbl 1224.13023; reference:[1] Day, M. M.: Normed Linear Spaces.Spriger-Verlag (1973). Zbl 0268.46013, MR 0344849; reference:[2] Floret, K.: Weakly compact sets.Lecture Notes in Math., Springer-Verlag 801 (1980). Zbl 0437.46006, MR 0576235, 10.1007/BFb0091483; reference:[3] Grothendieck, A.: Critères de compacité dans les espaces fonctionnels généraux.Amer. J. Math. 74 (1952), 168-186. Zbl 0046.11702, MR 0047313, 10.2307/2372076; reference:[4] Köthe, G.: Topological Vector Spaces I.Springer-Verlag (1969). MR 0248498; reference:[5] Pták, V.: A combinatorial lemma on the existence of convex means and its applications to weak compactness.Proc. Symp. Pure Math. VII (Convexity 1963) 437-450. MR 0161128
-
6Academic Journal
المؤلفون: Johanis, Michal
مصطلحات موضوعية: keyword:polyhedrality, msc:46A03, msc:46B10, msc:46B20
وصف الملف: application/pdf
Relation: mr:MR2486630; zbl:Zbl 1224.46024; reference:[1] Bonic, R., Frampton, J.: Smooth functions on Banach manifolds.J. Math. Mech. 15 (1966), 877-898. Zbl 0143.35202, MR 0198492; reference:[2] Deville, R., Godefroy, G., Zizler, V.: Smoothness and Renormings in Banach Spaces. Monographs and Surveys in Pure and Applied Mathematics, 64.Longman Scientific & Technical; John Wiley & Sons, Inc. Harlow; New York (1993). MR 1211634; reference:[3] Deville, R., Godefroy, G., Zizler, V.: The three space problem for smooth partitions of unity and $C(K)$ spaces.Math. Ann. 288 (1990), 613-625. Zbl 0699.46009, MR 1081267, 10.1007/BF01444554; reference:[4] Fonf, V. P.: Polyhedral Banach spaces.Math. Notes 30 (1982), 809-813. MR 0638435, 10.1007/BF01137813; reference:[5] Fonf, V. P.: Three characterizations of polyhedral Banach spaces.Uk. Math. J. 42 (1990), 1145-1148. Zbl 0728.46018, MR 1093646, 10.1007/BF01056615; reference:[6] Fabian, M., Zizler, V.: A note on bump functions that locally depend on finitely many coordinates.Bull. Aust. Math. Soc. 56 (1997), 447-451. Zbl 0901.46007, MR 1490662, 10.1017/S0004972700031233; reference:[7] Godefroy, G., Pelant, J., Whitfield, J. H. M., Zizler, V.: Banach space properties of Ciesielski-Pol's $C(K)$ space.Proc. Am. Math. Soc. 103 (1988), 1087-1093. Zbl 0666.46019, MR 0954988; reference:[8] Godefroy, G., Troyanski, S., Whitfield, J. H. M., Zizler, V.: Smoothness in weakly compactly generated Banach spaces.J. Funct. Anal. 52 (1983), 344-352. Zbl 0517.46010, MR 0712585, 10.1016/0022-1236(83)90073-3; reference:[9] Hájek, P.: Smooth norms that depend locally on finitely many coordinates.Proc. Am. Math. Soc. 123 (1995), 3817-3821. MR 1285993, 10.2307/2161911; reference:[10] Hájek, P.: Smooth norms on certain $C(K)$ spaces.Proc. Am. Math. Soc. 131 (2003), 2049-2051. Zbl 1017.46002, MR 1963749, 10.1090/S0002-9939-03-06819-9; reference:[11] Hájek, P.: Smooth partitions of unity on certain $C(K)$ spaces.Mathematika 52 (2005), 131-138. Zbl 1112.46008, MR 2261849, 10.1112/S0025579300000401; reference:[12] Hájek, P., Johanis, M.: Smoothing of bump functions.J. Math. Anal. Appl. 338 (2008), 1131-1139. MR 2386487, 10.1016/j.jmaa.2007.06.006; reference:[13] Hájek, P., Johanis, M.: Polyhedrality in Orlicz spaces.Israel J. Math 168 (2008), 167-188. MR 2448056, 10.1007/s11856-008-1062-6; reference:[14] Haydon, R. G.: Normes infiniment différentiables sur certains espaces de Banach.C. R. Acad. Sci., Paris, Sér. I 315 (1992), 1175-1178 French. Zbl 0788.46008, MR 1194512; reference:[15] Haydon, R. G.: Smooth functions and partitions of unity on certain Banach spaces.Q. J. Math., Oxf. II. Ser. 47 (1996), 455-468. Zbl 0945.46024, MR 1460234, 10.1093/qmath/47.4.455; reference:[16] Haydon, R. G.: Trees in renorming theory.Proc. Lond. Math. Soc., III. Ser. 78 (1999), 541-584. Zbl 1036.46003, MR 1674838, 10.1112/S0024611599001768; reference:[17] Johnson, W. B., (Eds.), J. Lindenstrauss: Handbook of the Geometry of Banach Spaces, Vol. 1.Elsevier Amsterdam (2001). MR 1863689; reference:[18] Klee, V. L.: Polyhedral sections of convex bodies.Acta Math. 103 (1960), 243-267. Zbl 0148.16203, MR 0139073, 10.1007/BF02546358; reference:[19] Leung, D. H.: Some isomorphically polyhedral Orlicz sequence spaces.Isr. J. Math. 87 (1994), 117-128. Zbl 0804.46014, MR 1286820, 10.1007/BF02772988; reference:[20] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I: Sequence Spaces.Springer (1977). Zbl 0362.46013, MR 0500056; reference:[21] Pechanec, J., Whitfield, J. H. M., Zizler, V.: Norms locally dependent on finitely many coordinates.An. Acad. Bras. Cienc. 53 (1981), 415-417. Zbl 0486.46020, MR 0663236; reference:[22] Talagrand, M.: Renormages de quelques $\Cal C(K)$.Isr. J. Math. 54 (1986), 327-334 French. Zbl 0611.46023, MR 0853457, 10.1007/BF02764961; reference:[23] Toruńczyk, H.: Smooth partitions of unity on some non-separable Banach spaces.Stud. Math. 46 (1973), 43-51. MR 0339255, 10.4064/sm-46-1-43-51
-
7Academic Journal
المؤلفون: Nowak, Marian, Rzepka, Aleksandra
مصطلحات موضوعية: keyword:vector-valued continuous functions, keyword:strict topologies, keyword:locally solid topologies, keyword:Dini topologies, msc:46A03, msc:46E05, msc:46E10, msc:46E40, msc:47A70
وصف الملف: application/pdf
Relation: mr:MR1920522; zbl:Zbl 1068.46023; reference:[A] Aguayo-Garrido J.: Strict topologies on spaces of continuous functions and $u$-additive measure spaces.J. Math. Anal. Appl. 220 (1998), 77-89. Zbl 0914.46031, MR 1612071; reference:[AB] Aliprantis C.D., Burkinshaw O.: Locally Solid Topologies.Academic Press, New York, San Francisco, London, 1978. Zbl 0436.46009, MR 0493242; reference:[F] Fontenot R.A.: Strict topologies for vector-valued functions.Canad. J. Math. 26 (1974), 841-853. Zbl 0259.46037, MR 0348463; reference:[K$_1$] Katsaras A.K.: Spaces of vector measures.Trans. Amer. Math. Soc. 206 (1975), 313-328. Zbl 0275.46029, MR 0365111; reference:[K$_2$] Katsaras A.K.: Some locally convex spaces of continuous vector-valued functions over a completely regular space and their duals.Trans. Amer. Math. Soc. 216 (1976), 367-387. Zbl 0317.46031, MR 0390733; reference:[K$_3$] Katsaras A.K.: Locally convex topologies on spaces of continuous vector functions.Math. Nachr. 71 (1976), 211-226. Zbl 0281.46032, MR 0458143; reference:[Ku] Khurana S.S.: Topologies on spaces of vector-valued continuous functions.Trans. Amer. Math. Soc. 241 (1978), 195-211. Zbl 0362.46035, MR 0492297; reference:[KuO] Khurana S.S., Othman S.I.: Grothendieck measures.J. London Math. Soc. (2) 39 (1989), 481-486. Zbl 0681.46030, MR 1002460; reference:[KuV$_1$] Khurana S.S., Vielma J.E.: Strict topology and perfect measures.Czechoslovak Math. J. 40 (1990), 1-7. Zbl 0711.28002, MR 1032358; reference:[KuV$_2$] Khurana S.S., Vielma J.E.: Weak sequential convergence and weak compactness in spaces of vector-valued continuous functions.J. Math. Anal. Appl. 195 (1995), 251-260. Zbl 0854.46032, MR 1352821; reference:[S] Sentilles F.D.: Bounded continous functions on a completely regular space.Trans. Amer. Math. Soc. 168 (1972), 311-336. MR 0295065; reference:[W] Wheeler R.F.: Survey of Baire measures and strict topologies.Exposition Math. 2 (1983), 97-190. Zbl 0522.28009, MR 0710569; reference:[W$_1$] Wheeler R.F.: The strict topology, separable measures, and paracompactness.Pacific J. Math. 47 (1973), 287-302. Zbl 0244.46028, MR 0341047
-
8Academic Journal
المؤلفون: Kramar, Edvard
مصطلحات موضوعية: keyword:invariant subspace, keyword:locally convex space, keyword:locally bounded operator, keyword:universally bounded operator, keyword:compact operator, msc:46A03, msc:46A32, msc:46A99, msc:47A15
وصف الملف: application/pdf
Relation: mr:MR1601676; zbl:Zbl 0937.47005; reference:[1] Brown S.: Connections between an operator and a compact operator that yields hyperinvariant subspaces.J. Oper. Theory 1 (1979), 117-121. MR 0526293; reference:[2] Chilana A.K.: Invariant subspaces for linear operators in locally convex spaces.J. Lond. Soc. 2 (1970), 493-503. Zbl 0198.45703, MR 0423095; reference:[3] Edwards R.E.: Functional Analysis, Theory and Applications.Holt, Rinehart and Winston, New York, 1965. Zbl 0189.12103, MR 0221256; reference:[4] Floret K., Wloka J.: Einführung in die Theorie der lokalkonvexen Räume.Lectures Notes in Mathematics 56, Springer-Verlag, Berlin-Heidelberg-New York, 1968. Zbl 0155.45101, MR 0226355; reference:[5] Fong C.K., Nordgren E.A., Radjabalipour M., Radjavi H., Rosenthal P.: Extensions of Lomonosov's invariant subspace theorem.Acta Sci. Math. 41 (1979), 55-62. Zbl 0413.47004, MR 0534499; reference:[6] Joseph G.A.: Boundedness and completeness in locally convex spaces and algebras.J. Austral. Math. Soc. 24 (Series A) (1977), 50-63. Zbl 0367.46045, MR 0512300; reference:[7] Kalnins D.: Sous-espaces hyperinvariant d'un operateur compact.C.R. Acad. Sc. Paris, ser. A 288 (1979), 115-116. MR 0524763; reference:[8] Kim H.W., Moore R., Pearcy C.M.: A variation of Lomonosov theorem.J. Oper. Theory 2 (1979), 131-140. MR 0553868; reference:[9] Köthe G.: Topological vector spaces II.N. York, Heidelberg, Berlin, 1979. MR 0551623; reference:[10] Lerer L.E.: K spektraljnoj teorii ograničenih operatorov v lokalno vipuklom prostranstve.Matem. Issled. 2 (1967), 206-214.; reference:[11] Moore R.T.: Banach algebras of operators on locally convex spaces.Bull. Am. Math. Soc. 75 (1969), 68-73. Zbl 0189.13302, MR 0236723
-
9Academic Journal
المؤلفون: Kadelburg, Zoran, Radenović, Stojan
مصطلحات موضوعية: keyword:three-space-problem, keyword:locally topological spaces, keyword:(HM)-spaces, keyword:inductively semireflexive spaces, keyword:spaces with minimal or the finest linear topology, msc:46A03, msc:46A04, msc:46A16
وصف الملف: application/pdf
Relation: mr:MR1426915; zbl:Zbl 0881.46002; reference:[1] Adasch N., Ernst B.: Lokaltopologische Vektorräume.Collect. Math. 25 (1974), 255-274. Zbl 0305.46006, MR 0427994; reference:[2] Bellenot S.F.: On nonstandard hulls of convex spaces.Can. J. Math. 28 (1976), 141-147. Zbl 0308.46001, MR 0407556; reference:[3] Berezanskiĭ Yu.A.: Induktivno refleksivnye lokal'no vypuklye prostranstva.Soviet Math. {Dokl.} 9 (1968), 1080-1082.; reference:[4] Bonet J., Dierolf S.: On distinguished Fréchet spaces.Progress in Functional Analysis, K.D. Bierstedt, J. Bonet, J. Horváth, M. Maestre (eds.) Elsevier Publ. (1992), 201-214. Zbl 0785.46003, MR 1150747; reference:[5] Bonet J., Dierolf S., Fernandez C.: On the three-space-problem for distinguished Fréchet spaces.Bull. Soc. Roy. Sci. Liége 59 (1990), 301-306. Zbl 0713.46001, MR 1070413; reference:[6] Brauner K.: Duals of Fréchet spaces and a generalization of the Banach-Dieudonné theorem.Duke Math. J. 40 (1973), 845-856. Zbl 0274.46003, MR 0330988; reference:[7] Buchwalter H.: Espaces ultrabornologiques et b-reflexivite.Publ. Dép. Mat. Lyon 8 (1971), 91-106. Zbl 0252.46010, MR 0320684; reference:[8] Dierolf S.: A note on the lifting of linear and locally convex topologies on a quotient space.Collect. Math. 31 (1980), 193-198. Zbl 0453.46002, MR 0621724; reference:[9] Dierolf S.: On the three-space-problem and the lifting of bounded sets.Collect. Math. 44 (1993), 81-89. Zbl 0803.46001, MR 1280727; reference:[10] Grothendieck A.: Sur les espaces (F) et (DF).Summa Bras. Math. 3 (1954), 57-123. Zbl 0058.09803, MR 0075542; reference:[11] Heinrich S.: Ultrapowers of locally convex spaces and applications I.Math. Nachr. 118 (1984), 285-315. Zbl 0576.46002, MR 0773627; reference:[12] Henson C.W., Moore L.C., Jr.: The nonstandard theory of topological vector spaces.Trans. Amer. Math. Soc. 172 (1972), 405-435. MR 0308722; reference:[13] Henson C.W., Moore L.C., Jr.: Invariance of the nonstandard hulls of locally convex spaces.Duke Math. J. 40 (1973), 193-205. Zbl 0256.46001, MR 0372568; reference:[14] Kadelburg Z.: Ultra-b-barrelled spaces and the completeness of $\Cal L_b(E,F)$.Mat. Vesnik 3 (16) (31) (1979), 23-30. MR 0589477; reference:[15] Kadelburg Z., Radenović S.: On ultrapowers of linear topological spaces without convexity conditions.Publ. Inst. Math. (N.S) 47(61) (1990), 71-81. MR 1103531; reference:[16] Köthe G.: Topological Vector Spaces I, $2^{nd}$ ed.Springer Berlin-Heidelberg-New York (1983). MR 0248498; reference:[17] Meise R., Vogt D.: Einführung in Funktionalanalysis.Vieweg Wiesbaden (1992). MR 1195130; reference:[18] Noureddine K.: Nouvelles classes d'espaces localment convexes.Publ. Dép. Mat. Lyon 10 (1973), 105-122. MR 0367605; reference:[19] Roelcke W., Dierolf S.: On the three-space-problem for topological vector spaces.Collect. Math. 32 (1981), 13-35. Zbl 0489.46002, MR 0643398; reference:[20] Shaefer H.H.: Topological Vector Spaces.Springer Berlin-Heidelberg-New York (1970).
-
10Academic Journal
المؤلفون: Kučera, Jan, McKennon, Kelly
وصف الملف: application/pdf
Relation: mr:MR1152164; zbl:Zbl 0848.46001; reference:[1] J. Kučera, K. McKennon: Dieudonné-Schwartz Theorem on Bounded Sets in Inductive Limits.Proc. A.M.S. 78 (1980), 366–368. MR 0553378; reference:[2] J. Kučera, K. McKennon: Köthe’s Example of an Incomplete LB-space.Proc. A.M.S. 93 (1985), 79–80. MR 0766531
-
11Academic Journal
المؤلفون: Krassowska, Dorota, Śliwa, Wiesƚaw
مصطلحات موضوعية: keyword:$DF$-spaces, keyword:countably quasibarrelled spaces, msc:46A03, msc:46A04, msc:46A05, msc:46A20
وصف الملف: application/pdf
Relation: mr:MR1173744; zbl:Zbl 0782.46006; reference:[1] Grothendieck A.: Sur les espaces $(F)$ et $(DF)$.Summa Brasil Math. 3 (1954), 57-123. Zbl 0058.09803, MR 0075542; reference:[2] Iyahen O., Sunday: Some remarks on countably barrelled and countably quasibarrelled spaces.Proc. Edinburgh Math. Soc. 15 (1966), 295-296. MR 0226357; reference:[3] Radenovič S.: Some remarks on the weak topology of locally convex spaces.Publ. de l'Institut Math. 44 (1988), 155-157. MR 0995423; reference:[4] Robertson A., Robertson W.: Topological vector spaces.Cambridge Univ. Press, 1973. Zbl 0423.46001, MR 0350361; reference:[5] Schaefer H.: Topological vector spaces.Springer-Verlag, New York-Heidelberg-Berlin, 1971. Zbl 0983.46002, MR 0342978
-
12Academic Journal
المؤلفون: Fitzpatrick, Simon, Calvert, Bruce
مصطلحات موضوعية: keyword:inner product space, keyword:two dimensional subspace, keyword:projection, msc:46A03, msc:46A55, msc:46C05, msc:46C15, msc:52A07, msc:52A15
وصف الملف: application/pdf
Relation: mr:MR1137784; zbl:Zbl 0756.46010; reference:[1] Amir D.: Characterizations of Inner Product Spaces.Birkhäuser Verlag, Basel, Boston, Stuttgart, 1986. Zbl 0617.46030, MR 0897527; reference:[2] Calvert B., Fitzpatrick S.: Nonexpansive projections onto two dimensional subspaces of Banach spaces.Bull. Aust. Math. Soc. 37 (1988), 149-160. Zbl 0634.46013, MR 0926986; reference:[3] Fitzpatrick S., Calvert B.: Sets invariant under projections onto one dimensional subspaces.Comment. Math. Univ. Carolinae 32 (1991), 227-232. Zbl 0756.52002, MR 1137783
-
13Academic Journal
المؤلفون: Kąkol, Jerzy, Sorjonen, Pekka
مصطلحات موضوعية: keyword:locally convex space, keyword:orthogonality space, keyword:Hahn--Banach extension property, msc:46A03, msc:46A15, msc:46A16, msc:46A22, msc:46C99
وصف الملف: application/pdf
Relation: mr:MR1118287; zbl:Zbl 0749.46002; reference:[1] Kąkol J.: Basic sequences and non locally convex topological vector spaces.Rend. Circ. Mat. Palermo (2) 36 (1987), 95-102. MR 0944650; reference:[2] Kalton N.J., Peck N.T., Roberts J.W.: An F-space sampler.vol. 89 of London Mathematical Society Lecture Note Series, Cambridge University Press, 1984. Zbl 0556.46002, MR 0808777; reference:[3] Piziak R.: Mackey closure operators.J. London Math. Soc. 4 (1971), 33-38. Zbl 0253.06001, MR 0295977; reference:[4] Piziak R.: Sesquilinear forms in infinite dimensions.Pacific J. Math. 43 (2) (1972), 475-481. Zbl 0237.46007, MR 0318850; reference:[5] Sorjonen P.: Lattice-theoretical characterizations of inner product spaces.Studia Sci. Math. Hungarica 19 (1984), 141-149. Zbl 0588.46019, MR 0787796; reference:[6] Sorjonen P.: Hahn-Banach extension properties in linear orthogonality spaces.Funct. Approximatio, Comment. Math., to appear. Zbl 0793.46007, MR 1201711; reference:[7] Wilbur W.J.: Quantum logic and the locally convex spaces.Trans. Amer. Math. Soc. 207 (1975), 343-360. Zbl 0289.46019, MR 0367607
-
14Conference
-
15Conference
-
16Conference
-
17Conference
المؤلفون: Tomášek, S.
مصطلحات موضوعية: msc:46A03
وصف الملف: application/pdf
Relation: zbl:Zbl 0171.32903
-
18Academic Journal
-
19Academic Journal
المؤلفون: Ger, Roman
وصف الملف: application/pdf
Relation: mr:MR945081; zbl:Zbl 0641.39006; reference:[1] CHOLEWA P. W.: Remarks on the stability of functional equations.Aequationes Math. 27 (1984), pp. 76-86. Zbl 0549.39006, MR 0758860; reference:[2] CHRISTENSEN J. P. R.: On sets of Haar measure zero in Abelian Polish groups.Israel Journal Math. 13 (1972), pp. 255-260. MR 0326293; reference:[3] DHOMBRES J., GER R.: Conditional Cauchy equations.Glasnik Mat. 13 (1978), pp. 39-62. Zbl 0384.39004, MR 0499880; reference:[4] FISCHER P., SLODKOWSKI Z.: Christensen zero sets and measurable convex functions.Proc. Amer. Math. Soc. 79(1980), pp. 449-453. Zbl 0444.46010, MR 0567990; reference:[5] GER R.: Almost approximately additive mappings.Proceedings of the Third International Conference on General Inequalities. Edited by E. F. Beckenbach and W. Walter, ISNM 64, Birkhauser Verlag, Basel und Stuttgart, 1983, pp. 263-276. Zbl 0519.39009, MR 0785782; reference:[6] GREEN J. W.: Approximately convex functions.Duke Math. J. 19 (1952), pp. 499-504. Zbl 0047.29601, MR 0049963; reference:[7] HYERS B. H., ULAM S.: Approximately convex functions.Proc. Amer. Math. Soc. 3 (1952), pp. 821-828. Zbl 0047.29505, MR 0049962; reference:[8] KUCZMA M.: Almost convex functions.Colloquium Math. 21 (1970), pp. 279-284. Zbl 0201.38701, MR 0262436; reference:[9] KUCZMA M.: An introduction to the theory of functional equations and inequalities.Polish Scientific Publishers and Uniwersytet Slaski, Warszawa-Krakow-Katowice, 1985. Zbl 0555.39004, MR 0788497; reference:[10] REICH L.: .Oral Communication. Zbl 1241.00017; reference:[11] WALTER W.: .Oral communication. Zbl 1241.62063
-
20Academic Journal
المؤلفون: Barot, Jiří
وصف الملف: application/pdf
Relation: mr:MR512760; zbl:Zbl 0415.46002; reference:[1] W. Nef: Invariante Linearformen.Mathematische Nachrichten 28, (1964), Satz 28, 123-140. MR 0084106