يعرض 1 - 20 نتائج من 36 نتيجة بحث عن '"msc:45N05"', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4134141; zbl:07250669; reference:[1] Alves, M. S., Gamboa, P., Gorain, G. C., Rambaud, A., Vera, O.: Asymptotic behavior of a flexible structure with Cattaneo type of thermal effect.Indag. Math., New Ser. 27 (2016), 821-834. Zbl 1359.80003, MR 3505996, 10.1016/j.indag.2016.03.001; reference:[2] Alves, M., Rivera, J. Muñoz, Sepúlveda, M., Villagrán, O. Vera, Garay, M. Zegarra: The asymptotic behavior of the linear transmission problem in viscoelasticity.Math. Nachr. 287 (2014), 483-497. Zbl 1291.35386, MR 3193931, 10.1002/mana.201200319; reference:[3] Aouadi, M.: On uniform decay of a nonsimple thermoelastic bar with memory.J. Math. Anal. Appl. 402 (2013), 745-757. Zbl 1307.74024, MR 3029188, 10.1016/j.jmaa.2013.01.059; reference:[4] Cattaneo, C.: Sulla conduzione del calore.Atti Semin. Mat. Fis. Univ., Modena 3 (1948), 83-101 Italian. Zbl 0035.26203, MR 0032898; reference:[5] Christov, C. I.: On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction.Mech. Res. Commun. 36 (2009), 481-486. Zbl 1258.80001, MR 2510197, 10.1016/j.mechrescom.2008.11.003; reference:[6] Coleman, B. D., Gurtin, M. E.: Equipresence and constitutive equations for rigid heat conductors.Z. Angew. Math. Phys. 18 (1967), 199-208. MR 0214334, 10.1007/BF01596912; reference:[7] Dafermos, C. M.: Asymptotic stability in viscoelasticity.Arch. Rational. Mech. Anal. 37 (1970), 297-308. Zbl 0214.24503, MR 0281400, 10.1007/BF00251609; reference:[8] Fatori, L. H., Rivera, J. E. Munõz, Monteiro, R. Nunes: Energy decay to Timoshenko's system with thermoelasticity of type III.Asymptotic Anal. 86 (2014), 227-247. Zbl 1294.80003, MR 3181823, 10.3233/ASY-131196; reference:[9] Feng, B., Li, H.: General decay of solutions to a one-dimensional thermoelastic beam with variable coefficients.Bound. Value Probl. 2017 (2017), Article ID 158, 13 pages. Zbl 1378.35034, MR 3719703, 10.1186/s13661-017-0891-9; reference:[10] Sare, H. D. Fernández, Racke, R.: On the stability of damped Timoshenko systems: Cattaneo versus Fourier law.Arch. Ration. Mech. Anal. 194 (2009), 221-251. Zbl 1251.74011, MR 2533927, 10.1007/s00205-009-0220-2; reference:[11] Gearhart, L.: Spectral theory for contraction semigroups on Hilbert spaces.Trans. Am. Math. Soc. 236 (1978), 385-394. Zbl 0326.47038, MR 0461206, 10.1090/S0002-9947-1978-0461206-1; reference:[12] Giorgi, C., Grandi, D., Pata, V.: On the Green-Naghdi type III heat conduction model.Discrete Contin. Dyn. Syst., Ser. B 19 (2014), 2133-2143. Zbl 1302.80004, MR 3253249, 10.3934/dcdsb.2014.19.2133; reference:[13] Gorain, G. C.: Exponential stabilization of longitudinal vibrations of an inhomogeneous beam.J. Math. Sci., New York 198 (2014), 245-251 translated from Nelini\vıni Kolyvannya 16 2013 157-164. Zbl 1301.35178, MR 3374913, 10.1007/s10958-014-1787-1; reference:[14] Green, A. E., Naghdi, P. M.: A re-examination of the basic postulates of thermomechanics.Proc. R. Soc. Lond., Ser. A 432 (1991), (171-194). Zbl 0726.73004, MR 1116956, 10.1098/rspa.1991.0012; reference:[15] Gurtin, M. E., Pipkin, A. C.: A general theory of heat conduction with finite wave speeds.Arch. Ration. Mech. Anal. 31 (1968), 113-126. Zbl 0164.12901, MR 1553521, 10.1007/BF00281373; reference:[16] Liu, K., Liu, Z.: On the type of $C_{0}$-semigroup associated with the abstract linear viscoelastic system.Z. Angew. Math. Phys. 47 (1996), 1-15. Zbl 0841.73026, MR 1408667, 10.1007/BF00917570; reference:[17] Liu, K., Liu, Z.: Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping.SIAM J. Control Optimization 36 (1998), 1086-1098. Zbl 0909.35018, MR 1613917, 10.1137/S0363012996310703; reference:[18] Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems.Chapman & Hall/CRC Research Notes in Mathematics 398. Chapman and Hall/CRC, Boca Raton (1999). Zbl 0924.73003, MR 1681343; reference:[19] Magaña, A., Quintanilla, R.: Exponential decay in nonsimple thermoelasticity of type III.Math. Methods Appl. Sci. 39 (2016), 225-235. Zbl 1336.35062, MR 3453707, 10.1002/mma.3472; reference:[20] Pamplona, P. X., Rivera, J. E. Muñoz, Quintanilla, R.: On the decay of solutions for porous-elastic systems with history.J. Math. Anal. Appl. 379 (2011), 682-705. Zbl 1259.35136, MR 2784351, 10.1016/j.jmaa.2011.01.045; reference:[21] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44. Springer, New York (1983). Zbl 0516.47023, MR 0710486, 10.1007/978-1-4612-5561-1; reference:[22] Santos, M. L., Almeida, D. S.: On Timoshenko-type systems with type III thermoelasticity: Asymptotic behavior.J. Math. Anal. Appl. 448 (2017), 650-671. Zbl 1388.35191, MR 3579904, 10.1016/j.jmaa.2016.10.074; reference:[23] Straughan, B.: Heat Waves.Applied Mathematical Sciences 177. Springer, New York (2011). Zbl 1232.80001, MR 2663899, 10.1007/978-1-4614-0493-4

  2. 2
    Academic Journal

    المؤلفون: Rachid, Bahloul

    وصف الملف: application/pdf

    Relation: mr:MR3964437; zbl:Zbl 07088761; reference:[2] Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates.Handb. Differ. Equ., vol. I, North-Holland, Amsterdam, 2004, pp. 1–85. MR 2103696; reference:[3] Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity.Math. Z. 240 (2002), 311–343. Zbl 1018.47008, MR 1900314, 10.1007/s002090100384; reference:[4] Arendt, W., Bu, S.: Operator-valued Fourier multipliers on periodic Besov spaces and applications.Proc. Edinb. Math. Soc. (2) 47 (2004), 15–33. MR 2064734; reference:[5] Bourgain, J.: Vector-valued Hausdorff-Young inequalities and applications.Geometric Aspects of Functional Analysis (1986/1987),, vol. 1317, Lecture Notes in Math., Springer Verlag Berlin, 1986, pp. 239–249. MR 0950985; reference:[6] Bourgain, J.: Vector-valued singular integrals and the $H^1$-BMO duality.probability theory and harmonic analysis ed., Marcel Dekker, New York, 1986. MR 0830227; reference:[7] Bu, S.: Maximal regularity for integral equations in Banach spaces.Taiwanese J. Math. 15 (1) (2011), 229–240. MR 2780282, 10.11650/twjm/1500406172; reference:[8] Bu, S., Fang, F.: Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces.Studia Math. 184 (2) (2008), 103–119. MR 2365804, 10.4064/sm184-2-1; reference:[9] Cai, G., Bu, S.: Well-posedness of second order degenerate integro-differential equations with infinite delay in vector-valued function spaces.Math. Nachr. 289 (2016), 436–451. MR 3481298, 10.1002/mana.201400112; reference:[10] Cavalcanti, M.M., Cavalcanti, V.N. Domingos, Guesmia, A.: Weak stability for coupled wave and/or Petrovsky systems with complementary frictional damping and infinite memory.J. Differential Equations 259 (2015), 7540–7577. MR 3401605, 10.1016/j.jde.2015.08.028; reference:[11] Clément, Ph., Da Prato, G.: Existence and regularity results for an integral equation with infinite delay in a Banach space.Integral Equations Operator Theory 11 (1988), 480–500. MR 0950513, 10.1007/BF01199303; reference:[12] Clément, Ph., de Pagter, B., Sukochev, F.A., Witvliet, M.: Schauder decomposition and multiplier theorems.Studia Math. 138 (2000), 135–163. MR 1749077; reference:[13] Clément, Ph., Prüss, J.: An operator-valued transference principle and maximal regularity on vector-valued $Lp$-spaces.Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 67–87. MR 1816437; reference:[14] Da Prato, G., Lunardi, A.: Periodic solutions for linear integrodifferential equations with infinite delay in Banach spaces.Differential Equations in Banach spaces, Lecture Notes in Math., vol. 1223, Springer, Berlin, 1986, pp. 49–60. MR 0872516; reference:[15] de Pagter, B., Witvliet, H.: Unconditional decompositions and $UMD$ spaces.Publ. Math. Besançon, Fasc. 16 (1998), 79–111. MR 1768325; reference:[16] Denk, R., Hieber, M., Prüss, Jan: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type.Mem. Amer. Math. Soc. 788 (2003). MR 2006641; reference:[17] Girardi, M., Weis, L.: Operator-valued Fourier multiplier theorems on Besov spaces.Math. Nachr. 251 (2003), 34–51. MR 1960803, 10.1002/mana.200310029; reference:[18] Girardi, M., Weis, L.: Operator-valued Fourier multipliers and the geometry of Banach spaces.J. Funct. Anal. 204 (2) (2003), 320–354. MR 2017318, 10.1016/S0022-1236(03)00185-X; reference:[19] Keyantuo, V., Lizama, C.: Fourier multipliers and integro-differential equations in Banach spaces.J. London Math. Soc. 69 (3) (2004), 737–750. MR 2050043, 10.1112/S0024610704005198; reference:[20] Keyantuo, V., Lizama, C.: Periodic solutions of second order differential equations in Banach spaces.Math. Z. 253 (2006), 489–514. MR 2221083, 10.1007/s00209-005-0919-1; reference:[21] Keyantuo, V., Lizama, C., Poblete, V.: Periodic solutions of integro-differential equations in vector-valued function spaces.J. Differential Equations 246 (2009), 1007–1037. MR 2474584, 10.1016/j.jde.2008.09.007; reference:[22] Koumla, S., Ezzinbi, Kh., Bahloul, R.: Mild solutions for some partial functional integrodifferential equations with finite delay in Fréchet spaces.SeMA J. 74 (4) (2017), 489–501. MR 3736690, 10.1007/s40324-016-0096-7; reference:[23] Kunstmann, P.C., Weis, L.: Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty $-functional calculus.Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65–311. MR 2108959; reference:[24] Lizama, C.: Fourier multipliers and periodic solutions of delay equations in Banach spaces.J. Math. Anal. Appl. 324 (1) (2006), 921–933. MR 2265090, 10.1016/j.jmaa.2005.12.043; reference:[25] Lizama, C., Poblete, V.: Periodic solutions of fractional differential equations with delay.Journal of Evolution Equations 11 (2011), 57–70. MR 2780573, 10.1007/s00028-010-0081-z; reference:[26] Poblete, V.: Solutions of second-order integro-differental equations on periodic Besov space.Proc. Edinburgh Math. Soc. (2) 50 (20) (2007), 477–492. MR 2334958; reference:[27] Suresh Kumar, P., Balachandran, K., Annapoorani, N.: Controllability of nonlinear fractional Langevin delay systems.Nonlinear Analysis: Modelling and Control 23 (3) (2017), 321–340, https://doi.org/10.15388/NA.2018.3.3. MR 3798269, 10.15388/NA.2018.3.3; reference:[28] Weis, L.: A new approach to maximal $L_p$-regularity.Lect. Notes Pure Appl. Math. 2115 (2001), 195–214. MR 1818002; reference:[29] Weis, L.: Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity.Math. Ann. 319 (2001), 735–758. MR 1825406, 10.1007/PL00004457

  3. 3
    Academic Journal

    المؤلفون: Vasilyev, Vladimir

    وصف الملف: application/pdf

    Relation: mr:MR3238843; zbl:Zbl 06362262; reference:[1] Eskin, G. I.: Boundary Value Problems for Elliptic Pseudodifferential Equations. Translated from the Russian.Translations of Mathematical Monographs 52 AMS, Providence (1981). MR 0623608; reference:[2] Gel'fand, I. M., Shilov, G. E.: Generalized Functions. Vol. I: Properties and Operations. Translated from the Russian.Academic Press, New York (1964). MR 0166596; reference:[3] Vasil'ev, V. B.: Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the theory of boundary value problems in non-smooth domains.Kluwer Academic Publishers, Dordrecht (2000). Zbl 0961.35193, MR 1795504; reference:[4] Vasilyev, V. B.: Elliptic equations and boundary value problems in non-smooth domains\.Pseudo-Differential Operators: Analysis, Applications and Computations L. Rodino, M. W. Wong, H. Zhu Operator Theory: Advances and Applications 213 Birk-häuser, Basel 105-121 (2011). MR 2867419; reference:[5] Vasilyev, V. B.: General boundary value problems for pseudo-differential equations and related difference equations.Advances in Difference Equations (2013), Article ID 289, 7 pages. MR 3337282

  4. 4
    Academic Journal

    المؤلفون: Heikkilä, Seppo, Ye, Guoju

    وصف الملف: application/pdf

    Relation: mr:MR3010237; zbl:Zbl 1274.45017; reference:[1] Carl, S., Heikkilä, S.: On discontinuous implicit and explicit abstract impulsive boundary value problems.Nonlinear Anal., Theory Methods Appl. 41 (2000), 701-723. MR 1780640, 10.1016/S0362-546X(98)00305-8; reference:[2] Federson, M., Bianconi, M.: Linear Fredholm integral equations and the integral of Kurzweil.J. Appl. Anal. 8 (2002), 83-110. Zbl 1043.45010, MR 1921473, 10.1515/JAA.2002.83; reference:[3] Federson, M., Schwabik, Š.: Generalized ordinary differential equations approach to impulsive retarded functional differential equations.Differ. Integral Equ. 19 (2006), 1201-1234. MR 2278005; reference:[4] Federson, M., Táboas, P.: Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals.Nonlinear Anal., Theory Methods Appl. 50 (2002), 389-407. Zbl 1011.34070, MR 1906469, 10.1016/S0362-546X(01)00769-6; reference:[5] Guo, D., Cho, Y. J., Zhu, J.: Partial Ordering Methods in Nonlinear Problems.Nova Science Publishers, Inc. New York (2004). Zbl 1116.45007, MR 2084490; reference:[6] Heikkilä, S., Kumpulainen, S., Kumpulainen, M.: On improper integrals and differential equations in ordered Banach spaces.J. Math. Anal. Appl. 319 (2006), 579-603. Zbl 1105.34037, MR 2227925, 10.1016/j.jmaa.2005.06.051; reference:[7] Heikkilä, S., Lakshmikantham, V.: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations.Marcel Dekker, Inc. New York (1994). Zbl 0804.34001, MR 1280028; reference:[8] Heikkilä, S., Seikkala, S.: On non-absolute functional Volterra integral equations and impulsive differential equations in ordered Banach spaces.Electron. J. Differ. Equ., paper No. 103 (2008), 1-11. Zbl 1168.45011, MR 2430900; reference:[9] Heikkilä, S., Ye, G.: Convergence and comparison results for Henstock-Kurzweil and McShane integrable vector-valued functions.Southeast Asian Bull. Math. 35 (2011), 407-418. Zbl 1240.26025, MR 2856387; reference:[10] Lu, J., Lee, P.-Y.: On singularity of Henstock integrable functions.Real Anal. Exch. 25 (2000), 795-797. Zbl 1015.26016, MR 1778532, 10.2307/44154035; reference:[11] Satco, B.-R.: Nonlinear Volterra integral equations in Henstock integrability setting.Electron. J. Differ. Equ., paper No. 39 (2008), 1-9. Zbl 1169.45300, MR 2392943; reference:[12] Schwabik, Š., Ye, G.: Topics in Banach Space Integration.World Scientific Hackensack (2005). Zbl 1088.28008, MR 2167754; reference:[13] Sikorska-Nowak, A.: On the existence of solutions of nonlinear integral equations in Banach spaces and Henstock-Kurzweil integrals.Ann. Pol. Math. 83 (2004), 257-267. Zbl 1101.45006, MR 2111712, 10.4064/ap83-3-7; reference:[14] Sikorska-Nowak, A.: Existence theory for integrodifferential equations and Henstock-Kurzweil integral on Banach spaces.J. Appl. Math., Article ID31572 (2007), 1-12. MR 2317885, 10.1155/2007/31572; reference:[15] Sikorska-Nowak, A.: Existence of solutions of nonlinear integral equations in Banach spaces and Henstock-Kurzweil integrals.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 227-238. MR 2377959; reference:[16] Sikorska-Nowak, A.: Nonlinear integrodifferential equations of mixed type in Banach spaces.Int. J. Math. Math. Sci., Article ID65947 (2007), 1-14. Zbl 1147.45009, MR 2336140, 10.1155/2007/65947; reference:[17] Sikorska-Nowak, A.: Nonlinear integral equations in Banach spaces and Henstock-Kurzweil-Pettis integrals.Dyn. Syst. Appl. 17 (2008), 97-107. Zbl 1154.45011, MR 2433893

  5. 5
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2984604; zbl:Zbl 1265.45012; reference:[1] Balachandran, K., Chandrasekaran, M.: Existence of solutions of nonlinear integrodifferential equation with nonlocal condition.J. Appl. Math. Stochastic Anal. 10 (1997), 279-288. Zbl 0986.45005, MR 1468123, 10.1155/S104895339700035X; reference:[2] Balachandran, K.: Existence and uniqueness of mild and strong solutions of nonlinear integrodifferential equations with nonlocal condition.Differ. Equ. Dyn. Syst. 6 (1998), 159-165. MR 1660213; reference:[3] Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem.J. Math. Anal. Appl. 162 (1991), 494-505. Zbl 0748.34040, MR 1137634, 10.1016/0022-247X(91)90164-U; reference:[4] Byszewski, L.: Existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem.Zesz. Nauk. Politech. Rzesz. 121, Mat. Fiz. 18 (1993), 109-112. Zbl 0858.34045, MR 1274697; reference:[5] Dhakne, M. B., Kendre, S. D.: On a nonlinear Volterra integrodifferential equation in Banach spaces.Math. Inequal. Appl. 9 (2006), 725-735. Zbl 1108.45009, MR 2268180; reference:[6] Dhakne, M. B., Kendre, S. D.: On an abstract nonlinear integrodifferential equation. Proceedings of Second International Conference on Nonlinear Systems, December 2007.Bulletin of Marathwada Mathematical Society 8 (2007), 12-22.; reference:[7] Dugundji, J., Granas, A.: Fixed Point Theory. I: Monografie Matematyczne.PWN Warszawa (1982). MR 0660439; reference:[8] Ntouyas, S. K., Tsamatos, P. C.: Global existence for semilinear evolution equations with nonlocal conditions.J. Math. Anal. Appl. 210 (1997), 679-687. Zbl 0884.34069, MR 1453198, 10.1006/jmaa.1997.5425; reference:[9] Ntouyas, S. K., Tsamatos, P. C.: Global existence for second-order semilinear ordinary and delay integrodifferential equations with nonlocal conditions.Appl. Anal. 67 (1997), 245-257. Zbl 0906.35110, MR 1614061, 10.1080/00036819708840609; reference:[10] Pachpatte, B. G.: Applications of the Leray-Schauder alternative to some Volterra integral and integrodifferential equations.Indian J. Pure Appl. Math. 26 (1995), 1161-1168. Zbl 0852.45012, MR 1364736; reference:[11] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer New York (1983). Zbl 0516.47023, MR 0710486; reference:[12] Tidke, H. L., Dhakne, M. B.: On global existence of solutions of abstract nonlinear mixed integrodifferential equation with nonlocal condition.Commun. Appl. Nonlinear Anal. 16 (2009), 49-59. Zbl 1179.45021, MR 2490243; reference:[13] Tidke, H. L.: Existence of global solutions to nonlinear mixed Volterra-Fredholm integrodifferential equations with nonlocal conditions.Electron. J. Differ. Equ., paper No. 55 2009 (2009), 1-7. Zbl 1165.45010, MR 2505113; reference:[14] Winter, A.: The nonlocal existence problem for ordinary differential equations.Am. J. Math. 67 (1945), 277-284. 10.2307/2371729

  6. 6
    Academic Journal

    المؤلفون: Ben Amar, Afif

    وصف الملف: application/pdf

    Relation: mr:MR2849044; zbl:Zbl 1240.45010; reference:[1] Agarwal R., O'Regan D., Sikorska-Nowak A.: The set of solutions of integrodifferential equations and the Henstock-Kurzweil-Pettis integral in Banach spaces.Bull. Austral. Math. Soc. 78 (2008), 507–522. MR 2472285, 10.1017/S0004972708000944; reference:[2] Aliprantis C.D., Border K.C.: Infinite Dimensional Analysis.third edition, Springer, Berlin, 2006. Zbl 1156.46001, MR 2378491; reference:[3] Ben Amar A., Mnif M.: Leray-Schauder alternatives for weakly sequentially continuous mappings and application to transport equation.Math. Methods Appl. Sci. 33 (2010), no. 1, 80–90. Zbl 1193.47056, MR 2591226; reference:[4] Bugajewski D.: On the existence of weak solutions of integral equations in Banach spaces.Comment. Math. Univ. Carolin. 35 (1994), no. 1, 35–41. Zbl 0816.45012, MR 1292580; reference:[5] Chew T.S., Flordeliza F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals.Differential Integral Equations 4 (1991), 861–868. Zbl 0733.34004, MR 1108065; reference:[6] Cichoń M., Kubiaczyk I., Sikorska A.: The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem.Czechoslovak. Math. J. 54 (129) (2004), 279–289. MR 2059250, 10.1023/B:CMAJ.0000042368.51882.ab; reference:[7] Cichoń M.: Weak solutions of differential equations in Banach spaces.Discuss. Math. Differential Incl. 15 (1995), 5–14. MR 1344523; reference:[8] Cichoń M., Kubiaczyk I.: On the set of solutions of the Cauchy problem in Banach spaces.Arch. Math. (Basel) 63 (1994), 251–257. MR 1287254, 10.1007/BF01189827; reference:[9] Cramer E., Lakshmikantham V., Mitchell A.R.: On the existence of weak solution of differential equations in nonreflexive Banach spaces.Nonlinear Anal. 2 (1978), 169–177. MR 0512280; reference:[10] DeBlasi F.S.: On a property of the unit sphere in Banach space.Bull. Math. Soc. Sci. Math. R.S. Roumanie (NS) 21 (1977), 259–262. MR 0482402; reference:[11] Diestel J., Uhl J.J.: Vector Measures.Mathematical Surveys, 15, American Mathematical Society, Providence, R.I., 1977. Zbl 0521.46035, MR 0453964; reference:[12] Di Piazza L.: Kurzweil-Henstock type integration on Banach spaces.Real Anal. Exchange 29 (2003/04), no. 2, 543–555. Zbl 1083.28007, MR 2083796; reference:[13] Dugundji J.: Topology.Allyn and Bacon, Inc., Boston, 1966. Zbl 0397.54003, MR 0193606; reference:[14] Federson M., Bianconi R.: Linear integral equations of Volterra concerning Henstock integrals.Real Anal. Exchange 25 (1999/00), 389–417. Zbl 1015.45001, MR 1758896; reference:[15] Federson M., Táboas P.: Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals.Nonlinear Anal. 50 (1998), 389–407. MR 1906469, 10.1016/S0362-546X(01)00769-6; reference:[16] Gamez J.L., Mendoza J.: On Denjoy-Dunford and Denjoy-Pettis integrals.Studia Math. 130 (1998), 115–133. Zbl 0971.28009, MR 1623348; reference:[17] Gordon R.A.: Rienmann integration in Banach spaces.Rocky Mountain J. Math. (21) (1991), no. 3, 923–949. MR 1138145, 10.1216/rmjm/1181072923; reference:[18] Gordon R.A.: The Integrals of Lebesgue, Denjoy, Perron and Henstock.Graduate Studies in Mathematics, 4, American Mathematical Society, Providence, RI, 1994. Zbl 0807.26004, MR 1288751; reference:[19] Kelley J.: General Topology.D. Van Nostrad Co., Inc., Toronto-New York-London, 1955. Zbl 0518.54001, MR 0070144; reference:[20] Kubiaczyk I., Szufla S.: Kenser's theorem for weak solutions of ordinary differential equations in Banach spaces.Publ. Inst. Math. (Beograd) (N.S.) 32(46) (1982), 99–103. MR 0710975; reference:[21] Kubiaczyk I.: On the existence of solutions of differential equations in Banach spaces.Bull. Polish Acad. Sci. Math. 33 (1985), 607–614. Zbl 0607.34055, MR 0849409; reference:[22] Kurtz D.S., Swartz C.W.: Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane.World Scientific, Singapore, 2004. Zbl 1072.26005, MR 2081182; reference:[23] Martin R.H.: Nonlinear Operators and Differential Equations in Banach Spaces.Wiley-Interscience, New York-London-Sydney, 1976. Zbl 0333.47023, MR 0492671; reference:[24] Mitchell A.R., Smith C.: An existence theorem for weak solutions of differential equations in Banach spaces.in Nonlinear Equations in Abstract Spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex, 1977), pp. 387–403, Academic Press, New York, 1978. Zbl 0452.34054, MR 0502554; reference:[25] Lakshmikantham V., Leela S.: Nonlinear Differential Equations in Abstract Spaces.Pergamon Press, Oxford-New York, 1981. Zbl 0456.34002, MR 0616449; reference:[26] Lee P.Y.: Lanzhou Lectures on Henstock Integration.Series in Real Analysis, 2, World Scientific, Teaneck, NJ, 1989. Zbl 0699.26004, MR 1050957; reference:[27] Liu L., Guo F., Wu C., Wu Y.: Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces.J. Math. Anal. Appl. 309 (2005), 638–649. Zbl 1080.45005, MR 2154141, 10.1016/j.jmaa.2004.10.069; reference:[28] O'Regan D.: Operator equations in Banach spaces relative to the weak topology.Arch. Math. (Basel) 71 (1998), 123–136. Zbl 0918.47053, MR 1631480, 10.1007/s000130050243; reference:[29] Rudin W.: Functional Analysis.2nd edition, McGraw-Hill, New York, 1991. Zbl 0867.46001, MR 1157815; reference:[30] Satco B.: A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integrals and applications.Czechoslovak Math. J. 56(131) (2006), 1029–1047. MR 2261675, 10.1007/s10587-006-0078-5; reference:[31] Satco B.: Volterra integral inclusions via Henstock-Kurzweil-Pettis integral.Discuss. Math. Differ. Incl. Control Optim. 26 (2006), 87–101. Zbl 1131.45001, MR 2330782, 10.7151/dmdico.1066; reference:[32] Satco B.: Existence results for Urysohn integral inclusions involving the Henstock integral.J. Math. Anal. Appl. 336 (2007), 44–53. Zbl 1123.45004, MR 2348489, 10.1016/j.jmaa.2007.02.050; reference:[33] Schwabik S.: The Perron integral in ordinary differential equations.Differential Integral Equations 6 (1993), 863–882. Zbl 0784.34006, MR 1222306; reference:[34] Schwabik S., Guoju Y.: Topics in Banach Space Integration.World Scientific, Hackensack, NJ, 2005. Zbl 1088.28008, MR 2167754; reference:[35] Sikorska A.: Existence theory for nonlinear Volterra integral and differential equations.J. Inequal. Appl. 6 (3) (2001), 325–338. Zbl 0992.45006, MR 1889019; reference:[36] Sikorska-Nowak A.: Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals.Demonstratio Math. 35 (2002), no. 1, 49–60. Zbl 1011.34066, MR 1883943; reference:[37] Sikorska-Nowak A.: On the existence of solutions of nonlinear integral equations in Banach spaces and Henstock-Kurzweil integrals.Ann. Polon. Math. 83 (2004), no. 3,257–267. Zbl 1101.45006, MR 2111712, 10.4064/ap83-3-7; reference:[38] Sikorska-Nowak A.: The existence theory for the differential equation $x^{(m)}t=f(t,x)$ in Banach spaces and Henstock-Kurzweil integral.Demonstratio Math. 40 (2007), no. 1, 115–124. Zbl 1128.34037, MR 2330370; reference:[39] Sikorska-Nowak A.: Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals.Discuss. Math. Differ. Incl. Control Optim. 27 (2007), 315–327. Zbl 1149.34053, MR 2413816, 10.7151/dmdico.1087; reference:[40] Sikorska-Nowak A.: Existence of solutions of nonlinear integral equations and Henstock-Kurzweil integrals.Comment. Math. Prace Mat. 47 (2007), no. 2, 227–238. Zbl 1178.45016, MR 2377959; reference:[41] Sikorska-Nowak A.: Existence theory for integrodifferential equations and Henstock-Kurzweil integral in Banach spaces.J. Appl. Math. 2007, article ID 31572, 12 pp. Zbl 1148.26010, MR 2317885; reference:[42] Sikorska-Nowak A.: Nonlinear integral equations in Banach spaces and Henstock-Kurzweil-Pettis integrals.Dynam. Systems Appl. 17 (2008), 97–107. Zbl 1154.45011, MR 2433893; reference:[43] Szufla S.: Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 407–413. Zbl 0384.34039, MR 0492684; reference:[44] Szufla S.: Sets of fixed points of nonlinear mappings in functions spaces.Funkcial. Ekvac. 22 (1979), 121–126. MR 0551256; reference:[45] Szufla S.: On the application of measure of noncompactness to existence theorems.Rend. Sem. Mat. Univ. Padova 75 (1986), 1–14. Zbl 0589.45007, MR 0847653; reference:[46] Szufla S.: On the Kneser-Hukuhara property for integral equations in locally convex spaces.Bull. Austral. Math. Soc. 36 (1987), 353–360. Zbl 0619.45003, MR 0923817, 10.1017/S0004972700003646

  7. 7
    Academic Journal

    المؤلفون: Szufla, Stanisław

    وصف الملف: application/pdf

    Relation: mr:MR2248592; zbl:Zbl 1110.45003; reference:[1] N. V. Azbieliev, Z. B. Caliuk: Ob integralnych nieravienstvach.Matem. Sbornik 56 (1962), 325–342. MR 0140907; reference:[2] J. Banaś, K. Goebel: Measure of Noncompactness in Banach Spaces.Marcel Dekker, New York, 1980. MR 0591679; reference:[3] G. Gripenberg: Unique solutions of some Volterra integral equations.Math. Scand. 48 (1981), 59–67. Zbl 0463.45002, MR 0621417, 10.7146/math.scand.a-11899; reference:[4] H. P. Heinz: On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions.Nonlinear Anal., Theory Methods Appl. 7 (1983), 1351–1371. Zbl 0528.47046, MR 0726478, 10.1016/0362-546X(83)90006-8; reference:[5] J. Kurzweil: Ordinary Differential Equations.Elsevier, Amsterdam-Oxford, 1986. Zbl 0667.34002, MR 0929466; reference:[6] H. Mönch: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces.Nonlinear Anal., Theory Methods Appl. 4 (1980), 985–999. MR 0586861, 10.1016/0362-546X(80)90010-3; reference:[7] W. Mydlarczyk: The existence of nontrivial solutions of Volterra equations.Math. Scand. 68 (1991), 83–88. Zbl 0701.45002, MR 1124821, 10.7146/math.scand.a-12347; reference:[8] S. Szufla: Appendix to the paper An existence theorem for the Urysohn integral equation in Banach spaces.Commentat. Math. Univ. Carol. 25 (1984), 763–764. Zbl 0578.45018, MR 0782024

  8. 8
    Conference

    المؤلفون: Spigler, Renato, Vianello, Marco

    وصف الملف: application/pdf

    Relation: mr:MR1298472; zbl:Zbl 0807.65060

  9. 9
    Academic Journal

    المؤلفون: Bock, Igor, Lovíšek, Ján

    وصف الملف: application/pdf

    Relation: mr:MR2025957; zbl:Zbl 1099.45001; reference:[1] I. Bock, J. Lovíšek: Optimal control of a viscoelastic plate bending.Math. Nachr. 125 (1986), 135–151. MR 0847355, 10.1002/mana.19861250109; reference:[2] I. Bock, J. Lovíšek: An optimal control problem for a pseudoparabolic variational inequality.Appl. Math. 37 (1992), 62–80. MR 1152158; reference:[3] R. M. Christensen: Theory of Viscoelasticity.Academic Press, New York, 1982.; reference:[4] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Applications 4, North Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174; reference:[5] J. Chleboun: On a reliable solution of a quasilinear elliptic equation with uncertain coefficients: sensitivity analysis and numerical examples.Nonlinear Anal. 44 (2001), 375–388. Zbl 1002.35041, MR 1817101, 10.1016/S0362-546X(99)00274-6; reference:[6] I. Hlaváček: Reliable solution of linear parabolic problems with respect to uncertain coefficients.Z. Angew. Math. Mech. 79 (1999), 291–301. MR 1695286, 10.1002/(SICI)1521-4001(199905)79:53.0.CO;2-N; reference:[7] I. Hlaváček: Reliable solution of problems in the deformation theory of plasticity with respect to uncertain material function.Appl. Math. 41 (1996), 447–466. MR 1415251; reference:[8] I. Hlaváček: Reliable solution of a torsion problem in Hencky plasticity with uncertain yield function.Math. Models Methods Appl. Sci. 11 (2001), 855–865. Zbl 1037.74028, MR 1842230, 10.1142/S0218202501001148; reference:[9] I. Hlaváček: Reliable solution of a a perfect plastic problem with uncertain stress-strain law and yield function.SIAM J. Numer. Anal. 39 (2001), 1531–1555. MR 1885706; reference:[10] J. Kačur: Method of Rothe in Evolution Equations.Teubner, Leipzig, 1985. MR 0834176; reference:[11] J. Kačur: Application of Rothe’s method to integro-differential equations.J. Reine Angew. Math. 388 (1988), 73–105. MR 0944184; reference:[12] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Praha, 1967. MR 0227584; reference:[13] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction. Studies in Applied Mathematics 3.Elsevier, 1981.; reference:[14] K. Rektorys: The Method of Discretization in Time and Partial Differential Equations.Reidel, Dordrecht-Boston-London, 1982. Zbl 0522.65059, MR 0689712; reference:[15] S. Shaw, J. R. Whiteman: Adaptive space-time finite element solution for Volterra equations arising in viscoelastic problems.J. Comput. Appl. Math. (4) 125 (2000), 1234–1257. MR 1803200; reference:[16] J. Simon: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65–96. MR 0916688

  10. 10
    Academic Journal

    المؤلفون: Cernea, Aurelian

    وصف الملف: application/pdf

    Relation: mr:MR2032102; zbl:Zbl 1113.45014; reference:[1] Castaing C., Valadier M.: Convex Analysis and Measurable Multifunctions.LNM 580, Springer, Berlin, 1977. Zbl 0346.46038, MR 0467310; reference:[2] Cernea A.: A Filippov type existence theorem for infinite horizon operational differential inclusions.Stud. Cerc. Mat. 50 (1998), 15–22. Zbl 1026.34070, MR 1837385; reference:[3] Cernea A.: An existence theorem for some nonconvex hyperbolic differential inclusions.Mathematica 45(68) (2003), 101–106. Zbl 1084.34508, MR 2056043; reference:[4] Kannai Z., Tallos P.: Stability of solution sets of differential inclusions.Acta Sci. Math. (Szeged) 63 (1995), 197–207. Zbl 0851.34015, MR 1377359; reference:[5] Lim T. C.: On fixed point stability for set valued contractive mappings with applications to generalized differential equations.J. Math. Anal. Appl. 110 (1985), 436–441. Zbl 0593.47056, MR 0805266; reference:[6] Petruşel A.: Integral inclusions. Fixed point approaches.Comment. Math. Prace Mat., 40 (2000), 147–158. Zbl 0991.47041, MR 1810391; reference:[7] Tallos P.: A Filippov-Gronwall type inequality in infinite dimensional space.Pure Math. Appl. 5 (1994), 355–362. MR 1343457; reference:[8] Zhu Q. J.: A relaxation theorem for a Banach space integral-inclusion with delays and shifts.J. Math. Anal. Appl. 188 (1994), 1–24. Zbl 0823.34023, MR 1301713

  11. 11
    Academic Journal

    المؤلفون: Mazouzi, S., Tatar, N.-E.

    وصف الملف: application/pdf

    Relation: mr:MR2010716; zbl:Zbl 1113.45019; reference:[1] Balasubramaniam P., Chandrasekaran M.: Existence of solutions of nonlinear integrodifferential equations with nonlocal boundary conditions in Banach spaces.Atti Sem. Math. Fis. Univ. Modena XLVI (1998), 1–13. MR 1628648; reference:[2] Henry D.: Geometric theory of semilinear parabolic equations.Springer-Verlag Berlin, Heidelberg, New York, 1981. Zbl 0456.35001, MR 0610244; reference:[3] Kirane M., Tatar N.-E.: Global existence and stability of some semilinear problems.Arch. Math. (Brno) 36 (2000), 33–44. Zbl 1048.34102, MR 1751612; reference:[4] Mazouzi S., Tatar N.-E.: Global existence for some semilinear integrodifferential equations with nonlocal conditions.ZAA 21, No.1 (2002), 249–256. MR 1916416; reference:[5] Medved’ M.: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions.J. Math. Anal. Appl. 214 (1997), 349–366. Zbl 0893.26006, MR 1475574; reference:[6] Medved’ M.: Singular integral inequalities and stability of semi-linear parabolic equations.Arch. Math. (Brno) 34 (1998), 183–190. MR 1629697; reference:[7] Michalski M. W.: Derivatives of noninteger order and their applications.Dissertationes Mathematicae, Polska Akademia Nauk, Instytut Matematyczny, Warszawa 1993. Zbl 0880.26007, MR 1247113; reference:[8] Ntouyas S. K., Tsamatos P. Ch.: Global existence for semilinear evoluton integrodifferential equations with delay and nonlocal conditions.Appl. Anal. 64 (1997), 99–105. MR 1460074; reference:[9] Tatar N.-E.: Exponential decay for a semilinear integrodifferential problem with memory.Arab. J. Math. Vol. 7, No. 1 (2001), 29–45. MR 1834132

  12. 12
    Academic Journal

    مصطلحات موضوعية: msc:34K30, msc:35R10, msc:45G10, msc:45J05, msc:45N05, msc:47N20

    وصف الملف: application/pdf

    Relation: mr:MR1967335; zbl:Zbl 1042.45006; reference:[1] Benchohra M., Ntouyas S. K.: Existence of mild solutions on semiinfinite intervаl for first order differentiаl equаtions with nonlocаl conditions.Comment. Math. Univ. Carolin. 41 (2000), 485-491. MR 1795080; reference:[2] Benchohra M., Ntouyas S. K.: Existence of mild solutions on semiinfinite intervаl for second order differentiаl equаtions with nonlocаl conditions.Comment. Math. Prace Mat. 16 (2001), 41-49. MR 1876709; reference:[3] Byszewski L.: Theorems аbout the existence аnd uniqueness of solutions of а semilineаr evolution nonlocаl Cаuchy problem.J. Math. Anal. Appl. 162 (1991), 494-505. MR 1137634; reference:[4] Corduneanu C.: Integral Equations and Applications.Cаmbridge Univ. Press, New York, 1990. MR 1109491; reference:[5] Dugundji J., Granas A.: Fixed Point Theory.Monogrаfie Mаt. PWN, Wаrsаw, 1982. Zbl 0483.47038, MR 0660439; reference:[6] Fattorini H. O.: Second order linear differential equations in Banach spaces.North-Hollаnd Mаthemаticаl Studies, Vol. 108, North-Hollаnd, Amsterdаm, 1985. Zbl 0564.34063, MR 0797071; reference:[7] Ghisi M.: Mild solutions of evolution equаtions аnd meаsures of noncompаctness.Nonlinear Anal. 26, 7 (1996), 1193-1205. MR 1376098; reference:[8] Goldstein J. A.: Semigroups of Linear Operators and Applications.Oxford, New York, 1985. Zbl 0592.47034, MR 0790497; reference:[9] Heikkila S., Lakshmikantham V.: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations.Mаrcel Dekker, New York, 1994. MR 1280028; reference:[10] Heikkila S., Lakshmikantham V.: On mild solutions of first order discontinuous semilineаr differentiаl equаtions in Bаnаch Spаces.Applic. Anal. 56, 1-2 (1995), 131-146. MR 1378017; reference:[11] Ladas G., Lakshmikantham V.: Differential Equatiоns in Abstract Spaces.Acаdemic Press, New York, London, 1972.; reference:[12] Lakshmikantham V., Leela S.: Existence аnd monotone rnethod for periodic solutions of first order differentiаl equаtions.J. Math. Anal. Appl. 91 (1983), 237-243. MR 0688542; reference:[13] Pazy A.: Semigrоups оf Linear Operatоrs and Applicatiоns tо Partial Differential Equatiоns.Springer-Verlаg, New York, 1983. MR 0710486; reference:[14] Travis C. C., Webb G. F.: Second order differentiаl equаtions in Bаnаch spаces.Prоc. Int. Symp. оn Nоnlinear Equatiоns in Abstract Spaces, Academic Press, New Yоrk (1978), 331-361. MR 0502551; reference:[15] Travis C. C., Webb G. F.: Cosine fаmilies аnd аbstrаct nonlineаr second order differentiаl equаtions.Acta Math. Hungar. 32 (1978), 75-96. MR 0499581; reference:[16] Yоsida K.: Functiоnal Analysis.бth edn. Springer-Verlаg, Berlin, 1980.

  13. 13
    Academic Journal

    المؤلفون: Schwabik, Štefan

    وصف الملف: application/pdf

    Relation: mr:MR1869466; zbl:Zbl 1001.26005; reference:[1] O. Diekmann, M. Gyllenberg, H. R. Thieme: Perturbing semigroups by solving Stieltjes renewal equations.Differ. Integral Equ. 6 (1993), 155–181. MR 1190171; reference:[2] O. Diekmann, M. Gyllenberg, H. R. Thieme: Perturbing evolutionary systems by step responses on cumulative outputs.Differ. Integral Equ. 8 (1995), 1205–1244. MR 1325554; reference:[3] N. Dunford, J. T. Schwartz: Linear Operators I.Interscience Publishers, New York, London, 1958. MR 0117523; reference:[4] Ch. S. Hönig: Volterra-Stieltjes Integral Equations.North-Holland Publ. Comp., Amsterdam, 1975. MR 0499969; reference:[5] J. Kurzweil: Nichtabsolut konvergente Integrale.BSB B. G. Teubner, Leipzig, 1980. Zbl 0441.28001, MR 0597703; reference:[6] Š. Schwabik: Generalized Ordinary Differential Equations.World Scientific, Singapore, 1992. Zbl 0781.34003, MR 1200241; reference:[7] Š. Schwabik, M. Tvrdý, O. Vejvoda: Differential and Integral Equations.Academia & Reidel, Praha & Dordrecht, 1979. MR 0542283; reference:[8] Š. Schwabik: Abstract Perron-Stieltjes integral.Math. Bohem. 121 (1996), 425–447. Zbl 0879.28021, MR 1428144; reference:[9] Š. Schwabik: Linear Stieltjes integral equations in Banach spaces.Math. Bohem. 124 (1999), 433–457. MR 1722877; reference:[10] Š. Schwabik: Linear Stieltjes integral equations in Banach spaces II; Operator valued solutions.Math. Bohem. 125 (2000), 431–454. Zbl 0974.34057, MR 1802292; reference:[11] Š. Schwabik: A note on integration by parts for abstract Perron-Stieltjes integrals.Math. Bohem. 126 (2001), 613–626. Zbl 0980.26005, MR 1970264

  14. 14
    Academic Journal

    مصطلحات موضوعية: msc:45G10, msc:45J05, msc:45N05

    وصف الملف: application/pdf

    Relation: mr:MR1764348; zbl:Zbl 0959.45004; reference:[1] BOCHENEK J.: An abstract nonlinear second order differential equation.Ann. Polon. Math. 54 (1991), 155-166. Zbl 0724.34069, MR 1104738; reference:[2] DUGUNDJI J.-GRANAS A.: Fixed Point Theory.Vol. I. Monographic Matematyczne, PNW, Warsawa, 1982. Zbl 0483.47038; reference:[3] LEE J.-O'REGAN D.: Topological transversality.Applications to initial value problems, Ann. Polon. Math. 48 (1988), 247-252. Zbl 0674.34006, MR 0978675; reference:[4] LEE J.-O'REGAN D.: Existence results for differential delay equations-I.J. Differential Equations 102 (1993), 342-359. Zbl 0782.34070, MR 1216733; reference:[5] NTOUYAS S.-SFICAS Y.-TSAMATOS P.: Existence results for initial value problems for neutral functional differential equations.J. Differential Equations 114 (1994), 527-537. Zbl 0810.34061, MR 1303038; reference:[6] NTOUYAS S.-TSAMATOS P.: Initial and boundary value problems for partial functional differential equations.J. Appl. Math. Stochastic Anal. 10 (1997), 157-168. Zbl 0885.35140, MR 1453468; reference:[7] NTOUYAS S.-TSAMATOS P.: Global existence for second order functional semilinear equations.Period. Math. Hungar. 31 (1995), 139-144. Zbl 0855.34076, MR 1610274; reference:[8] TRAVIS C.-WEBB G.: Cosine families and abstract nonlinear second order differential equations.Acta Math. Hungar. 32 (1978), 75-96. Zbl 0388.34039, MR 0499581; reference:[9] TRAVIS C.-WEBB G.: Existence and stability for partial functional differential equations.Trans. Amer. Math. Soc. 200 (1974), 395-418. Zbl 0299.35085, MR 0382808; reference:[10] YORKE J.: A continuous differential equation in Hilbert space without existence.Funkcial. Ekvac. 13 (1970), 19-21. Zbl 0248.34061, MR 0264196

  15. 15
    Academic Journal

    المؤلفون: Schwabik, Štefan

    وصف الملف: application/pdf

    Relation: mr:MR1802292; zbl:Zbl 0974.34057; reference:[1] Ju. L. Daletskij M. G. Krejn: Stability of Solutions of Differential Equations in Banach Spaces.Nauka, Moskva, 1970. (In Russian.) MR 0352638; reference:[2] N. Dunford J. T Schwartz: Linear Operators I.Interscience Publishers, New York, 1958. MR 0117523; reference:[3] Ch. S. Hönig: Volterra-Stieltjes Integral Equations.North-Holland Publ. Comp., Amsterdam, 1975. MR 0499969; reference:[4] J. Kurzweil: Nichtabsolut konvergente Integrale.B. G. Teubner Verlagsgesellschaft, Leipzig, 1980. Zbl 0441.28001, MR 0597703; reference:[5] W. Rudin: Functional Analysis.McGraw-Hill Book Company, New York, 1973. Zbl 0253.46001, MR 0365062; reference:[6] Š. Schwabik: Abstract Perron-Stieltjes integral.Math. Bohem. 121 (1996), 425-447. Zbl 0879.28021, MR 1428144; reference:[7] Š. Schwabik: Generalized Ordinary Differential Equations.World Scientific, Singapore, 1992. Zbl 0781.34003, MR 1200241; reference:[8] Š. Schwabik M. Tvrdý O. Vejvoda: Differential and Integral Equations.Academia & Reidel, Praha & Dordrecht, 1979. MR 0542283; reference:[9] Š. Schwabik: Linear Stieltjes integral equations in Banach spaces.Math. Bohem. 124 (1999), 433-457. MR 1722877

  16. 16
    Academic Journal

    مصطلحات موضوعية: msc:34G20, msc:34K30, msc:45N05, msc:47N20

    وصف الملف: application/pdf

    Relation: mr:MR1822809; zbl:Zbl 1090.34575; reference:1. Astala K.: On Peano’s theorem in locally convex spaces.Studia Math., 73, 1982, 213-223. Zbl 0507.34047, MR 0675425; reference:2. Bugajewska D.: Topological properties of solution sets of some problems for differential equations.Ph. D. Thesis, Poznań, 1999.; reference:3. Bugajewska D., Bugajewski D.: On topological properties of solution sets for differential equations in locally convex spaces.submitted. Zbl 1042.34555; reference:4. Bugajewski D.: On the Volterra integral equation in locally convex spaces.Demonstratio Math., 25, 1992, 747-754. Zbl 0781.45012, MR 1222551; reference:5. Bugajewski D.: On differential and integral equations in locally convex spaces.Demonstratio Math., 28, 1995, 961-966. Zbl 0855.34071, MR 1392249; reference:6. Bugajewski D., Szufla S.: Kneser’s theorem for weak solutions of the Darboux problem in Banach spaces.Nonlinear Analysis, 20, No 2, 1993, 169-173. MR 1200387; reference:7. Constantin A.: On the unicity of solution for the differential equation $x^{(n)} = f (t, x)$.Rend. Circ. Mat. Palermo, Serie II, 42, 1991, 59-64. MR 1244738; reference:8. Hukuhara M.: Théorems fondamentaux de la théorie des équations différentielles ordinaires dans l’espace vectorial topologique.J. Fac. Sci. Univ. Tokyo, Sec. I, 8, No 1, 1959, 111-138. MR 0108630; reference:9. Januszewski J., Szufla S.: On the Urysohn integral equation in locally convex spaces.Publ. Inst. Math., 51, No 65, 1992, 77-80. MR 1213650; reference:10. Kelley J.L., Namioka I.: Linear topological spaces.Van Nostrand, Princeton, 1963. Zbl 0115.09902, MR 0166578; reference:11. Krasnoselski M.A., Krein S.G.: K teorii obyknoviennych differencialnych uravnienij v banachovych prostranstvach.Trudy Semin. Funkc. Anal. Voronež. Univ., 2, 1956, 3-23.; reference:12. Lemmert R.: On ordinary differential equations in locally convex spaces.Nonlinear Analysis, 10, No 12, 1986, 1385-1390. Zbl 0612.34056, MR 0869547; reference:13. Millionščikov W.: K teorii obyknoviennych differencialnych uravnienij v lokalno vypuklych prostranstvach.Dokl. Akad. Nauk SSSR, 131, 1960, 510-513.; reference:14. Pianigiani P.: Existence of solutions of an ordinary differential equations in the case of Banach space.Bull. Ac. Polon.: Math., 8, 1976,667-673.; reference:15. Reichert M.: Condensing Volterra operators in locally convex spaces.Analysis, 16, 1996, 347-364. Zbl 0866.47042, MR 1429459; reference:16. Sadovski B. N.: Limit-compact and condensing mappings.Russian Math. Surveys, 27, 1972, 81-146. MR 0428132; reference:17. Szufla S.: Kneser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces.Bull. Acad. Polon.: Math., 26, 1978, 407-413. MR 0492684; reference:18. Szufla S.: On the Kneser-Hukuhara property for integral equations in locally convex spaces.Bull. Austral. Math. Soc., 36, 1987, 353-360. MR 0923817

  17. 17
    Academic Journal

    المؤلفون: Schwabik, Štefan

    وصف الملف: application/pdf

    Relation: mr:MR1722877; zbl:Zbl 0937.34047; reference:[1] Dunford N., Schwartz J. T.: Linear Operators I.Interscience Publishers, New York, London, 1958. Zbl 0084.10402, MR 0117523; reference:[2] Hönig, Ch. S.: Volterra-Stieltjes Integral Equations.North-Holland Publ. Comp., Amsterdam, 1975. MR 0499969; reference:[3] Kurzweil J.: Nichtabsolut konvergente Integrale.B. G.Teubner Verlagsgesellschaft, Leipzig, 1980. Zbl 0441.28001, MR 0597703; reference:[4] Rudin W.: Functional Analysis.McGraw-Hill Book Company, New York, 1973. Zbl 0253.46001, MR 0365062; reference:[5] Schwabik Š.: Abstract Perron-Stieltjes integral.Math. Bohem. 121 (1996), 425-447. Zbl 0879.28021, MR 1428144; reference:[6] Schwabik Š.: Generalized Ordinary Differential Equations.World Scientific, Singapore, 1992. Zbl 0781.34003, MR 1200241; reference:[7] Schwabik Š., Tvrdý M., Vejvoda O.: Differential and Integral Equations.Academia & Reidel, Praha & Dordrecht, 1979. MR 0542283

  18. 18
    Academic Journal

    المؤلفون: Buong, Nguyen

    وصف الملف: application/pdf

    Relation: mr:MR1715199; zbl:Zbl 1060.47509; reference:[1] Amann H.: Ein Existenz und Eindeutigkeitssatz fur die Hammersteinshe Gleichung in Banachraumen.Math. Z. 111 (1969), 175-190. MR 0254687; reference:[2] Amann H.: Uber die naherungsweise Losung nichlinearer Integralgleichungen.Numer. Math. 19 (1972), 29-45. MR 0303772; reference:[3] Brezis H., Browder F.: Nonlinear integral equations and systems of Hammerstein's type.Adv. Math. 10 (1975), 115-144. MR 0394341; reference:[4] Brezis H., Sibony M.: Méthod d'approximation et d'itération pour les opérateurs monotones.Arch. Rat. Mech. Anal. 28 (1968), 1 59-82. MR 0220110; reference:[5] Buong N.: On solution of the operator equation of Hammerstein type with semimonotone and discontinuous nonlinearity (in Vietnamese).J. Math. 12 (1984), 25-28.; reference:[6] Buong N.: On approximate solutions of Hammerstein equation in Banach spaces (in Russian).Ukrainian Math. J. 8 (1985), 1256-1260.; reference:[7] Gaidarov D.P., Raguimkhanov P.K.: On integral inclusion of Hammerstein (in Russian).Sibirian Math. J. 21 (1980), 2 19-24. MR 0569173; reference:[8] Ganesh M., Joshi M.: Numerical solvability of Hammerstein equations of mixed type.IMA J. Numer. Anal. 11 (1991), 21-31. MR 1089546; reference:[9] Gupta C.P.: Nonlinear equations of Urysohn's type in a Banach space.Comment. Math. Univ. Carolinae 16 (1975), 377-386. Zbl 0326.47058, MR 0500344; reference:[10] Emellianov C.V.: Systems of Automatic Control with Variable Structure (in Russian).Moscow, Nauka, 1967.; reference:[11] Joshi M.: Existence theorem for a generalized Hammerstein type equation.Comment. Math. Univ. Carolinae 15 (1974), 283-291. Zbl 0291.47034, MR 0348569; reference:[12] Krasnoselskii A.M.: On elliptic equations with discontinuous nonlinearities (in Russian).Dokl. AN RSPP 342 (1995), 6 731-734. MR 1346871; reference:[13] Pavlenko V.N.: Nonlinear equations with discontinuous operators in Banach space (in Russian).Ukrainian Math. J. 31 (1979), 5 569-572. MR 0552495; reference:[14] Pavlenko V.N.: Existence of solution for nonlinear equations involving discontinuous semimonotone operators (in Russian).Ukrainian Math. J. 33 (1981), 4 547-551.; reference:[15] Raguimkhanov: Concerning an existence problem for solution of Hammerstein equation with discontinuous mappings (in Russian).Izvestia Vukov, Math. (1975), 10 62-70.; reference:[16] Vaclav D.: Monotone Operators and Applications in Control and Network Theory.Elsevier, Amsterdam-Oxford-New York, 1979. Zbl 0425.93002, MR 0554232; reference:[17] Vainberg M.M.: Variational Method and Method of Monotone Operators (in Russian).Moscow, Nauka, 1972. MR 0467427

  19. 19
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1455496; zbl:Zbl 0891.45010; reference:[1] Amann H.: Order structures and fixed points.in Atti 2$^{nd}$ Seminario Anal. Funz. Appl., Univ. Cosenza, Italy, 1977, pp.1-50.; reference:[2] Avgerinos E., Papageorgiou N.S.: Topological properties of the solution set of integrodifferential inclusions.Comment. Math. Univ. Carolinae 36 (1995), 429-442. Zbl 0836.34019, MR 1364483; reference:[3] Banas J., Goebel K.: Measures of Noncompactness in Banach Spaces.Marcel Dekker, New York, 1980. Zbl 0441.47056, MR 0591679; reference:[4] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff International Publishing, Leyden, The Netherlands, 1976. Zbl 0328.47035, MR 0390843; reference:[5] Cheng Y.-B., Zhuang W.: The existence of maximal and minimal solutions of the nonlinear integrodifferential equation in Banach space.Applic. Anal. 22 (1986), 139-147. MR 0854546; reference:[6] Coppel W.: Stability and Asymptotic Behavior of Differential Equations.D.C. Heath and Co., Boston, 1965. Zbl 0154.09301, MR 0190463; reference:[7] Diestel J., Uhl J.: Vector Measures.Math. Surveys, Vol. 15, AMS, Providence, Rhode Island, 1977. Zbl 0521.46035, MR 0453964; reference:[8] Guo D., Lakshmikantham V.: Nonlinear Problems in Abstract Cones.Academic Press, Boston, 1988. Zbl 0661.47045, MR 0959889; reference:[9] Hale J.: Ordinary Differential Equations.Wiley Interscience, New York, 1969. Zbl 0433.34003, MR 0419901; reference:[10] Heikkila S., Lakshmikantham V., Sun Y.: Fixed point results in ordered normed spaces with applications to abstract and differential equations.J. Math. Anal. Appl. 163 (1962), 422-437. MR 1145839; reference:[11] Kisielewisz M.: Multivalued differential equations in separable Banach spaces.J. Optim. Theory Appl. 37 (1982), 231-249. MR 0663523; reference:[12] Lakshmikantham V.: Some problems in integrodifferential equations of Volterra type.J. Integral Equations 10 (1985), 137-146. Zbl 0598.45015, MR 0831240; reference:[13] Lakshmikantham V., Leela S.: An Introduction to Nonlinear Differential Equations in Abstract Spaces.Pergamon Press, Oxford, 1980. MR 0616449; reference:[14] Lakshmikantham V., Leela S.: On the method of upper and lower solutions in abstract cones.Annales Polonici Math. XLII (1983), 159-164. Zbl 0544.34056, MR 0728078; reference:[15] Pachpatte B.G.: A note on Gronwall-Bellman inequality.J. Math. Anal. Appl. 44 (1973), 758-762. Zbl 0274.45011, MR 0335721; reference:[16] Papageorgiou N.S.: Existence of solutions for integrodifferential inclusions in Banach spaces.Comment. Math. Univ. Carolinae 32 (1992), 687-696. MR 1159815; reference:[17] Redheffer R., Walter W.: Remarks on ordinary differential equations in ordered Banach spaces.Monats. Math. 102 (1986), 237-249. Zbl 0597.34063, MR 0863220

  20. 20
    Academic Journal

    المؤلفون: Petzeltová, Hana

    وصف الملف: application/pdf

    Relation: mr:MR1305531; zbl:Zbl 0818.45005; reference:[1] P. Acquistаpаce B. Tereni: Hölder classes with boundaгy conditions as interpolation spaces.Math Z. 195 (1987), 451-471. MR 0900340; reference:[2] G. Dа Prаto A. Lunаrdi: Stability, instability and center manifold theorem for fully nonlinear autonomous parabolic equations in Banach space.Arch. Rat. Mech. Anal. 101 (1988), 115-141. MR 0921935, 10.1007/BF00251457; reference:[3] J. K. Hаle J. Kаto: Phase space for retarded equations with infinite delay.Funkcial. Ekvac. 21 (1978), 11-41. MR 0492721; reference:[4] D. Henry: Geometric theory of semilinear parabolic equations.Lecture Notes in Math. 840, Springer Verlag, 1981. Zbl 0456.35001, MR 0610244, 10.1007/BFb0089647; reference:[5] S. O. Londen J. A. Nohel: Nonlinear Volterra integrodifferential equation occuring in heat flow.Ј. Int. Equations 6 (1984), 11-50. MR 0727934; reference:[6] A. Lunаrdi: Interpolation spaces between domains of elliptic operators and spaces of continuous functions with applications to nonlinear parabolic equations.Math. Nachr. 121 (1985), 295-318. MR 0809327, 10.1002/mana.19851210120; reference:[7] A. Lunаrdi: Stability and local invariant manifolds in fully nonlinear parabolic equations.Preprint. MR 1270699; reference:[8] J. Milotа: Asymptotic behaviour of parabolic equations with infinite delay.Volterra Integrodiff. Eqs. and Appl., Pitman Research Notes in Math. 190 (1989), 295-305. MR 1018887; reference:[9] H. Petzeltová: Solution semigroup and invariant manifolds for functional equations with infìnite delay.Mathematica Bohemica 118 (1993), no. 2, 175-193. MR 1223484; reference:[10] H. Petzeltová J. Milotа: Resolvent operator for abstract functional differential equations with infinite delay.Numer. Funct. Anal. and Optimiz. 9 (1987), 779-807. 10.1080/01630568708816261; reference:[11] G. Simonett: Zentrumsmannigfaltigkeiten für quasilineare parabolische Gleichungen.Thesis.; reference:[12] E. Sinestrаri: On the abstract Cauchy problem of parabolic type in the spaces of continuous functions.Ј. Math. And Appl. 107(1985), 16-66.; reference:[13] A. Vаnderbаuwhede: Center manifolds, normal forms and elementary bifurcations.Dynamics reported 2 (1989), 89-169. MR 1000977, 10.1007/978-3-322-96657-5_4; reference:[14] A. Vanderbauwhede G. Iooss: Center manifold theory in infìnite dimensions.Dynamics reported 1 (1992), 125-163. MR 1153030, 10.1007/978-3-642-61243-5_4