يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"msc:41A29"', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 1
    Conference
  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2741873; zbl:Zbl 1224.41060; reference:[1] Bede B., Gal S.G.: Approximation by nonlinear Bernstein and Favard-Szász-Mirakjan operators of max-product kind.J. Concrete and Applicable Mathematics 8 (2010), no. 2, 193–207. MR 2606257; reference:[2] Bede B., Coroianu L., Gal S.G.: Approximation and shape preserving properties of the Bernstein operator of max-product kind.Int. J. Math. Math. Sci. 2009, Art. ID 590589, 26 pp., doi:10.1155/2009/590589. Zbl 1188.41016, MR 2570725; reference:[3] Bede B., Coroianu L., Gal S.G.: Approximation by truncated nonlinear Favard-Szász-Mirakjan operators of max-product kind.Demonstratio Math.(to appear). MR 2796766; reference:[4] Bede B., Nobuhara H., Fodor J., Hirota K.: Max-product Shepard approximation operators.J. Advanced Computational Intelligence and Intelligent Informatics 10 (2006), 494–497.; reference:[5] Bede B., Nobuhara H., Daňková M., Di Nola A.: Approximation by pseudo-linear operators.Fuzzy Sets and Systems 159 (2008), 804–820. MR 2403975; reference:[6] Bleimann G., Butzer P.L., Hahn L.: A Bernstein-type operator approximating continuous functions on the semi-axis.Indag. Math. 42 (1980), 255–262. Zbl 0437.41021, MR 0587054; reference:[7] Duman O.: Statistical convergence of max-product approximating operators.Turkish J. Math. 33 (2009), 1–14. MR 2721963; reference:[8] Gal S.G.: Shape-Preserving Approximation by Real and Complex Polynomials.Birkhäuser, Boston-Basel-Berlin, 2008. Zbl 1154.41002, MR 2444986; reference:[9] Khan R.A.: A note on a Bernstein-type operator of Bleimann, Butzer and Hahn.J. Approx. Theory 53 (1988), no. 3, 295–303. Zbl 0676.41024, MR 0947433, 10.1016/0021-9045(88)90024-X; reference:[10] Popoviciu T.: Deux remarques sur les fonctions convexes.Bull. Soc. Sci. Acad. Roumaine 220 (1938), 45–49. Zbl 0021.11605

  3. 3
  4. 4
    Academic Journal

    المؤلفون: Ženčák, Pavel

    مصطلحات موضوعية: msc:41A15, msc:41A29, msc:65D07

    وصف الملف: application/pdf

    Relation: mr:MR1968229; zbl:Zbl 1040.41005; reference:[1] de Boor C.: A Practical Guide to Splines.Springer Verlag, New York, 1978 Zbl 0987.65015, MR 0507062; reference:[2] Schmidt J. W., Hess W., Nordheim, Th.: Shape preserving histopolation using rational quadratic splines.Computing 44 (1990), 245-258. Zbl 0721.65002, MR 1058701; reference:[3] Schmidt J. W., Hess W.: Shape preserving $C^2$-spline histopolation.Journal of Approximation Theory 75, 3 (1993), 325-345. MR 1250544; reference:[4] Ženčák P.: Some algorithm for testing convexity of histogram.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 38 (1999), 149-163. Zbl 0961.41007, MR 1767215; reference:[5] Ženčák P.: Convexity of histogram and convex histopolation by polynomial splines.In: Proceed, of SANM, Nečtiny, 1999, 327-342.

  5. 5
    Academic Journal

    المؤلفون: Ženčák, Pavel

    مصطلحات موضوعية: msc:41A29, msc:65D05

    وصف الملف: application/pdf

    Relation: mr:MR1767215; zbl:Zbl 0961.41007; reference:[1] Beatson R. K., Wolkowics H.: Post-processing piecewise cubics for monotonicity.SIAM J. Numer. Anal. 26, 2 (1989), 480-502. MR 0987403; reference:[2] de. Boor C., Swartz B.: Piecewise monotone interpolаtion.Journal of Approximation Theory 21 (1977), 411-416. MR 0481727; reference:[3] Costantini P., Morandi R.: Monotone аnd convex spline interpolаtion.Calcolo 21 (1984), 281-294. MR 0799625; reference:[4] Costantini P.: On monotone аnd convex spline interpolаtion.Mathematics of Computing 46, 173 (1986), 203-214. MR 0815841; reference:[5] Eisenstst S. C., Jackson K. R., Lewis J. W.: The order of monotone piecewise cubic interpolаtion.SIAM J. Numer. Anal. 22, 6 (1988), 1220-1237. MR 0811195; reference:[6] Fritsch F. N., Carlson R. E.: Monotone piecewise cubic interpolаtion.SIAM J. Numer. Anal. 17, 2 (1980), 238-246. MR 0567271; reference:[7] Hess W., Schmidt J. W.: Direct methods for constructing positive spline interpolаtion.In: Wavelets, Images and Surface Fitting, P. J. Laurent, A. Le Méhauté, L. L. Schumaker (eds.), 1994, 287-294. MR 1302251; reference:[8] Hess W., Schmidt J. W.: Convex C3 interpolаtion with quаrtic splines on threefold refined grids.Preprint ТU Dresden, 1994, MAТH-NM-12-1994.; reference:[9] Hess W., Schmidt J. W.: Shаpe preserving C3 dаtа interpolаtion аnd C2 histopolаtion with splines on threefold refined grids.Submitted to ZAMM, 1995.; reference:[10] Lahtinen A.: Positive Hermite interpolаtion by quаdrаtic splines.SIAM J. Numer. Anal. 24, 1 (1993), 223-233. MR 1199536; reference:[11] Mulansky B., Schmidt J. W.: Constructive methods in convex interpolаtion using quаrtic splines.Numerical Algorithms 12 1996, 111-124. MR 1423551; reference:[12] Sakai M., Usmani R. A.: A shаpe preserving аreа true аpproximаtion of histogrаm by rаtionаl splines.BIТ 28 (1988), 329-339. MR 0938397; reference:[13] Schmidt J. W., Hess W.: Schwach verkoppelte ungleichungsysteme und konvexe Spline-Interpolation.Elem. Math. 39 (1984), 85-95. MR 0803063; reference:[14] Schmidt J. W., Hess W.: Positivity of cubic polynomials on intervals and positive spline interpolation.BIT 28 (1988), 340-352 Zbl 0642.41007, MR 0938398; reference:[15] Schmidt J. W., Hess W., Nordheim, Th.: Shape preserving histopolation using rational quadratic splines.Computing 44 (1990), 245-258. Zbl 0721.65002, MR 1058701; reference:[16] Schmidt J. W., Hess W.: Shape preserving C2 -spline histopolation.Journal of Approximation Theory 75, 3 (1993), 325-345. MR 1250544; reference:[17] Schmidt J. W.: Staircase algorithm and construction of convex interpolants up to the continuity C3.In: Computers Mathematics Applications, P. Rózsa, J. W. Schmidt, B. A. Szabó (guest) eds., 1995.; reference:[18] Schmidt J. W.: Dual algorithms for convex approximations of histograms using cubic C1 splines.Numerical Analysis and Mathematical Modelling 29 (1994), 35-44. MR 1272917; reference:[19] Spaeth H.: Eindimensionale Spline-Interpolations-Algorithmen.Oldenbourgh Verlag, 1990. Zbl 0701.41015, MR 1208909; reference:[20] Yan Z.: Piecewise cubic curve fitting algorithm.Math. Comp. 49, 179 (1987), 203-213. Zbl 0633.65012, MR 0890262

  6. 6
    Academic Journal

    المؤلفون: Štěpán, Jaromír

    مصطلحات موضوعية: msc:41A29, msc:93B99

    وصف الملف: application/pdf

    Relation: zbl:Zbl 0204.16802; reference:[1] N. I. Achijezer: Teorie aproximací.NČSAV, Praha 1955 (překlad z ruštiny).; reference:[2] G. Meinardus: Approximation von Funktionen und ihre numerische Behandlung.Springer Verlag, Berlin 1964. Zbl 0124.33103, MR 0176272; reference:[3] J. Štěpán: Některé problémy identifikace regulovaných soustav.Automatizace (1964), 12.; reference:[4] J. Štěpán: Kritérium dominantnosti kořenů.Kybernetika 2, 3 (1967), 1, 57-68.; reference:[5] J. Štěpán: Aproximace přenosu jednoho typu soustav pomocí dominantních kořenů.Výzk. zpráva ÚTIA ČSAV - č. 104 (1962).; reference:[6] Faddějev D. K, Faddějevová V. N.: Numerické metody lineární algebry.SNTL, Praha 1964.; reference:[7] Nekolný J.: Současná kontrola stability a jakosti regulace.In: Souhrn prací o automatizace 1959. Sk NČSAV, Praha 1961.