-
1Conference
المؤلفون: Segeth, Karel
مصطلحات موضوعية: keyword:smooth interpolation, keyword:data interpolation, keyword:cubic spline interpolation, keyword:Fourier series, msc:41A05, msc:41A15, msc:65D05
وصف الملف: application/pdf
-
2Academic Journal
المؤلفون: Martišek, Dalibor, Procházková, Jana
مصطلحات موضوعية: keyword:tensor product surface, keyword:bilinear form, keyword:B-spline, keyword:NURBS, msc:41A15, msc:53A05, msc:65D17
وصف الملف: application/pdf
Relation: mr:MR2737721; zbl:Zbl 1224.53007; reference:[1] Boor, C. De: A Practical Guide to Splines.Springer Berlin (1978). Zbl 0406.41003, MR 0507062; reference:[2] De, U. C., Sengupta, J., Shaikh, A. A.: Tensor Calculus.Alpha Science International Oxford (2005).; reference:[3] Goldman, R.: The ambient spaces of computer graphics and geometric modeling.IEEE Computer Graphics and Applications, Vol. 20 IEEE Computer Society Press Los Alamitos (2000), 76-84. 10.1109/38.824547; reference:[4] Hewitt, W. T., Ma, Ying Liang: Point inversion and projection for NURBS curve: control polygon approach.Proc. Conf. Theory and Practice of Computer Graphics IEEE Las Vegas (2003), 113-120. MR 1982049; reference:[5] Hwang, Chang-Soon, Sasaki, K.: Evaluation of robotic fingers based on kinematic analysis.Proc. Conf. Intelligent Robots and Systems (IROS 2003) IEEE/RSJ (2003), 3318-3324.; reference:[6] Kay, D. C.: Schaumm's Outline of Tensor Calculus.McGraw-Hill New York (1998).; reference:[7] Li, Chong-Jun, Wang, Ren-Hong: Bivariate cubic spline space and bivariate cubic NURBS surface.Proc. Geometric Modeling and Processing 2004 (GHP 04) IEEE Beijing (2004), 115-123.; reference:[8] Piegl, L.: Modifying the shape of rational B-splines. Part 1: Curves.Computer Aided Design 21 (1989), 509-518. 10.1016/0010-4485(89)90059-6; reference:[9] Piegl, L., Tiller, W.: NURBS Book.Springer Berlin (1995). Zbl 0828.68118; reference:[10] Procházková, J., Sedlák, J.: Direct B-spline interpolation from clouds of points.Engineering Technology, Brno 12 (2007), 24-28.; reference:[11] Qin, H., Terzopoulos, D.: D-NURBS: A physics-based framework for geometric design.IEEE Transaction of Visualisation and Computer Graphics 2 (1996), 85-96. 10.1109/2945.489389; reference:[12] Sederberg, T., Parry, S.: Free-form deformation of solid geometric models.ACM SIGGRAPH Computer Graphics 20 (1986), 151-160. 10.1145/15886.15903; reference:[13] Tang, Sy-sen, Yan, Hong, Liew, Alan Wee-Chung: A NURBS-based vector muscle model for generating human facial expressions.Proc. 4th Conf. Information, Communications and Signal Processing and 4th Pacific Rim Conf. on Multimedia ICICS-PCM Singapore (2003), 15-18.; reference:[14] Zheng, J., Wang, Y., Seah, H. S.: Adaptive T-spline surface fitting to Z-map models.Proc. 3rd Conf. Computer Graphics and Interactive Techniques in Australasia and South East Asia ACM New York (2005), 405-411.
-
3
المؤلفون: Pechmann, Patrick R.
مصطلحات موضوعية: msc:41A63, Finite-Elemente-Methode, Partielle Differentialgleichung, B-Spline, Dirichlet-Problem, msc:65N30, Poisson-Gleichung, msc:33F05, msc:41A15, msc:35J05, ddc:510, Approximationstheorie, Spline
وصف الملف: application/pdf
-
4Academic Journal
المؤلفون: Luner, Petr, Flusser, Jan
مصطلحات موضوعية: keyword:Thin-Plate Spline, keyword:fast evaluation, keyword:subtabulation, msc:41A15, msc:65D07, msc:65D17, msc:65D18
وصف الملف: application/pdf
Relation: mr:MR2131128; zbl:Zbl 1249.65025; reference:[1] Arad N., Dyn N., Reisfeld, D., Yeshurun Y.: Image warping by radial basis functions: Application to facial expressions.CVGIP: Graphical Models and Image Processing 56 (1994), 161–172; reference:[2] Arad N., Gotsman C.: Enhancement by image-dependent warping.IEEE Trans. Image Processing 8 (1999), 1063–1074 10.1109/83.777087; reference:[3] Beatson R. K., Newsam G. N.: Fast evaluation of radial basis functions.Comput. Math. Appl. 24 (1992), 7–19 Zbl 0765.65021, MR 1190302, 10.1016/0898-1221(92)90167-G; reference:[4] Berman M.: Automated smoothing of image and other regularly spaced data.IEEE Trans. Pattern Anal. Mach. Intell. 16 (1994), 460–468 10.1109/34.291451; reference:[5] Bookstein F. L.: Principal warps: Thin-plate splines and the decomposition of deformations.IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989), 567–585 Zbl 0691.65002, 10.1109/34.24792; reference:[6] Carr J. C., Fright W. R., Beatson R.: Surface interpolation with radial basis functions for medical imaging.IEEE Trans. Medical Imaging 16 (1997), 96–107 10.1109/42.552059; reference:[7] Duchon J.: Interpolation des fonctions de deux variables suivant le principle de la flexion des plaques minces.RAIRO Anal. Num. 10 (1976), 5–12 MR 0470565; reference:[8] Flusser J.: An adaptive method for image registration.Pattern Recognition 25 (1992), 45–54 10.1016/0031-3203(92)90005-4; reference:[9] Goshtasby A.: Registration of images with geometric distortions.IEEE Trans. Geoscience and Remote Sensing 26 (1988), 60–64 10.1109/36.3000; reference:[10] Greengard L., Rokhlin V.: A fast algorithm for particle simulations.J. Comput. Phys. 73 (1987), 325–348 Zbl 0629.65005, MR 0918448, 10.1016/0021-9991(87)90140-9; reference:[11] Grimson W. E. L.: A computational theory of visual surface interpolation.Philos. Trans. Roy. Soc. London Ser. B 298 (1982), 395–427 10.1098/rstb.1982.0088; reference:[12] Harder R. L., Desmarais R. N.: Interpolation using surface splines.J. Aircraft 9 (1972), 189–191 10.2514/3.44330; reference:[13] Kašpar R., Zitová B.: Weighted thin-plate spline image denoising.Pattern Recognition 36 (2003), 3027–3030 Zbl 1059.68150, 10.1016/S0031-3203(03)00133-X; reference:[14] Powell M. J. D.: Tabulation of thin plate splines on a very fine two-dimensional grid.In: Numerical Methods of Approximation Theory, Volume 9 (D. Braess and L. L. Schumacher, eds.), Birkhäuser Verlag, Basel, 1992, pp. 221–244 Zbl 0813.65014, MR 1269364; reference:[15] Powell M. J. D.: Tabulation of Thin Plate Splines on a Very Fine Two-Dimensional Grid.Numerical Analysis Report of University of Cambridge, DAMTP/1992/NA2, Cambridge 1992 Zbl 0813.65014, MR 1269364; reference:[16] Rohr K., Stiehl H. S., Buzug T. M., Weese, J., Kuhn M. H.: Landmark-based elastic registration using approximating thin-plate splines.IEEE Trans. Medical Imaging 20 (2001), 526–534 10.1109/42.929618; reference:[17] Wahba G.: Spline Models for Observational Data.SIAM, Philadelphia 1990 Zbl 0813.62001, MR 1045442; reference:[18] Wolberg G.: Digital Image Warping.IEEE Computer Society Press, 1990
-
5
المؤلفون: Amirbekyan, Abel, Michel, Volker
مصطلحات موضوعية: Spline-Approximation, localizing basis, Seismische Tomographie, msc:41A15, msc:86A15, Sobolevräume, Physics::Geophysics, lokalisierende Basis, Lineare Integralgleichung, msc:45Q05, Sobolev spaces, Spline-Interpolation, Inverses Problem, ddc:510, Mehrdimensionale Spline-Funktion
وصف الملف: application/pdf
-
6
المؤلفون: Amirbekyan, Abel
مصطلحات موضوعية: msc:45Q05, localizing basis, Sobolev spaces, seismic tomography, msc:41A15, inverse problem, splines, ddc:510, msc:86A15
وصف الملف: application/pdf
-
7
المؤلفون: Paula Kammann, Volker Michel
مصطلحات موضوعية: Computational Mechanics, seismic wave, msc:41A05, Elastizität, msc:86A17, Smoothing spline, symbols.namesake, Cauchy-Navier equation, Orthonormal basis, ddc:510, Cauchy-Navier-Gleichung, Thin plate spline, Approximation, Mathematics, Zeitabhängigkeit, msc:41A52, Sphäre, Applied Mathematics, Mathematical analysis, reproducing kernel, Hilbert space, Cauchy distribution, msc:41A15, Seismische Welle, spline, reproduzierender Kern, Spline (mathematics), Norm (mathematics), msc:65D07, symbols, sphere, Reproducing kernel Hilbert space
وصف الملف: application/pdf
-
8Academic Journal
المؤلفون: Kobza, Jiří
وصف الملف: application/pdf
Relation: mr:MR2056020; zbl:Zbl 1049.41005; reference:[1] Atteia M.: Hilbertian Kernels and Spline Functions.Elsevier, 1992. Zbl 0767.41015, MR 1205348; reference:[2] Boor C.: A Practical Guide to Splines.Springer, 1978. Zbl 0406.41003, MR 0507062; reference:[3] Dierckx P.: Curve and Surface Fitting with Splines.Clarendon Press, 1993. Zbl 0782.41016, MR 1218172; reference:[4] Fletcher R.: Practical Methods of Optimization.Wiley, 1993. MR 0955799; reference:[5] Gould N.: On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem.Mathematical Programming 32 (1985) 90-99. Zbl 0591.90068, MR 0787745; reference:[6] Kobza J.: Spline recurrences for quartic splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 34 (1995), 75-89. Zbl 0854.41011, MR 1447257; reference:[7] Kobza J.: Local representation of quartic splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 63-78. MR 1620525; reference:[8] Kobza J.: Generalized spline smoothing.Folia Fac. Sci. Nat. Univ. Masaryk. Brunensis, Math. 8 (2001), 33-46. MR 1843365; reference:[9] Kobza J.: Quartic splines with minimal norms.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 40 (2001), 83-104. MR 1904689; reference:[10] Kobza J., Ženčák P.: Some algorithms for quartic smoothing splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 79-94. Zbl 0958.41004, MR 1620529; reference:[11] Laurent P.-J.: Approximation et optimisation.Paris, Herman, 1972. Zbl 0238.90058, MR 0467080; reference:[12] Reinsch C.: Smoothing by spline functions.Numer. Math. 10 (1967), 177-183; 16 (1971) 451-454. Zbl 0161.36203; reference:[13] Lyche T., Schumaker L. L.: Computation of smoothing and interpolating natural splines via local bases.SIAM Jour. Numer. Anal. 10 (1973), 1027-1038. Zbl 0239.65015, MR 0336959; reference:[14] Spaeth H.: Eindimensionale Spline-Interpolations-Algorithmen.Oldenbourgh, 1990. Zbl 0701.41015, MR 1208909; reference:[15] Vasilenko V. A.: Spline Functions.Nauka, Novosibirsk, 1983 (in Russian). Zbl 0529.41013; reference:[16] Wahba G.: Spline Models for Observational Data.SIAM, 1990. Zbl 0813.62001, MR 1045442; reference:[17] Verschinin V. V., Zavjalov J. S., Pavlov N. N.: Extremal properties of Splines and the Smoothing problem.Nauka, Novosibirsk, 1988 (in Russian).; reference:[18] Zavjalov J. S., Kvasov B. I., Miroschnichenko V. L.: Methods of Spline-Functions.Nauka, Moscow, 1985 (in Russian).
-
9
المؤلفون: Fengler, Martin J., Michel, Dominik, Michel, Volker
مصطلحات موضوعية: msc:42C40, Spline-Wavelets, GRACE
, GOCE , Sobolev-Raum, regular surface, Harmonische Spline-Funktion, msc:41A15, msc:86A22, ball, Mehrskalenanalyse, CHAMP , GRACE , GOCE , Kugelfunktion, reguläre Fläche, Regularisierung, Inverses Problem, ddc:510, msc:45K05, Kugel وصف الملف: application/pdf
-
10Academic Journal
المؤلفون: Kobza, Jiří
مصطلحات موضوعية: keyword:cubic interpolatory spline, keyword:minimal norm interpolation, msc:41A15, msc:65D05, msc:65D07
وصف الملف: application/pdf
Relation: mr:MR1900515; zbl:Zbl 1090.65012; reference:[1] A. Bjorck: Numerical Methods for Least Squares Problems.SIAM, Philadelphia, 1996. MR 1386889; reference:[2] C. Boor: A Practical Guide to Splines.Springer-Verlag, New York-Heidelberg-Berlin, 1978. Zbl 0406.41003, MR 0507062; reference:[3] L. Brugnano, D. Trigiante: Solving Differential Equations by Multistep. Initial and Boundary Value Methods.Gordon and Breach, London, 1998. MR 1673796; reference:[4] R. Fletcher: Practical Methods of Optimization.Wiley, Chichester, 1993. MR 1867781; reference:[5] J. Kobza: Splajny. Textbook.VUP, Olomouc, 1993. (Czech); reference:[6] J. Kobza: Computing solutions of linear difference equations.In: Proceedings of the XIIIth Summer School Software and Algorithms of Numerical Mathematics, Nečtiny 1999, I. Marek (ed.), University of West Bohemia, Plzeň, 1999, pp. 157–172.; reference:[7] J. S. Zavjalov, B. I. Kvasov and V. L. Miroschnichenko: Methods of Spline Functions.Nauka, Moscow, 1980. (Russian) MR 0614595
-
11Academic Journal
المؤلفون: Ženčák, Pavel
وصف الملف: application/pdf
Relation: mr:MR1968229; zbl:Zbl 1040.41005; reference:[1] de Boor C.: A Practical Guide to Splines.Springer Verlag, New York, 1978 Zbl 0987.65015, MR 0507062; reference:[2] Schmidt J. W., Hess W., Nordheim, Th.: Shape preserving histopolation using rational quadratic splines.Computing 44 (1990), 245-258. Zbl 0721.65002, MR 1058701; reference:[3] Schmidt J. W., Hess W.: Shape preserving $C^2$-spline histopolation.Journal of Approximation Theory 75, 3 (1993), 325-345. MR 1250544; reference:[4] Ženčák P.: Some algorithm for testing convexity of histogram.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 38 (1999), 149-163. Zbl 0961.41007, MR 1767215; reference:[5] Ženčák P.: Convexity of histogram and convex histopolation by polynomial splines.In: Proceed, of SANM, Nečtiny, 1999, 327-342.
-
12Academic Journal
المؤلفون: Machalová, Jitka
وصف الملف: application/pdf
Relation: mr:MR1968224; zbl:Zbl 1068.41017; reference:[1] Boor C. de: A Practical Guide to Splines.Springer, New York, 1978. Zbl 0406.41003, MR 0507062; reference:[2] Chipman J. S.: Specification problems in regression analysis.T. L. Boullion, P. I. Odell, Proceedings of the Symposium on Theory and Applications of Generalized Inverses of Matrices, Texas 1968, 114-176. MR 0254984; reference:[3] Dierckx P.: Curve and Surface Fitting with Splines.Clarendon Press, 1993. Zbl 0782.41016, MR 1218172; reference:[4] Djordovič D. S., Stanimirovič P. S.: Universal iterative methods for computing generalized inverses.Acta Mathematica Hungarica 79 (1998), 253-268. MR 1616062; reference:[5] Fletcher R.: Practical Methods of Optimization.John Wiley, New York, 1987. Zbl 0905.65002, MR 0955799; reference:[6] Kobza J.: Splajny.VUP, Olomouc, 1993 (textbook in czech).; reference:[7] Kobza J.: Cubic splines with minimal norm.Applications of Mathematics (to appear). Zbl 1090.65012, MR 1900515; reference:[8] Kobza J.: Quartic splines with minimal norm.Dept. Math. Anal. and Appl. Math., Fac. Sci., Palacki Univ., Olomouc, Preprint series 22/2000. MR 1904689; reference:[9] Rao C. R., Mitra K. S.: Generalized Inverse of Matrices and Its Application.J. Wiley, New York, 1971. MR 0338013
-
13Academic Journal
المؤلفون: Kobza, Jiří
وصف الملف: application/pdf
Relation: mr:MR1904689; zbl:Zbl 1044.41008; reference:[1] Bjorck A.: Numerical Methods for Least Squares Problems.SIAM, Philadelphia, 1996. MR 1386889; reference:[2] Boor C.: A Practical Guide to Splines.Springer, 1978. Zbl 0406.41003, MR 0507062; reference:[3] Gould I. M.: On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming probem.Mathematical Programming 32 (1985) 90-99. MR 0787745; reference:[4] Kobza J.: Quartic interpolatory splines.Studia Univ. Babes-Bolyai, Math. (1996). MR 1644442; reference:[5] Kobza J.: Spline recurrences for quartic splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat. 34, Math. 63 (1995), 229-236. Zbl 0854.41011, MR 1447257; reference:[6] Kobza J.: Local representation of quartic splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 63-78. MR 1620525; reference:[7] Kobza J.: Splajny.Vydavatelství UP, Olomouc, 1993 (textbook in Czech); reference:[8] Kobza J.: Computing solutions of linear difference equations.Dept. Math. Anal. and Appl. Math., Fac. Sci., Palacki Univ., Olomouc, Preprint series 21, 1999; Proceedings SANM XIII, Nectiny 1999, 157-172.; reference:[9] Kobza J., Ženčák P.: Some algorithms for quartic smoothing splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 79-94. Zbl 0958.41004, MR 1620529
-
14
المؤلفون: Freeden, W., Michel, V. (Dr.)
مصطلحات موضوعية: msc:42C40, Spline-Approximation, Gravitationsfeld, msc:86A30, msc:41A15, Mehrskalenanalyse, gravitational field recovery, wavelets, multiscale modeling, Physics::Geophysics, msc:65T60, Physics::Space Physics, CHAMP, spherical splines, msc:31B05, ddc:510, Satellitengeodäsie, Wavelet
-
15Academic Journal
المؤلفون: Guy, Tatiana V., Kárný, Miroslav
مصطلحات موضوعية: keyword:hybrid adaptive controller, keyword:linear stochastic controlled system, msc:41A15, msc:93B50, msc:93C05, msc:93C40, msc:93E03
وصف الملف: application/pdf
Relation: mr:MR1760027; zbl:Zbl 1249.93103; reference:[1] Boor C. De: Practical Guide to Splines.Springer–Verlag, New York 1978 Zbl 0987.65015; reference:[2] Guy T. V., Kárný M.: Spline–based hybrid adaptive controller.In: Modelling, Identification and Control (M. H. Hamza, ed.), Acta Press, Anaheim, pp. 118–122; reference:[3] Jazwinski A. M.: Stochastic Processes and Filtering Theory.Academic Press, New York 1970 Zbl 0203.50101; reference:[4] Kárný M., Halousková A., Böhm J. R.Kulhavý, Nedoma P.: Design of linear quadratic adaptive control: Theory and algorithm for practice.Supplement to Kybernetika 21 (1985), Nos. 3–6; reference:[5] Kárný M., Halousková A., Nagy I.: Modelling, identification and adaptive control of cross–direction basis weight of paper sheets.In: Internat. Conf. CONTROL 88, Oxford 1988, pp. 159–164; reference:[6] Kárný M., Nagy I., Böhm J., Halousková A.: Design of spline–based selftuners.Kybernetika 26 (1990), 17–30; reference:[7] Korn G. A., Korn T. M.: Mathematical Handbook for Scientists and Engineers.McGraw–Hill, New York 1968 Zbl 0535.00032, MR 0220560; reference:[8] Kornejchuk N. P.: Splines in the Approximation Theory (in Russian).Nauka, Moscow 1978; reference:[9] Kulhavý R.: Restricted exponential forgetting in real–time identification.Automatica 23 (1987), 5, 598–600 Zbl 0634.93073, MR 0912352, 10.1016/0005-1098(87)90054-9; reference:[10] Ljung L.: System Identification: Theory for the User.Prentice–Hall, London 1987 Zbl 0615.93004
-
16Academic Journal
المؤلفون: Machalová, Jitka
وصف الملف: application/pdf
Relation: mr:MR1826358; zbl:Zbl 1046.65028; reference:[1] Albert A.: Regression and the Moore-Penrose Pseudoinverse.Acаdemic Press, New York аnd London, 1972 Zbl 0253.62030, MR 0331659; reference:[2] Bjorck A.: Numerical Methods for Least Squares Problems.SIAM, Philаdelphiа, 1996. MR 1386889; reference:[3] Chipman J. S.: Specificаtion problems in regression аnаlysis.T. L. Boullion, P. I. Odell, Proceedings of the Symposium on Theory and Applications of Generalized Inverses of Matrices, Texas 1968, 114-176. MR 0254984; reference:[4] Davis P. J.: Circulant Matrices.J. Wiley, New York, 1979. Zbl 0418.15017, MR 0543191; reference:[5] Djordovič D. S., Stanimirovič P. S.: Universаl iterаtive methods for computing generаlized inverses.Acta Mathematica Hungarica 79 (1998), 253-268.; reference:[6] Kobza Ј.: Splаjny.VUP, Olomouc, 1993 (textbook in czech).; reference:[7] Kubáček L.: Notice on the Chipmаn Generаlizаtion on the Mаtrix Inverse.Acta Univ. Palacki. Olomuc., Fac. rer. nat. 36 (1997), 95-98. MR 1620521; reference:[8] Machalová Ј.: Výpočty pseudoinverzních mаtic.Dept. Math. Anal. and Appl. Math., Fac. Sci., Palacki Univ., Olomouc, Preprint series 9, 1998.; reference:[9] Peška P.: The Moore-Penrose Inverse of а Pаrtitioned Morphism in аn Additive Cаtegory.Folia Fac. Sci. Nat. Univ. Masaryk. Brunеnsis, Math. 9 (to appеar).; reference:[10] Rao C. R., Mitra K. S.: Gеnеralizеd Invеrsе of Matricеs and Its Application.J. Wiley, New York, 1971. MR 1223322
-
17Academic Journal
المؤلفون: Kobza, Jiří
وصف الملف: application/pdf
Relation: mr:MR1826354; zbl:Zbl 1044.41007; reference:[1] Fletcher R.: Practical Methods of Optimization.Wiley, New York, 1993. MR 0955799; reference:[2] Maess G.: Smooth interpolation of curves and surfaces by quadratic splines with minimal curvature.In: Numerical methods and Applications ’84, Sofia, 1985, 75-81.; reference:[3] Kobza J.: Optimal interpolation with quadratic splines on simple grid.Dept. Math. Anal. and Appl. Math., Fac. Sci., Palacki Univ., Olomouc, Preprint series 31, Proceed. ODAM’99 (1999), 7-22. MR 1767192; reference:[4] Kobza J.: Splajny.VUP, Olomouc, 1993 (textbook in Czech).; reference:[5] Kobza J.: Natural and smoothing quadratic spline.Appl. of Math. 36, 3 (1991), 187-204. Zbl 0731.65006, MR 1109124; reference:[6] Kobza J.: Computing solutions of linear difference equations.Dept. Math. Anal. and Appl. Math., Fac. Sci., Palacki Univ., Olomouc, Preprint series 21, 1999; Proceedings SANM XIII, Nectiny 1999, 157-172.; reference:[7] Kobza J.: Quadratic splines interpolating derivatives.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 30 (1991), 219-233. Zbl 0758.41005, MR 1166439; reference:[8] Björck A.: Numerical Methods for Least Squares Problems.SIAM, Philadelphia, 1996. Zbl 0847.65023, MR 1386889; reference:[9] Brugnano L., Trigiante D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods.Gordon and Breach Publ., 1998. MR 1673796
-
18Academic Journal
المؤلفون: Kobza, Jiří
وصف الملف: application/pdf
Relation: mr:MR1767192; zbl:Zbl 0992.41008; reference:[1] Björck A.: Numerical Methods for Least Squares Problems.SIAM, Philadelphia, 1996, 408 pp. Zbl 0847.65023, MR 1386889; reference:[2] Kobza J.: Splajny.UP Publ., Olomouc, 1993, 224 pp.; reference:[3] : MATLAB Reference Guide. Optimization Tooolbox.The MathWorks, 1992.; reference:[4] Elaydi S. N.: Introduction to Difference Equations.Springer-Verlag, New York, 1996. Zbl 0840.39002, MR 1410259
-
19Academic Journal
المؤلفون: Kobza, Jiří, Ženčák, Pavel
وصف الملف: application/pdf
Relation: mr:MR1620529; zbl:Zbl 0958.41004; reference:[1] De Boor C.: A Practical Guide to Splines.Springer Verlag, New York, 1978. Zbl 0406.41003, MR 0507062; reference:[2] Fiedler M.: Speciální matice a jejich použití v numerické matematice.SNTL, Praha, 1981. Zbl 0531.65008; reference:[3] Kobza J.: Spline recurrences for quartic splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat. 34, Math. (1995), 75-89. Zbl 0854.41011, MR 1447257; reference:[4] Kobza J.: Quartic interpolatory splines.Studia Univ. "Babes-Bolyai", Math., Cluj-Napoca, 1996 (to appear). MR 1644442; reference:[5] Kobza J.: Quartic smoothing splines.Proceedings of the XIth Summer School Software and Algorithms of Numerical Mathematics, Železná Ruda, University of West Bohemia-Charles University-UCMF, 1996, 122-134.; reference:[6] Kobza J.: Splajny.VUP, Olomouc, 1993 (Textbook in Czech).; reference:[7] Kobza J.: Some algorithm for computing local parameters of quartic interpolatory splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat. 33, Math. 114 (1994). Zbl 0851.41009, MR 1385747; reference:[8] Kučera R.: Complete Quadratic Spline Histogram Smoothing.Folia Fac. Sci. Nat. Univ. Masaryk Brunensis, 1996 (to appear).; reference:[9] Spaeth H.: Eindimensionale Spline-Interpolations-Algorithmen.R. Oldenbourgh Verlag, 1990, 391 pp. Zbl 0701.41015, MR 1208909
-
20Academic Journal
المؤلفون: Kobza, Jiří
وصف الملف: application/pdf
Relation: mr:MR1620525; zbl:Zbl 0958.41005; reference:[1] Ahlberg J. H., Nilson E. N., Walsh J. L.: The Theory of Splines and Their Applications.Academic Press, New York, 1967. Zbl 0158.15901, MR 0239327; reference:[2] Bojanov B. P., Hakopian H. A., Sanakian A. A.: Spline Functions and Multivariate Interpolation.Kluwer Acad. Publ., Dordrecht, 1993. MR 1244800; reference:[3] De Boor C.: A Practical Guide to Splines.Springer Verlag, New York, 1978. Zbl 0406.41003, MR 0507062; reference:[4] Kobza J.: Spline Functions.VUP Olomouc, 1993, 224 pp. (Textbook in Czech).; reference:[5] Kobza J.: Some algorithm for computing local parameters of quartic interpolatory splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat. 33, Math. 114 (1994), 63-73. Zbl 0851.41009, MR 1385747; reference:[6] Kobza J.: Spline recurrences for quartic splines.Acta Univ. Palacki. Olomuc., Fac. rer. nat. 34, Math. (1995), 75-89. Zbl 0854.41011, MR 1447257; reference:[7] Kobza J.: Computing local parameters of biquartic interpolatory splines.J. Comp. Appl. Math 63 (1995), 229-236. Zbl 0859.65010, MR 1365563; reference:[8] Kobza J.: Quartic interpolatory splines.Studia Univ. Babes-Bolyai, Math. (1996), to appear. MR 1644442; reference:[9] Kobza J.: Quartic and biquartic interpolatory splines on simple grid.Acta Univ. Palacki. Olomuc., Fac. rer. nat.35, Math. (1996), 61-72. Zbl 0962.41003, MR 1485045; reference:[10] Kobza J.: Quadratic and quartic splines in MATLAB.Folia Fac. sci. Nat. Univ. Masaryk Brunensis, Mathematica 5 (1997), 47-65. Zbl 0915.65008, MR 1630855; reference:[11] Laurent P.J.: Approximation et optimisation.Paris, Hermann, 1972. Zbl 0238.90058, MR 0467080; reference:[12] Schumaker L. L.: Spline Functions. Basic Theory.Wiley, 1981. Zbl 0449.41004, MR 0606200; reference:[13] Spaeth H.: Eindimensionale Spline-Interpolations-Algorithmen.Oldenbourgh Verlag, 1990. Zbl 0701.41015, MR 1208909; reference:[14] Stěčkin S. B., Subbotin J. N.: Splines in Numerical Mathematics.Nauka, Moscow, 1976 (in Russian). MR 0455278; reference:[15] Zavjalov J. S., Kvasov B. I., Mirošničenko V. L.: Methods of Spline Functions.Nauka, Moscow, 1980 (in Russian). MR 0614595