يعرض 1 - 19 نتائج من 19 نتيجة بحث عن '"msc:35K51"', وقت الاستعلام: 0.50s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Gil', Michael

    وصف الملف: application/pdf

    Relation: mr:MR4586899; zbl:Zbl 07729512; reference:[1] Alabau, F., Cannarsa, P., Komornik, V.: Indirect internal stabilization of weakly coupled evolution equations.J. Evol. Equ. 2 (2002), 127-150. Zbl 1011.35018, MR 1914654, 10.1007/s00028-002-8083-0; reference:[2] Andrica, D., (eds.), T. M. Rassias: Differential and Integral Inequalities.Springer Optimization and Its Applications 151. Springer, Cham (2019). Zbl 1431.26003, MR 3972115, 10.1007/978-3-030-27407-8; reference:[3] Chicone, C., Latushkin, Y.: Evolution Semigrous in Dynamical Systems and Differential Equations.Mathematical Survey and Monographs 70. AMS, Providence (1999). Zbl 0970.47027, MR 1707332, 10.1090/surv/070; reference:[4] Cialdea, A., Lanzara, F.: Stability of solutions of evolution equations.Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 24 (2013), 451-469. Zbl 1282.35057, MR 3129748, 10.4171/RLM/661; reference:[5] Curtain, R. F., Oostveen, J. C.: Necessary and sufficient conditions for strong stability of distributed parameter systems.Syst. Control Lett. 37 (1999), 11-18. Zbl 0917.93059, MR 1752433, 10.1016/S0167-6911(98)00109-1; reference:[6] Daleckii, Y. L., Krein, M. G.: Stability of Solutions of Differential Equations in Banach Space.Translations of Mathematical Monographs 43. AMS, Providence (1974). Zbl 0286.34094, MR 0352639, 10.1090/mmono/043; reference:[7] Dragan, V., Morozan, T.: Criteria for exponential stability of linear differential equations with positive evolution on ordered Banach spaces.IMA J. Math. Control Inf. 27 (2010), 267-307. Zbl 1222.34066, MR 2721169, 10.1093/imamci/dnq013; reference:[8] Fourrier, N., Lasiecka, I.: Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions.Evol. Equ. Control Theory 2 (2013), 631-667. Zbl 1277.35232, MR 3177247, 10.3934/eect.2013.2.631; reference:[9] Gil', M.: Integrally small perturbations of semigroups and stability of partial differential equations.Int. J. Partial Differ. Equ. 2013 (2013), Article ID 207581, 5 pages. Zbl 1304.35090, 10.1155/2013/207581; reference:[10] Gil', M. I.: Operator Functions and Operator Equations.World Scientific, Hackensack (2018). Zbl 1422.47004, MR 3751395, 10.1142/10482; reference:[11] Gil', M. I.: Stability of evolution equations with small commutators in a Banach space.Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 29 (2018), 589-596. Zbl 07032412, MR 3896255, 10.4171/RLM/822; reference:[12] Gil', M. I.: Stability of linear equations with differentiable operators in a Hilbert space.IMA J. Math. Control Inf. 37 (2020), 19-26. Zbl 1436.93115, MR 4073909, 10.1093/imamci/dny035; reference:[13] Henry, D.: Geometric Theory of Semilinear Parabolic Equations.Lectures Notes in Mathematics 840. Springer, Berlin (1981). Zbl 0456.35001, MR 0610244, 10.1007/BFb0089647; reference:[14] Krein, S. G.: Linear Differential Equations in Banach Space.Translations of Mathematical Monographs 29. AMS, Providence (1972). Zbl 0229.34050, MR 0342804, 10.1090/mmono/029; reference:[15] Laasri, H., El-Mennaoui, O.: Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity.Czech. Math. J. 63 (2013), 887-908. Zbl 1313.35203, MR 3165503, 10.1007/s10587-013-0060-y; reference:[16] Nicaise, S.: Convergence and stability analyses of hierarchic models of dissipative second order evolution equations.Collect. Math. 68 (2017), 433-462. Zbl 1375.35047, MR 3683020, 10.1007/s13348-017-0192-8; reference:[17] Oostveen, J.: Strongly Stabilizable Distributed Parameter Systems.Frontiers in Applied Mathematics 20. SIAM, Philadelphia (2000). Zbl 0964.93004, MR 1773377, 10.1137/1.9780898719864; reference:[18] Pucci, P., Serrin, J.: Asymptotic stability for nonautonomous dissipative wave systems.Commun. Pure Appl. Math. 49 (1996), 177-216. Zbl 0865.35089, MR 1371927, 10.1002/(SICI)1097-0312(199602)49:23.0.CO;2-B

  2. 2
    Academic Journal

    المؤلفون: Mizukami, Masaaki, Tanaka, Yuya

    وصف الملف: application/pdf

    Relation: mr:MR4563033; zbl:Zbl 07675591; reference:[1] Baldelli, L., Filippucci, R.: A priori estimates for elliptic problems via Liouville type theorems.Discrete Contin. Dyn. Syst. Ser. S 13 (7) (2020), 1883–1898. MR 4097623; reference:[2] Black, T., Lankeit, J., Mizukami, M.: On the weakly competitive case in a two-species chemotaxis model.IMA J. Appl. Math. 81 (5) (2016), 860–876. MR 3556387, 10.1093/imamat/hxw036; reference:[3] Cieślak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis.Nonlinearity 21 (5) (2008), 1057–1076. MR 2412327, 10.1088/0951-7715/21/5/009; reference:[4] Fuest, M.: Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening.NoDEA Nonlinear Differential Equations Appl. 28 (16) (2021), 17 pp. MR 4223515; reference:[5] Mizukami, M.: Boundedness and stabilization in a two-species chemotaxis-competition system of parabolic-parabolic-elliptic type.Math. Methods Appl. Sci. 41 (1) (2018), 234–249. MR 3745368, 10.1002/mma.4607; reference:[6] Mizukami, M., Tanaka, Y., Yokota, T.: Can chemotactic effects lead to blow-up or not in two-species chemotaxis-competition models?.Z. Angew. Math. Phys. 73 (239) (2022), 25 pp. MR 4500792; reference:[7] Stinner, C., Tello, J.I., Winkler, M.: Competitive exclusion in a two-species chemotaxis model.J. Math. Biol. 68 (7) (2014), 1607–1626. MR 3201907, 10.1007/s00285-013-0681-7; reference:[8] Tello, J.I., Winkler, M.: Stabilization in a two-species chemotaxis system with a logistic source.Nonlinearity 25 (5) (2012), 1413–1425. MR 2914146, 10.1088/0951-7715/25/5/1413; reference:[9] Tu, X., Qiu, S.: Finite-time blow-up and global boundedness for chemotaxis system with strong logistic dampening.J. Math. Anal. Appl. 486 (1) (2020), 25 pp. MR 4053055; reference:[10] Winkler, M.: Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation.Z. Angew. Math. Phys. 69 (69) (2018), 40 pp. MR 3772030

  3. 3
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4563032; zbl:Zbl 07675590; reference:[1] Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations.Math. Z. 183 (1983), 311–341. Zbl 0497.35049, 10.1007/BF01176474; reference:[2] Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems.Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), Teubner-Texte Math., vol. 133, Teubner, Stuttgart, 1993, pp. 9–126.; reference:[3] Bénilan, Ph., Crandall, M.G., Pierre, M.: Solutions of the porous medium equation in ${\mathbb{R}}^ N$ under optimal conditions on initial values.Indiana Univ. Math. J. 33 (1984), 51–87. 10.1512/iumj.1984.33.33003; reference:[4] Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models.Applied Mathematical Sciences, vol. 183, Springer, New York, 2013. MR 2986590, 10.1007/978-1-4614-5975-0; reference:[5] Brenier, Y., De Lellis, C., Székelyhidi, Jr., L.: Weak-strong uniqueness for measure-valued solutions.Comm. Math. Phys. 305 (2011), no. 2, 351–361. MR 2805464, 10.1007/s00220-011-1267-0; reference:[6] Bresch, D., Gisclon, M., Lacroix-Violet, I.: On Navier-Stokes-Korteweg and Euler-Korteweg systems: application to quantum fluids models.Arch. Ration. Mech. Anal. 233 (2019), no. 3, 975–1025. MR 3961293, 10.1007/s00205-019-01373-w; reference:[7] Brézis, H., Crandall, M.G.: Uniqueness of solutions of the initial-value problem for $u_t- \Delta \varphi (u)=0$.J. Math. Pures Appl. (9) 58 (1979), 153–163.; reference:[8] Chen, X., Jüngel, A.: Weak-strong uniqueness of renormalized solutions to reaction-cross-diffusion systems.Math. Models Methods Appl. Sci. 29 (2019), no. 2, 237–270. MR 3917403, 10.1142/S0218202519500088; reference:[9] Christoforou, C., Tzavaras, A.E.: Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity.Arch. Ration. Mech. Anal. 229 (2018), no. 1, 1–52. MR 3799089, 10.1007/s00205-017-1212-2; reference:[10] Escher, J., Matioc, A.-V., Matioc, B.-V.: Modelling and analysis of the Muskat problem for thin fluid layers.J. Math. Fluid Mech. 14 (2012), 267–277. MR 2925108, 10.1007/s00021-011-0053-2; reference:[11] Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system.J. Math. Fluid Mech. 14 (2012), no. 4, 717–730. MR 2992037, 10.1007/s00021-011-0091-9; reference:[12] Feireisl, E., Novotný, A.: Weak-strong uniqueness property for the full Navier-Stokes-Fourier system.Arch. Ration. Mech. Anal. 204 (2012), no. 2, 683–706. MR 2909912, 10.1007/s00205-011-0490-3; reference:[13] Fischer, J.: Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations.Nonlinear Anal. 159 (2017), 181–207. MR 3659829; reference:[14] Fischer, J., Hensel, S.: Weak-strong uniqueness for the Navier-Stokes equation for two fluids with surface tension.Arch. Ration. Mech. Anal. 236 (2020), no. 2, 967–1087. MR 4072686, 10.1007/s00205-019-01486-2; reference:[15] Giesselmann, J., Lattanzio, C., Tzavaras, A.E.: Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics.Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1427–1484. MR 3594360, 10.1007/s00205-016-1063-2; reference:[16] Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Weak-strong uniqueness for measure-valued solutions of some compressible fluid models.Nonlinearity 28 (2015), no. 11, 3873–3890. MR 3424896, 10.1088/0951-7715/28/11/3873; reference:[17] Hopf, K.: Weak-strong uniqueness for energy-reaction-diffusion systems.Math. Models Methods Appl. Sci. 32 (2022), 1015–1069. MR 4430363, 10.1142/S0218202522500233; reference:[18] Huo, X., Jüngel, A., Tzavaras, A.E.: Weak-strong uniqueness for Maxwell-Stefan systems.SIAM J. Math. Anal. 54 (2022), no. 3, 3215–3252. MR 4429417, 10.1137/21M145210X; reference:[19] Jüngel, A., Portisch, S., Zurek, A.: Nonlocal cross-diffusion systems for multi-species populations and networks.Nonlinear Anal. 219 (2022), Paper No. 112800, 1–26. MR 4379345, 10.1016/j.na.2022.112800; reference:[20] Laurençot, Ph., Matioc, B.-V.: Bounded weak solutions to a class of degenerate cross-diffusion systems.arXiv: 2201.06479.; reference:[21] Laurençot, Ph., Matioc, B.-V.: The porous medium equation as a singular limit of the thin film Muskat problem.arXiv:2108.09032, to appear in Asymptot. Anal.; reference:[22] Laurençot, Ph., Matioc, B.-V.: Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals.Trans. Amer. Math. Soc. 375 (2022), no. 8, 5963–5986. MR 4469243; reference:[23] Matioc, B.-V., Walker, Ch.: On the principle of linearized stability in interpolation spaces for quasilinear evolution equations.Monatsh. Math. 191 (2020), no. 3, 615–634. MR 4064570, 10.1007/s00605-019-01352-z; reference:[24] Otto, F.: $L^ 1$-contraction and uniqueness for quasilinear elliptic-parabolic equations.J. Differential Equations 131 (1996), no. 1, 20–38. 10.1006/jdeq.1996.0155; reference:[25] Pierre, M.: Uniqueness of the solutions of $u_t-\Delta (\phi (u)) = 0$ with initial datum a measure.Nonlinear Anal. 6 (1982), 175–187.; reference:[26] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators.North-Holland, Amsterdam, 1978. Zbl 0387.46033; reference:[27] Vázquez, J.L.: The Porous Medium Equation.Clarendon Press, Oxford, 2007. MR 2286292

  4. 4
    Academic Journal

    المؤلفون: Li, Yanqiu, Jiang, Juncheng

    وصف الملف: application/pdf

    Relation: mr:MR3913884; zbl:Zbl 07031677; reference:[1] Abid, W., Yafia, R., Alaoui, M. A. Aziz, Bouhafa, H., Abichou, A.: Instability and pattern formation in three-species food chain model via Holling type II functional response on a circular domain.Int. J. Bifurcation Chaos Appl. Sci. Eng. 25 (2015), Article ID 1550092, 25 pages. Zbl 1317.92059, MR 3357413, 10.1142/S0218127415500923; reference:[2] Antwi-Fordjour, K., Nkashama, M.: Global existence of solutions of the Gierer-Meinhardt system with mixed boundary conditions.Appl. Math., Irvine 8 (2017), 857-867. MR 3286973, 10.4236/am.2017.86067; reference:[3] Bendahmane, M., Ruiz-Baier, R., Tian, C.: Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.J. Math. Biol. 72 (2016), 1441-1465. Zbl 1338.35041, MR 3483181, 10.1007/s00285-015-0917-9; reference:[4] Bray, D., Thomas, C.: Unpolymerized actin in fibroblasts and brain.J. Mol. Biol. 105 (1976), 527-544. 10.1016/0022-2836(76)90233-3; reference:[5] Brayton, R. K., Moser, J. K.: Theory of nonlinear networks. I.Q. Appl. Math. 22 (1964), 1-33. Zbl 0242.94021, MR 0169746, 10.1090/qam/169746; reference:[6] Feng, P.: Dynamics and pattern formation in a modified Leslie-Gower model with Allee effect and Bazykin functional response.Int. J. Biomath. 10 (2017), Article ID 1750073, 26 pages. Zbl 1369.35098, MR 3648133, 10.1142/S1793524517500735; reference:[7] Freitas, P., Rocha, C.: Lyapunov functionals and stability for FitzHugh-Nagumo systems.J. Differ. Equations 169 (2001), 208-227. Zbl 0974.35051, MR 1808465, 10.1006/jdeq.2000.3901; reference:[8] Gierrer, A., Meinhardt, H.: A theory of biological pattern formation.Biol. Cybern. 12 (1972), 30-39. 10.1007/bf00289234; reference:[9] Henine, S., Youkana, A.: Large-time behaviour and blow up of solutions for Gierer-Meinhardt systems.Math. Methods Appl. Sci. 39 (2016), 570-582. Zbl 1333.35108, MR 3454195, 10.1002/mma.3502; reference:[10] Justh, E. W., Krishnaprasad, P. S.: Pattern-forming systems for control of large arrays of actuators.J. Nonlinear Sci. 11 (2001), 239-277. Zbl 1007.93060, MR 1867072, 10.1007/s00332-001-0392-x; reference:[11] Justh, E. W., Krishnaprasad, P. S.: A Lyapunov functional for the cubic nonlinearity activator-inhibitor model equation.Proceedings of the 37th IEEE Conference on Decision and Control, 1998 IEEE Control Systems Society, Piscataway (2002), 1404-1409. 10.1109/cdc.1998.758483; reference:[12] Koch, A. J., Meinhardt, H.: Biological pattern formation: from basic mechanisms to complex structures.Rev. Mod. Phys. 66 (1994), 1481-1507. 10.1103/revmodphys.66.1481; reference:[13] Schnakenberg, J.: Simple chemical reaction systems with limit cycle behaviour.J. Theoret. Biol. 81 (1979), 389-400. MR 0558661, 10.1016/0022-5193(79)90042-0; reference:[14] Sun, G.-Q., Wang, C.-H., Wu, Z.-Y.: Pattern dynamics of a Gierer-Meinhardt model with spatial effects.Nonlinear Dyn. 88 (2017), 1385-1396. 10.1007/s11071-016-3317-9; reference:[15] Turing, A. M.: The chemical basis of morphogenesis.Philos. Trans. R. Soc. Lond, Ser. B, Biol. Sci. 237 (1952), 37-72. Zbl 06853054, MR 3363444, 10.1098/rstb.1952.0012; reference:[16] Wang, J., Hou, X., Jing, Z.: Stripe and spot patterns in a Gierer-Meinhardt activator-inhibitor model with different sources.Int. J. Bifurcation Chaos Appl. Sci. Eng. 25 (2015), Article ID 1550108, 16 pages. Zbl 1321.35006, MR 3376214, 10.1142/S02181274155010841550108; reference:[17] Wei, J., Winter, M.: Existence of spikes for the Gierer-Meinhardt system in one dimension.Mathematical Aspects of Pattern Formation in Biological Systems Applied Mathematical Sciences 189, Springer, London (2014), 13-39. 10.1007/978-1-4471-5526-3_2; reference:[18] Wei, J., Winter, M., Yang, W.: Stable spike clusters for the precursor Gierer-Meinhardt system in $\mathbb R^2$.Calc. Var. Partial Differ. Equ. 56 (2017), 40 pages. Zbl 1386.35166, MR 3704777, 10.1007/s00526-017-1233-6; reference:[19] Wu, R., Shao, Y., Zhou, Y., Chen, L.: Turing and Hopf bifurcation of Gierer-Meinhardt activator-substrate model.Electron. J. Differ. Equ. 2017 (2017), Paper No. 173, 19 pages. Zbl 1370.35050, MR 3690200; reference:[20] Yang, R., Song, Y.: Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model.Nonlinear Anal., Real World Appl. 31 (2016), 356-387. Zbl 1344.37061, MR 3490848, 10.1016/j.nonrwa.2016.02.006; reference:[21] Yi, F., Gaffney, E. A., Seirin-Lee, S.: The bifurcation analysis of Turing pattern formation induced by delay and diffusion in the Schnakenberg system.Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 647-668. Zbl 1360.35016, MR 3639134, 10.3934/dcdsb.2017031; reference:[22] Zhou, J.: Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type III functional response.Nonlinear Dyn. 81 (2015), 1535-1552. Zbl 1348.92139, MR 3367172, 10.1007/s11071-015-2088-z

  5. 5
    Conference

    المؤلفون: Jüngel, Ansgar

    وصف الملف: application/pdf

    Relation: reference:[1] Alt, H.-W., Luckhaus., S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(1983), 311-341. MR 0706391; reference:[2] Amann., H.: Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Diff. Int. Eqs. 3 (1990), 13-75. MR 1014726; reference:[3] Amann., H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: H.J. Schmeisser and H. Triebel (editors), Function Spaces, Differential Operators and Nonlinear Analysis, pp. 9-126. Teubner, Stuttgart, 1993. MR 1242579; reference:[4] Bothe., D.: On the Maxwell-Stefan equations to multicomponent diffusion. In: Progress in Nonlinear Differential Equations and their Applications, pp. 81-93. Springer, Basel, 2011. MR 3052573; reference:[5] Burger, M., Francesco, M. Di, Pietschmann, J.-F., HASH(0x1502c88), Schlake., B.: Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42 (2010), 2842-2871. MR 2745794, 10.1137/100783674; reference:[6] Carrillo, J. A., Jüngel, A., Markowich, P., Toscani, G., HASH(0x15056a0), Unterreiter., A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133 (2001), 1-82. MR 1853037, 10.1007/s006050170032; reference:[7] Chen, L., Jüngel., A.: Analysis of a parabolic cross-diffusion population model without selfdiffusion. J. Diff. Eqs. 224 (2006), 39-59. MR 2220063, 10.1016/j.jde.2005.08.002; reference:[8] Chen, X., Daus, E., HASH(0x1507b50), Jüngel., A.: Global existence analysis of cross-diffusion population systems for multiple species. To appear in Arch. Ration. Mech. Anal., 2017. arXiv:1608.03696. MR 3740386; reference:[9] Chen, X., Jüngel., A.: A note on the uniqueness of weak solutions to a class of cross-diffusion systems. Submitted for publication, 2017. arXiv:1706.08812. MR 3820423; reference:[10] Chen, X., J\"ungel., A.: Global renormalized solutions to reaction-cross-diffusion systems. Work in progress, 2017. MR 3996789; reference:[11] Chen, X., J\"ungel, A., HASH(0x150e390), Liu., J.-G.: A note on Aubin-Lions-Dubinskiı̆ lemmas. Acta Appl. Math. 133 (2014), 33-43. MR 3255076, 10.1007/s10440-013-9858-8; reference:[12] Desvillettes, L., Lepoutre, T., HASH(0x150edb0), Moussa., A.: Entropy, duality, and cross diffusion. SIAM J. Math. Anal. 46 (2014), 820-853. MR 3165911, 10.1137/130908701; reference:[13] Desvillettes, L., Lepoutre, T., Moussa, A., HASH(0x1511518), Trescases., A.: On the entropic structure of reactioncross diffusion systems. Commun. Partial Diff. Eqs. 40 (2015), 1705-1747. MR 3359162, 10.1080/03605302.2014.998837; reference:[14] Dı́az, J. I., Galiano, G., HASH(0x1512ff0), Jüngel., A.: On a quasilinear degenerate system arising in semiconductor theory. Part I: existence and uniqueness of solutions. Nonlin. Anal. RWA 2 (2001), 305-336. MR 1835610, 10.1016/S0362-546X(00)00102-4; reference:[15] Dreher, M., J\"ungel., A.: Compact families of piecewise constant functions in $L^p(0, T;B)$. Nonlin. Anal. 75 (2012), 3072-3077. MR 2890969, 10.1016/j.na.2011.12.004; reference:[16] Fellner, K., Prager, W., Tang., B. Q.: The entropy method for reaction-diffusion systems without detailed balance: first order chemical reaction networks. Kinetic Related Models 10 (2017), 1055-1087. MR 3622100, 10.3934/krm.2017042; reference:[17] Fischer., J.: Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems. Arch. Ration. Mech. Anal. 218 (2015), 553-587. MR 3360745, 10.1007/s00205-015-0866-x; reference:[18] Fischer., J.: Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations. Submitted for publication, 2017. arXiv:1703.00730. MR 3659829; reference:[19] Gajewski., H.: On a variant of monotonicity and its application to differential equations. Nonlin. Anal. TMA 22 (1994), 73-80. MR 1256171, 10.1016/0362-546X(94)90006-X; reference:[20] Gerstenmayer, A., Jüngel., A.: Analysis of a degenerate parabolic cross-diffusion system for ion transport. Submitted for publication, 2017. arXiv:1706.07261. MR 3759555; reference:[21] Herberg, M., Meyries, M., Pr\"uss, J., HASH(0x151c4d8), Wilke., M.: Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics. Nonlin. Anal. 159 (2017), 264-284. MR 3659831, 10.1016/j.na.2016.07.010; reference:[22] Hittmeir, S., J\"ungel., A.: Cross diffusion preventing blow up in the two-dimensional Keller–Segel model. SIAM J. Math. Anal. 43 (2011), 997-1022. MR 2801186, 10.1137/100813191; reference:[23] Hoang, L., Nguyen, T., Phan., T. V.: Gradient estimates and global existence of smooth solutions to a cross-diffusion system. SIAM J. Math. Anal. 47 (2015), 2122-2177. MR 3352604, 10.1137/140981447; reference:[24] J\"ungel., A.: The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity 28(2015), 1963-2001. MR 3350617, 10.1088/0951-7715/28/6/1963; reference:[25] J\"ungel., A.: Entropy Methods for Diffusive Partial Differential Equations. BCAM Springer Briefs,2016. MR 3497125; reference:[26] J\"ungel, A., Stelzer., I.: Entropy structure of a cross-diffusion tumor-growth model. Math. Models Meth. Appl. Sci. 22 (2012), 1250009, 26 pages. MR 2924784, 10.1142/S0218202512500091; reference:[27] J\"ungel, A., Zamponi., N.: Qualitative behavior of solutions to cross-diffusion systems from population dynamics. J. Math. Anal. Appl. 440 (2016), 794-809. MR 3484995, 10.1016/j.jmaa.2016.03.076; reference:[28] Kullback, S., Leibler., R.: On information and sufficiency. Ann. Math. Statist. 22 (1951), 79-86. MR 0039968, 10.1214/aoms/1177729694; reference:[29] Le., D.: Global existence for a class of strongly coupled parabolic systems. Ann. Matem. 185 (2006), 133-154. MR 2179585, 10.1007/s10231-004-0131-7; reference:[30] Lepoutre, T., Moussa., A.: Entropic structure and duality for multiple species cross-diffusion systems. Nonlin. Anal. 159 (2017), 298-315. MR 3659833, 10.1016/j.na.2017.02.008; reference:[31] Moussa., A.: Some variants of the classical Aubin-Lions lemma. J. Evol. Eqs. 16 (2016), 65-93. MR 3466213, 10.1007/s00028-015-0293-3; reference:[32] Otto., F.: $L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Diff. Eqs. 131 (1996), 20-38. MR 1415045, 10.1006/jdeq.1996.0155; reference:[33] Pham, D., Temam., R.: A result of uniqueness of solutions of the Shigesada-Kawasaki-Teramoto equations. Adv. Nonlin. Anal., online first, 2017. arXiv:1703.10544. MR 3918387; reference:[34] Pierre., M.: Global existence in reaction-diffusion systems with control of mass: a survey. Milan J. Math. 78 (2010), 417-455. MR 2781847, 10.1007/s00032-010-0133-4; reference:[35] Pierre, M., Schmitt., D.: Blow up in reaction-diffusion systems with dissipation of mass. SIAM J. Math. Anal. 28 (1997), 259-269. MR 1434034, 10.1137/S0036141095295437; reference:[36] Shigesada, N., Kawasaki, K., HASH(0x1532dc8), Teramoto., E.: Spatial segregation of interacting species. J. Theor. Biol. 79 (1979), 83-99. MR 0540951, 10.1016/0022-5193(79)90258-3; reference:[37] Stará, J., John., O.: Some (new) counterexamples of parabolic systems. Comment. Math. Univ. Carolin. 36 (1995), 503-510. MR 1364491; reference:[38] Wesselingh, J., Krishna., R.: Mass Transfer in Multicomponent Mixtures. Delft University Press, Delft, 2000.; reference:[39] Zamponi, N., Jüngel., A.: Analysis of degenerate cross-diffusion population models with volume filling. Ann. Inst. H. Poincaré Anal. Non Lin. 34 (2017), 1-29. MR 3592676, 10.1016/j.anihpc.2015.08.003

  6. 6
    Conference

    المؤلفون: Šamajová, Helena

    وصف الملف: application/pdf

    Relation: reference:[1] Benhammouda, B., Vazquez-Leal, H.: A new multi-step technique with differential transform method for analytical solution of some nonlinear variable delay differential equations., SpringerPlus, (2016), 5, 1723. DOI 10.1186/s40064-016-3386-8. 10.1186/s40064-016-3386-8; reference:[2] Khan, Y., Svoboda, Z., Šmarda, Z.: Solving certain classes of Lane-Emden type equations using the differential transformation method., Advances in Difference Equations, 174, (2012). MR 3016691; reference:[3] Odibat, Z. M., Bertelle, C., Aziz-Alaouic, M. A., Duchampd, H. E. G.: A multi-step differential transform method and application to non-chaotic or chaotic systems., Computers and Mathematics with Applications, 59, (2010), pp. 1462-1472. MR 2591936, 10.1016/j.camwa.2009.11.005; reference:[4] Odibat, Z. M., Kumar, S., Shawagfeh, N., Alsaedi, A., Hayat, T.: A study on the convergence conditions of generalized differential transform method., Mathematical Methods in the Applied Sciences, 40, (2017), pp 40-48. MR 3583033, 10.1002/mma.3961; reference:[5] Polyanin, A. D., Zhurov, A. I.: Functional constraints method for constructing exact solutions to delay reactiondiffusion equations and more complex nonlinear equations., Commun. Nonlinear Sci. Numer. Simulat., 19, (2014), pp 417-430. MR 3111621, 10.1016/j.cnsns.2013.07.017; reference:[6] Rebenda, J., Šmarda, Z.: A differential transformation approach for solving functional differential equations with multiple delays., Commun. Nonlinear Sci. Numer. Simulat., 48, (2017), pp. 246-257. MR 3607372, 10.1016/j.cnsns.2016.12.027; reference:[7] Rebenda, J., Šmarda, Z., Khan, Y.: A New Semi-analytical Approach for Numerical Solving of Cauchy Problem for Differential Equations with Delay., FILOMAT, 31, (2017), pp. 4725-4733. MR 3725533, 10.2298/FIL1715725R

  7. 7
    Conference

    المؤلفون: Mizukami, Masaaki

    وصف الملف: application/pdf

    Relation: reference:[1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues., Math. Models Methods Appl. Sci., 25, pp. 1663–1763, 2015. MR 3351175, 10.1142/S021820251550044X; reference:[2] Cao, X.: Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces., Discrete Contin. Dyn. Syst., 35, pp. 1891–1904, 2015. MR 3294230, 10.3934/dcds.2015.35.1891; reference:[3] Fujie, K.: Boundedness in a fully parabolic chemotaxis system with singular sensitivity., J.Math. Anal. Appl., 424, pp. 675–684, 2015. MR 3286587, 10.1016/j.jmaa.2014.11.045; reference:[4] Fujie, K.: Study of reaction-diffusion systems modeling chemotaxis., PhD thesis, Tokyo University of Science, 2016.; reference:[5] Fujie, K., Senba, T.: Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity., Nonlinearity, 29, pp. 2417–2450, 2016. MR 3538418, 10.1088/0951-7715/29/8/2417; reference:[6] Fujie, K., Senba, T.: A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system., preprint. MR 3816648; reference:[7] He, X., Zheng, S.: Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source., J. Math. Anal. Appl., 436, pp. 970–982, 2016. MR 3446989, 10.1016/j.jmaa.2015.12.058; reference:[8] Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions., Eur. J. Appl. Math., 12, pp. 159–177, 2001. MR 1931303, 10.1017/S0956792501004363; reference:[9] Lankeit, J.: A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity., Math. Methods Appl. Sci., 39, pp. 394–404, 2016. MR 3454184, 10.1002/mma.3489; reference:[10] Lankeit, J., Winkler, M.: A generalized solution concept for the Keller–Segel system with logarithmic sensitivity: global solvability for large nonradial data., NoDEA, Nonlinear Differ. Equ. Appl., 24, No. 4, Paper No. 49, 33 p., 2017. MR 3674184, 10.1007/s00030-017-0472-8; reference:[11] Mizukami, M.: Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity., Discrete Contin. Dyn. Syst. Ser. B, 22, pp. 2301–2319, 2017. MR 3664704; reference:[12] Mizukami, M.: Improvement of conditions for asymptotic stability in a two-species chemotaxis competition model with signal-dependent sensitivity., submitted, arXiv:1706.04774[math.AP]. MR 3664704; reference:[13] Mizukami, M., Yokota, T.: Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion., J. Differential Equations, 261, pp. 2650–2669, 2016. MR 3507983, 10.1016/j.jde.2016.05.008; reference:[14] Mizukami, M., Yokota, T.: A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity., Math. Nachr., to appear. MR 3722501; reference:[15] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis., Funkcial. Ekvac., 40, pp. 411–433, 1997. MR 1610709; reference:[16] Negreanu, M., Tello, J. I.: On a two species chemotaxis model with slow chemical diffusion., SIAM J. Math. Anal., 46, pp. 3761–3781, 2014. MR 3277217, 10.1137/140971853; reference:[17] Negreanu, M., Tello, J. I.: Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant., J. Differential Equations, 258, pp. 1592–1617, 2015. MR 3295594, 10.1016/j.jde.2014.11.009; reference:[18] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model., J. Differential Equations, 248, pp. 2889–2905, 2010. MR 2644137, 10.1016/j.jde.2010.02.008; reference:[19] Winkler, M.: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening., J. Differential Equations, 257, pp. 1056–1077, 2014. MR 3210023, 10.1016/j.jde.2014.04.023; reference:[20] Zhang, Q., Li, X.: Global existence and asymptotic properties of the solution to a two-species chemotaxis system., J. Math. Anal. Appl., 418, pp. 47–63, 2014. MR 3198865, 10.1016/j.jmaa.2014.03.084

  8. 8
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3795243; zbl:Zbl 06890302; reference:[1] Ainseba, B. E., Bendahmane, M., Noussair, A.: A reaction-diffusion system modeling predator-prey with prey-taxis.Nonlinear Anal., Real World Appl. 9 (2008), 2086-2105. Zbl 1156.35404, MR 2441768, 10.1016/j.nonrwa.2007.06.017; reference:[2] Bozorgnia, F., Arakelyan, A.: Numerical algorithms for a variational problem of the spatial segregation of reaction-diffusion systems.Appl. Math. Comput. 219 (2013), 8863-8875. Zbl 1291.65257, MR 3047783, 10.1016/j.amc.2013.03.074; reference:[3] Bunting, G., Du, Y., Krakowski, K.: Spreading speed revisited: analysis of a free boundary model.Netw. Heterog. Media 7 (2012), 583-603. Zbl 1302.35194, MR 3004677, 10.3934/nhm.2012.7.583; reference:[4] Chen, X., Friedman, A.: A free boundary problem arising in a model of wound healing.SIAM J. Math. Anal. 32 (2000), 778-800. Zbl 0972.35193, MR 1814738, 10.1137/S0036141099351693; reference:[5] Du, Y., Guo, Z.: The Stefan problem for the Fisher-KPP equation.J. Differ. Equations 253 (2012), 996-1035. Zbl 1257.35110, MR 2922661, 10.1016/j.jde.2012.04.014; reference:[6] Friedman, A.: Variational Principles and Free-Boundary Problems.Pure and Applied Mathematics. A Wiley-Interscience Publication, John Wiley & Sons, New York (1982). Zbl 0564.49002, MR 0679313; reference:[7] He, X., Zheng, S.: Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis.Appl. Math. Lett. 49 (2015), 73-77. Zbl 06587041, MR 3361698, 10.1016/j.aml.2015.04.017; reference:[8] Hillen, T., Painter, K. J.: A user's guide to PDE models for chemotaxis.J. Math. Biol. 58 (2009), 183-217. Zbl 1161.92003, MR 2448428, 10.1007/s00285-008-0201-3; reference:[9] Hsu, S.-B., Huang, T.-W.: Global stability for a class of predator-prey systems.SIAM J. Appl. Math. 55 (1995), 763-783. Zbl 0832.34035, MR 1331585, 10.1137/S0036139993253201; reference:[10] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasi-Linear Equations of Parabolic Type.Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). Zbl 0174.15403, MR 0241822; reference:[11] Levin, S. A.: A more functional response to predator-prey stability.Amer. Natur. 111 (1977), 381-383. 10.1086/283170; reference:[12] Li, A.-W.: Impact of noise on pattern formation in a predator-prey model.Nonlinear Dyn. 66 (2011), 689-694. MR 2859594, 10.1007/s11071-010-9941-x; reference:[13] Li, L., Jin, Z.: Pattern dynamics of a spatial predator-prey model with noise.Nonlinear Dyn. 67 (2012), 1737-1744. MR 2877412, 10.1007/s11071-011-0101-8; reference:[14] Li, C., Wang, X., Shao, Y.: Steady states of a predator-prey model with prey-taxis.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 97 (2014), 155-168. Zbl 1287.35018, MR 3146380, 10.1016/j.na.2013.11.022; reference:[15] Lin, Z.: A free boundary problem for a predator-prey model.Nonlinearity 20 (2007), 1883-1892. Zbl 1126.35111, MR 2343682, 10.1088/0951-7715/20/8/004; reference:[16] Markowich, P. A.: Applied Partial Differential Equations: A Visual Approach.Springer, Berlin (2007). Zbl 1109.35001, MR 2309862, 10.1007/978-3-540-34646-3; reference:[17] Mimura, M., Kawasaki, K.: Spatial segregation in competitive interaction-diffusion equations.J. Math. Biol. 9 (1980), 49-64. Zbl 0425.92010, MR 0648845, 10.1007/BF00276035; reference:[18] Mimura, M., Murray, J. D.: On a diffusive prey-predator model which exhibits patchiness.J. Theor. Biol. 75 (1978), 249-252. MR 0518476, 10.1016/0022-5193(78)90332-6; reference:[19] Monobe, H., Wu, C.-H.: On a free boundary problem for a reaction-diffusion-advection logistic model in heterogeneous environment.J. Diff. Equations 261 (2016), 6144-6177. Zbl 1351.35070, MR 3552561, 10.1016/j.jde.2016.08.033; reference:[20] Othmer, H. G., Stevens, A.: Aggregation, blowup, and collapse: the ABC's of taxis in reinforced random walks.SIAM J. Appl. Math. 57 (1997), 1044-1081. Zbl 0990.35128, MR 1462051, 10.1137/S0036139995288976; reference:[21] Painter, K. J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement.Can. Appl. Math. Q. 10 (2002), 501-543. Zbl 1057.92013, MR 2052525; reference:[22] Sun, G.-Q.: Mathematical modeling of population dynamics with Allee effect.Nonlinear Dyn. 85 (2016), 1-12. MR 3510594, 10.1007/s11071-016-2671-y; reference:[23] Tao, Y.: Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis.Nonlinear Anal., Real World Appl. 11 (2010), 2056-2064. Zbl 1195.35171, MR 2646615, 10.1016/j.nonrwa.2009.05.005; reference:[24] Xiao, D., Ruan, S.: Global dynamics of a ratio-dependent predator-prey system.J. Math. Biol. 43 (2001), 268-290. Zbl 1007.34031, MR 1868217, 10.1007/s002850100097; reference:[25] Wang, M.: On some free boundary problems of the prey-predator model.J. Differ. Equations 256 (2014), 3365-3394. Zbl 1317.35110, MR 3177899, 10.1016/j.jde.2014.02.013; reference:[26] Wang, M.: Spreading and vanishing in the diffusive prey-predator model with a free boundary.Commun. Nonlinear Sci. Numer. Simul. 23 (2015), 311-327. Zbl 1354.92074, MR 3312368, 10.1016/j.cnsns.2014.11.016; reference:[27] Yousefnezhad, M., Mohammadi, S. A.: Stability of a predator-prey system with prey taxis in a general class of functional responses.Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 62-72. Zbl 1363.35185, MR 3432748, 10.1016/S0252-9602(15)30078-3; reference:[28] Zhao, J., Wang, M.: A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment.Nonlinear Anal., Real World Appl. 16 (2014), 250-263. Zbl 1296.35220, MR 3123816, 10.1016/j.nonrwa.2013.10.003

  9. 9
  10. 10
    Academic Journal

    المؤلفون: Wehbe, Charbel

    وصف الملف: application/pdf

    Relation: mr:MR3396470; zbl:Zbl 06486916; reference:[1] Babin, A., Nicolaenko, B.: Exponential attractors for reaction-diffusion systems in an unbounded domain.J. Dyn. Differ. Equations 7 567-590 (1995). MR 1362671, 10.1007/BF02218725; reference:[2] Brochet, D., Hilhorst, D.: Universal attractor and inertial sets for the phase field model.Appl. Math. Lett. 4 59-62 (1991). Zbl 0773.35028, MR 1136614, 10.1016/0893-9659(91)90076-8; reference:[3] Brochet, D., Hilhorst, D., Chen, X.: Finite dimensional exponential attractor for the phase field model.Appl. Anal. 49 (1993), 197-212. Zbl 0790.35052, MR 1289743, 10.1080/00036819108840173; reference:[4] Brochet, D., Hilhorst, D., Novick-Cohen, A.: Finite-dimensional exponential attractor for a model for order-disorder and phase separation.Appl. Math. Lett. 7 83-87 (1994). Zbl 0803.35076, MR 1350381, 10.1016/0893-9659(94)90118-X; reference:[5] Caginalp, G.: An analysis of a phase field model of a free boundary.Arch. Ration. Mech. Anal. 92 205-245 (1986). Zbl 0608.35080, MR 0816623, 10.1007/BF00254827; reference:[6] Caginalp, G.: The role of microscopic anisotropy in the macroscopic behavior of a phase boundary.Ann. Phys. 172 136-155 (1986). Zbl 0639.58038, MR 0912765, 10.1016/0003-4916(86)90022-9; reference:[7] Cherfils, L., Miranville, A.: Some results on the asymptotic behavior of the Caginalp system with singular potentials.Adv. Math. Sci. Appl. 17 107-129 (2007). Zbl 1145.35042, MR 2337372; reference:[8] Conti, M., Gatti, S., Miranville, A.: Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions.Discrete Contin. Dyn. Syst., Ser. S 5 485-505 (2012). Zbl 1244.35067, MR 2861821, 10.3934/dcdss.2012.5.485; reference:[9] Fabrie, P., Galusinski, C.: Exponential attractors for partially dissipative reaction system.Asymptotic Anal. 12 329-354 (1996). MR 1402980, 10.3233/ASY-1996-12403; reference:[10] Gajewski, H., Zacharias, K.: Global behaviour of a reaction-diffusion system modelling chemotaxis.Math. Nachr. 195 (1998), 77-114. Zbl 0918.35064, MR 1654677, 10.1002/mana.19981950106; reference:[11] Grasselli, M., Miranville, A., Pata, V., Zelik, S.: Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials.Math. Nachr. 280 1475-1509 (2007). Zbl 1133.35017, MR 2354975, 10.1002/mana.200510560; reference:[12] Kufner, A., John, O., Fučík, S.: Function Spaces.Monographs and Textsbooks on Mechanics of Solids and Fluids. Mechanics: Analysis. Noordhoff International Publishing, Leyden Academia, Prague (1977). MR 0482102; reference:[13] Landau, L. D., Lifschitz, E. M.: Course of Theoretical Physics. Vol. 1.Mechanics. Akademie Berlin German (1981).; reference:[14] Miranville, A.: Exponential attractors for a class of evolution equations by a decomposition method.C. R. Acad. Sci., Paris, Sér. I, Math. 328 145-150 (1999), English. Abridged French version. Zbl 1141.35340, MR 1669003; reference:[15] Miranville, A.: On a phase-field model with a logarithmic nonlinearity.Appl. Math., Praha 57 (2012), 215-229. Zbl 1265.35139, MR 2984601, 10.1007/s10492-012-0014-y; reference:[16] Miranville, A.: Some mathematical models in phase transition.Discrete Contin. Dyn. Syst., Ser. S 7 271-306 (2014). Zbl 1275.35048, MR 3109473, 10.3934/dcdss.2014.7.271; reference:[17] Miranville, A., Quintanilla, R.: A generalization of the Caginalp phase-field system based on the Cattaneo law.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 2278-2290 (2009). Zbl 1167.35304, MR 2524435, 10.1016/j.na.2009.01.061; reference:[18] Miranville, A., Quintanilla, R.: Some generalizations of the Caginalp phase-field system.Appl. Anal. 88 877-894 (2009). Zbl 1178.35194, MR 2548940, 10.1080/00036810903042182; reference:[19] Miranville, A., Zelik, S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials.Math. Methods Appl. Sci. 27 (2004), 545-582. Zbl 1050.35113, MR 2041814, 10.1002/mma.464; reference:[20] Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains.C. M. Dafermos et al. Handbook of Differential Equations: Evolutionary Equations. Vol. IV Elsevier/North-Holland Amsterdam 103-200 (2008). Zbl 1221.37158, MR 2508165; reference:[21] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics.Applied Mathematical Sciences 68 Springer, New York (1997). Zbl 0871.35001, MR 1441312, 10.1007/978-1-4612-0645-3

  11. 11
  12. 12
    Academic Journal

    المؤلفون: Watanabe, Hiroshi, Shirakawa, Ken

    وصف الملف: application/pdf

    Relation: mr:MR3238848; zbl:Zbl 06362267; reference:[1] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems.Oxford Mathematical Monographs Clarendon Press, Oxford (2000). Zbl 0957.49001, MR 1857292; reference:[2] Ito, A., Kenmochi, N., Yamazaki, N.: A phase-field model of grain boundary motion.Appl. Math. 53 (2008), 433-454. Zbl 1199.35138, MR 2469586, 10.1007/s10492-008-0035-8; reference:[3] Ito, A., Kenmochi, N., Yamazaki, N.: Weak solutions of grain boundary motion model with singularity.Rend. Mat. Appl., VII. Ser. 29 (2009), 51-63. Zbl 1183.35159, MR 2548486; reference:[4] Ito, A., Kenmochi, N., Yamazaki, N.: Global solvability of a model for grain boundary motion with constraint.Discrete Contin. Dyn. Syst., Ser. S 5 (2012), 127-146. Zbl 1246.35100, MR 2836555; reference:[5] Kobayashi, R., Warren, J. A., Carter, W. C.: A continuum model of grain boundary.Physica D 140 (2000), 141-150. MR 1752970, 10.1016/S0167-2789(00)00023-3; reference:[6] Moll, S., Shirakawa, K.: Existence of solutions to the Kobayashi-Warren-Carter system.Calc. Var. Partial Differ. Equ (2013), 1-36 DOI 10.1007/s00526-013-0689-2. MR 3268865, 10.1007/s00526-013-0689-2; reference:[7] Mosco, U.: Convergence of convex sets and of solutions of variational inequalities.Adv. Math. 3 (1969), 510-585. Zbl 0192.49101, MR 0298508, 10.1016/0001-8708(69)90009-7; reference:[8] Shirakawa, K., Watanabe, H.: Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion.Discrete Contin. Dyn. Syst., Ser. S 7 (2014), 139-159. Zbl 1275.35132, MR 3082861, 10.3934/dcdss.2014.7.139; reference:[9] Shirakawa, K., Watanabe, H., Yamazaki, N.: Solvability of one-dimensional phase field systems associated with grain boundary motion.Math. Ann. 356 (2013), 301-330. Zbl 1270.35008, MR 3038131, 10.1007/s00208-012-0849-2; reference:[10] Watanabe, H., Shirakawa, K.: Qualitative properties of a one-dimensional phase-field system associated with grain boundary.GAKUTO Internat. Ser. Math. Sci. Appl. 36 (2013), 301-328. MR 3203495

  13. 13
    Academic Journal

    المؤلفون: Graf, Isabell, Peter, Malte A.

    وصف الملف: application/pdf

    Relation: mr:MR3238832; zbl:Zbl 06362251; reference:[1] Allaire, G.: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 1482-1518 (1992). Zbl 0770.35005, MR 1185639, 10.1137/0523084; reference:[2] Bakhvalov, N. S., Panasenko, G.: Homogenization: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials.Translated from the Russian. Mathematics and Its Applications: Soviet Series 36 Kluwer Academic Publishers, Dordrecht (1989). MR 1112788; reference:[3] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures.Studies in Mathematics and its Applications 5 North-Holland Publ. Company, Amsterdam (1978). Zbl 0404.35001, MR 0503330; reference:[4] Besong, D. O.: Mathematical Modelling and Numerical Solution of Chemical Reactions and Diffusion of Carcinogenic Compounds in Cells.KTH Numerical Analysis and Computer Science TRITA NA E04152, Stockholm (2004).; reference:[5] Canon, É., Pernin, J.-N.: Homogenization of diffusion in composite media with interfacial barrier.Rev. Roum. Math. Pures Appl. 44 23-36 (1999). Zbl 0994.35023, MR 1841959; reference:[6] Cioranescu, D., Donato, P.: An Introduction to Homogenization.Oxford Lecture Series in Mathematics and Its Applications 17 Oxford University Press, Oxford (1999). Zbl 0939.35001, MR 1765047; reference:[7] Davies, E. B.: Heat Kernels and Spectral Theory.Cambridge Tracts in Mathematics 92 Cambridge University Press, Cambridge (1989). Zbl 0699.35006, MR 0990239; reference:[8] Carmo, M. P. do: Riemannian Geometry.Translated from the Portuguese. Mathematics: Theory & Applications Birkhäuser, Boston (1992). Zbl 0752.53001, MR 1138207; reference:[9] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19 American Mathematical Society, Providence (2010). Zbl 1194.35001, MR 2597943, 10.1090/gsm/019/02; reference:[10] Gelboin, H. V.: Benzo[a]pyrene metabolism, activation, and carcinogenesis: Role and regulation of mixed-function oxidases and related enzymes.Physiological Reviews 60 1107-1166 (1980). 10.1152/physrev.1980.60.4.1107; reference:[11] Gossauer, A.: Struktur und Reaktivität der Biomoleküle.Willey-VCH-Verlag Weinheim (2003), German.; reference:[12] Graf, I., Peter, M. A.: Diffusion on surfaces and the boundary periodic unfolding operator with an application to carcinogenesis in human cells.SIAM J. Math. Anal. Accepted.; reference:[13] Jiang, H., Gelhaus, S. L., Mangal, D., Harvey, R. G., Blair, I. A., Penning, T. M.: Metabolism of benzo[a]pyrene in human bronchoalveolar H358 cells using liquid chromatography-mass spectrometry.Chem. Res. Toxicol. 20 1331-1341 (2007). 10.1021/tx700107z; reference:[14] Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals. Translated from the Russian.Springer, Berlin (1994). MR 1329546; reference:[15] Marchenko, V. A., Khruslov, E. Ya.: Homogenization of Partial Differential Equations.Translated from the Russian. Progress in Mathematical Physics 46 Birkhäuser, Boston (2006). Zbl 1113.35003, MR 2182441; reference:[16] Neuss-Radu, M.: Some extensions of two-scale convergence.C. R. Acad. Sci., Paris, Sér. I 322 899-904 (1996). Zbl 0852.76087, MR 1390613; reference:[17] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 608-623 (1989). Zbl 0688.35007, MR 0990867, 10.1137/0520043; reference:[18] Pelkonen, O., Nebert, D. W.: Metabolism of polycyclic aromatic hydrocarbons: Etiologic role in carcinogenesis.Pharmacological Reviews 34 189-212 (1982).; reference:[19] Peter, M. A.: Coupled reaction-diffusion processes inducing an evolution of the microstructure: Analysis and homogenization.Nonlinear Anal. 70 806-821 (2009). Zbl 1151.35308, MR 2468421, 10.1016/j.na.2008.01.011; reference:[20] Peter, M. A., Böhm, M.: Scalings in homogenisation of reaction, diffusion and interfacial exchange in a two-phase medium.Proceedings of Equadiff 11 International Conference on Differential Equations, Czecho-Slovak series Bratislava 369-376 (2005).; reference:[21] Peter, M. A., Böhm, M.: Different choises of scaling in homogenization of diffusion and interfacial exchange in a porous medium.Math. Methods Appl. Sci. 31 1257-1282 (2008). MR 2431426, 10.1002/mma.966; reference:[22] Peter, M. A., Böhm, M.: Multiscale modelling of chemical degradation mechanisms in porous media with evolving microstructure.Multiscale Model. Simul. 7 1643-1668 (2009). Zbl 1181.35019, MR 2505062, 10.1137/070706410; reference:[23] Phillips, D. H.: Fifty years of benzo[a]pyrene.Nature 303 468-472 (1983). 10.1038/303468a0; reference:[24] Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory.Lecture Notes in Physics 127 Springer, Berlin (1980). Zbl 0432.70002, MR 0578345; reference:[25] Showalter, R. E.: Microstructure models of porous media.Homogenization and Porous Media U. Hornung Interdisciplinary Applied Mathematics 6 Springer, New York 183-202 (1997). MR 1434324, 10.1007/978-1-4612-1920-0_9; reference:[26] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations.Mathematical Surveys and Monographs 49 American Mathematical Society, Providence (1997). Zbl 0870.35004, MR 1422252; reference:[27] Sims, P., Grover, P. L., Swaisland, A., Pal, K., Hewer, A.: Metabolic activation of benzo(a)pyrene proceeds by a diol-epoxide.Nature 252 326-328 (1974). 10.1038/252326a0; reference:[28] Wloka, J.: Partial Differential Equations.Translated from the German. Cambridge University Press, Cambridge (1987). Zbl 0623.35006, MR 0895589

  14. 14
    Academic Journal

    المؤلفون: Väth, Martin

    وصف الملف: application/pdf

    Relation: mr:MR3238834; zbl:Zbl 06362253; reference:[1] Drábek, P., Kučera, M., Míková, M.: Bifurcation points of reaction-diffusion systems with unilateral conditions.Czech. Math. J. 35 (1985), 639-660. Zbl 0604.35042, MR 0809047; reference:[2] Eisner, J., Kučera, M., Väth, M.: Bifurcation points for a reaction-diffusion system with two inequalities.J. Math. Anal. Appl. 365 (2010), 176-194. Zbl 1185.35074, MR 2585089, 10.1016/j.jmaa.2009.10.037; reference:[3] Henry, D.: Geometric Theory of Semilinear Parabolic Equations.Lecture Notes in Mathematics 840 Springer, Berlin (1981). Zbl 0456.35001, MR 0610244, 10.1007/BFb0089647; reference:[4] Kim, I.-S., Väth, M.: The Krasnosel'skii-Quittner formula and instability of a reaction-diffusion system with unilateral obstacles.Submitted to Dyn. Partial Differ. Equ. 20 pages.; reference:[5] Kučera, M., Väth, M.: Bifurcation for a reaction-diffusion system with unilateral and {Neumann} boundary conditions.J. Differ. Equations 252 (2012), 2951-2982. Zbl 1237.35013, MR 2871789, 10.1016/j.jde.2011.10.016; reference:[6] Mimura, M., Nishiura, Y., Yamaguti, M.: Some diffusive prey and predator systems and their bifurcation problems.Bifurcation Theory and Applications in Scientific Disciplines (Papers, Conf., New York, 1977) O. Gurel, O. E. Rössler Ann. New York Acad. Sci. 316 (1979), 490-510. Zbl 0437.92027, MR 0556853, 10.1111/j.1749-6632.1979.tb29492.x; reference:[7] Turing, A. M.: The chemical basis of morphogenesis.Phil. Trans. R. Soc. London Ser. B 237 (1952), 37-72. 10.1098/rstb.1952.0012; reference:[8] Väth, M.: Ideal Spaces.Lecture Notes in Mathematics 1664 Springer, Berlin (1997). Zbl 0896.46018, MR 1463946, 10.1007/BFb0093548; reference:[9] Väth, M.: Continuity and differentiability of multivalued superposition operators with atoms and parameters. I.Z. Anal. Anwend. 31 (2012), 93-124. Zbl 1237.47065, MR 2899873, 10.4171/ZAA/1450; reference:[10] Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation.Graduate Texts in Mathematics 120 Springer, Berlin (1989). Zbl 0692.46022, MR 1014685, 10.1007/978-1-4612-1015-3

  15. 15
    Academic Journal

    المؤلفون: Tian, Yanling

    وصف الملف: application/pdf

    Relation: mr:MR3183474; zbl:Zbl 06362223; reference:[1] Aziz-Alaoui, M. A., Okiye, M. Daher: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes.Appl. Math. Lett. 16 (2003), 1069-1075. MR 2013074, 10.1016/S0893-9659(03)90096-6; reference:[2] Chen, B., Wang, M.: Qualitative analysis for a diffusive predator-prey model.Comput. Math. Appl. 55 (2008), 339-355. Zbl 1155.35390, MR 2384151, 10.1016/j.camwa.2007.03.020; reference:[3] Ko, W., Ryu, K.: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge.J. Differ. Equations 231 (2006), 534-550. MR 2287896, 10.1016/j.jde.2006.08.001; reference:[4] Lindström, T.: Global stability of a model for competing predators: An extension of the Ardito & Ricciardi Lyapunov function.Nonlinear Anal., Theory Methods Appl. 39 (2000), 793-805. Zbl 0945.34037, MR 1733130; reference:[5] Murray, J. D.: Mathematical Biology, Vol. 1: An Introduction. 3rd ed.Interdisciplinary Applied Mathematics 17 Springer, New York (2002). Zbl 1006.92001, MR 1908418; reference:[6] Murray, J. D.: Mathematical Biology, Vol. 2: Spatial Models and Biomedical Applications. 3rd revised ed.Interdisciplinary Applied Mathematics 18 Springer, New York (2003). Zbl 1006.92002, MR 1952568; reference:[7] Nindjin, A. F., Aziz-Alaoui, M. A., Cadivel, M.: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay.Nonlinear Anal., Real World Appl. 7 (2006), 1104-1118. Zbl 1104.92065, MR 2260902; reference:[8] Pao, C. V.: Dynamics of nonlinear parabolic systems with time delays.J. Math. Anal. Appl. 198 (1996), 751-779. Zbl 0860.35138, MR 1377823, 10.1006/jmaa.1996.0111; reference:[9] Ryu, K., Ahn, I.: Positive solutions for ratio-dependent predator-prey interaction systems.J. Differ. Equations 218 (2005), 117-135. MR 2174969, 10.1016/j.jde.2005.06.020; reference:[10] Tian, Y., Weng, P.: Stability analysis of diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes.Acta Appl. Math. 114 (2011), 173-192. Zbl 1216.35159, MR 2794080, 10.1007/s10440-011-9607-9; reference:[11] Upadhyay, R. K., Iyengar, S. R. K.: Effect of seasonality on the dynamics of 2 and 3 species prey-predator systems.Nonlinear Anal., Real World Appl. 6 (2005), 509-530. Zbl 1072.92058, MR 2129561; reference:[12] Wang, Y.-M.: Asymptotic behavior of solutions for a class of predator-prey reaction-diffusion systems with time delays.J. Math. Anal. Appl. 328 (2007), 137-150. Zbl 1112.35106, MR 2285539, 10.1016/j.jmaa.2006.05.020; reference:[13] Wang, W., Takeuchi, Y., Saito, Y., Nakaoka, S.: Prey-predator system with parental care for predators.J. Theoret. Biol. 241 (2006), 451-458. MR 2254918, 10.1016/j.jtbi.2005.12.008; reference:[14] Wu, J.: Theory and Applications of Partial Functional Differential Equations.Applied Mathematical Sciences 119 Springer, New York (1996). Zbl 0870.35116, 10.1007/978-1-4612-4050-1

  16. 16
    Academic Journal

    المؤلفون: Suzuki, Takashi

    وصف الملف: application/pdf

    Relation: mr:MR2978266; zbl:Zbl 1265.35159; reference:[1] Anderson, A. R. A., Chaplain, M. A. J.: Continuous and discrete mathematical models of tumor-induced angeogenesis.Bull. Math. Biol. 60 (1998), 857-899. 10.1006/bulm.1998.0042; reference:[2] Anderson, A. R. A., Pitcairn, A. W.: Application of the hybrid discrete-continuum technique.Polymer and Cell Dynamics-Multiscale Modeling and Numerical Simulations, Birkhäuser, Basel, 2003, pp. 261-279.; reference:[3] Anderson, A. R. A., Quaranta, V.: Integrative mathematical oncology.Cancer 8 (2008), 227-234.; reference:[4] Anderson, A. R. A., Weaver, A. M., Cummings, R. T., Quaranta, V.: Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment.Cell 127 (2006), 905-915. 10.1016/j.cell.2006.09.042; reference:[5] Biler, P., Stańczy, R.: Mean field models for self-gravitating particles.Folia Matematica 13 (2006), 3-19. Zbl 1181.35290, MR 2675439; reference:[6] Childress, S., Percus, J. K.: Nonlinear aspects of chemotaxis.Math. Biosci. 56 (1981), 217-237. Zbl 0481.92010, MR 0632161, 10.1016/0025-5564(81)90055-9; reference:[7] Corrias, L., Perthame, B., Zaag, H.: A chemotaxis model motivated by angeogenesis.C.R. Acad. Sci. Paris, Ser. I 336 (2003), 141-146. MR 1969568, 10.1016/S1631-073X(02)00008-0; reference:[8] Corrias, L., Perthame, B., Zaag, H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions.Milan J. Math. 72 (2004), 1-28. MR 2099126, 10.1007/s00032-003-0026-x; reference:[9] Fontelos, M. A., Friedman, A., Hu, B.: Mathematical analysis of a model for initiation of angiogeneis.SIAM J. Math. Anal. 33 (2002), 1330-1355. MR 1920634, 10.1137/S0036141001385046; reference:[10] Friedman, A., Tello, J. I.: Stability of solutions of chemotaxis equations in reinforced random walks.J. Math. Anal. Appl. 272 (2002), 138-163. Zbl 1025.35005, MR 1930708, 10.1016/S0022-247X(02)00147-6; reference:[11] Ichikawa, K., Rouzimaimaiti, M., Suzuki, T.: Reaction diffusion equation with non-local term arises as a mean field limit of the master equation.Discrete and Continuous Dynamical Systems S 5 (2012), 115-126 doi:10.3934/dcdss/2011.5. MR 2836554, 10.3934/dcdss/2011.5; reference:[12] Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis.Trans. Amer. Math. Soc. 329 (1992), 819-824. Zbl 0746.35002, MR 1046835, 10.1090/S0002-9947-1992-1046835-6; reference:[13] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability.J. Theor. Biol. 26 (1970), 399-415. Zbl 1170.92306, 10.1016/0022-5193(70)90092-5; reference:[14] Kubo, A., Hoshino, H., Suzuki, T.: Asymptotic behavior of soltuions to a parabolic ODE system.Proceedings of the 5th East Asia PDE Conference H. J. Choe, C.-S. Lin, T. Suzuki, J. Wei Gakkotosho, Tokyo (2005), 121-136.; reference:[15] Kubo, A., Saito, N., Suzuki, T., Hoshino, H.: Mathematical modelds of tumor angiogenesis and simulations.Kokyuroku RIMS 1499 (2006), 135-146. MR 2320335; reference:[16] Kubo, A., Suzuki, T.: Asymptotic behavior of the solution to a parabolic ODE system modeling tumor growth.Differ. Integral Equ. 17 (2004), 721-736. MR 2074683; reference:[17] Kubo, A., Suzuki, T.: Mathematical models of tumour angiogenesisi.J. Comp. Appl. Math. 204 (2007), 48-55. MR 2320335, 10.1016/j.cam.2006.04.027; reference:[18] Levine, H. A., Sleeman, B. D.: A system of reaction and diffusion equations arising in the theory of reinforced random walks.SIAM J. Appl. Math. 57 (1997), 683-730. MR 1450846, 10.1137/S0036139995291106; reference:[19] Lions, J. L.: Quelques Méthodes de Résolution de Problèmes aux Limites Non Linéaires.Dunod-Gauthier-Villars, Paris (1969), French. MR 0259693; reference:[20] Murray, J. D.: Mathematical Biology, I: An Introduction, third edition.Springer, New York (2001). MR 1908418; reference:[21] Nanjundiah, V.: Chemotaxis, signal relaying, and aggregation morphology.J. Theor. Biol. 42 (1973), 63-105. 10.1016/0022-5193(73)90149-5; reference:[22] Okubo, A.: Diffusion and Ecological Problems---Modern Perspectives, second edition.Springer, New York (2001). MR 1895041; reference:[23] Othmer, H. G., Dumber, S. R., Alt, W.: Models of dispersal in biological systems.J. Math. Biol. 6 (1988), 263-298. MR 0949094, 10.1007/BF00277392; reference:[24] Othmer, H. G., Stevens, A.: Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks.SIAM J. Appl. Math. 57 (1997), 1044-1081. Zbl 0990.35128, MR 1462051, 10.1137/S0036139995288976; reference:[25] Rascle, M.: Sur une équation intégro-différentielle non linéaire issue de la biologie.J. Differ. Equations 32 (1979), 420-453. Zbl 0389.45013, MR 0535172, 10.1016/0022-0396(79)90043-3; reference:[26] Ribba, B., Saut, O., Colin, T., Bresch, D., Grenier, E., Boissel, J. P.: A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents.J. Theor. Biol. 243 (2006), 532-541. MR 2306343, 10.1016/j.jtbi.2006.07.013; reference:[27] Senba, T.: Blow-up of radially symmetric solutions to some systems of partial differential equations modelling chemotaxis.Adv. Math. Sci. Appl. 7 (1997), 79-92. Zbl 0877.35022, MR 1454659; reference:[28] Sleeman, B. D., Levine, H. A.: Partial differential equations of chemotaxis and angiogenesis.Math. Meth. Appl. Sci. 24 (2001), 405-426. Zbl 0990.35014, MR 1821934, 10.1002/mma.212; reference:[29] Suzuki, T.: Free Energy and Self-Interacting Particles.Birkhäuser, Boston (2005). Zbl 1082.35006, MR 2135150; reference:[30] Suzuki, T.: Mean Field Theories and Dual Variation.Atlantis Press, Amsterdam (2008). Zbl 1247.35001, MR 2510744; reference:[31] Suzuki, T., Takahashi, R.: Global in time solution to a class of tumour growth systems.Adv. Math. Sci. Appl. 19 (2009), 503-524. MR 2605731; reference:[32] Yang, Y., Chen, H., Liu, W.: On existence and non-existence of global solutions to a system of reaction-diffusion equations modeling chemotaxis.SIAM J. Math. Anal. 33 (1997), 763-785. MR 1884721, 10.1137/S0036141000337796

  17. 17
    Academic Journal

    المؤلفون: Krejčí, Pavel, Panizzi, Lucia

    وصف الملف: application/pdf

    Relation: mr:MR2833166; zbl:Zbl 1240.35234; reference:[1] Adams, R. A.: Sobolev Spaces. Pure and Applied Mathematics, Vol. 65.Academic Press New York-London (1975). MR 0450957; reference:[2] Barrett, J. W., Deckelnick, K.: Existence, uniqueness and approximation of a doubly-degenerate nonlinear parabolic system modelling bacterial evolution.Math. Models Methods Appl. Sci. 17 (2007), 1095-1127. Zbl 1144.35026, MR 2337432, 10.1142/S0218202507002212; reference:[3] Besov, O. V., Il'in, V. P., Nikol'skij, S. M.: Integral Representations of Functions and Imbedding Theorems. Scripta Series in Mathematics (Vol. I, Vol. II).V. H. Winston & Sons, John Wiley & Sons Washington/New York (1978), 1979; Russian version Nauka, Moscow, 1975. MR 0430771; reference:[4] Fasano, A., Hömberg, D., Panizzi, L.: A mathematical model for case hardening of steel.Math. Models Methods Appl. Sci. 19 (2009), 2101-2126. Zbl 1180.35277, MR 2588960, 10.1142/S0218202509004054; reference:[5] Griepentrog, J. A.: Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces.Adv. Differ. Equ. 12 (2007), 1031-1078. Zbl 1157.35023, MR 2351837; reference:[6] Koshelev, A. I.: Regularity Problem for Quasilinear Elliptic and Parabolic Systems. Lecture Notes in Mathematics, 1614.Springer Berlin (1995). MR 1442954; reference:[7] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'ceva, N. N.: Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society Transl. 23.AMS Providence (1968).; reference:[8] Lions, J.-L.: Quelques méthodes de résolution des problemes aux limites non linéaires.Dunod/Gauthier-Villars Paris (1969), French. Zbl 0189.40603, MR 0259693; reference:[9] Lieberman, G. M.: Second Order Parabolic Differential Equations.World Scientific Publishing Co., Inc. Singapore (1996). Zbl 0884.35001, MR 1465184; reference:[10] Nečas, J.: Les méthodes directes en théorie des équations elliptiques.Academia Prague (1967). MR 0227584; reference:[11] Rodrigues, J. F.: A nonlinear parabolic system arising in thermomechanics and in thermomagnetism.Math. Models Methods Appl. Sci. 2 (1992), 271-281. Zbl 0763.35093, MR 1181337, 10.1142/S021820259200017X; reference:[12] Shilkin, T.: Classical solvability of the coupled system modelling a heat-convergent Poiseuille-type flow.J. Math. Fluid Mech. 7 (2005), 72-84. Zbl 1065.35135, MR 2127742, 10.1007/s00021-004-0112-z

  18. 18
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2737715; zbl:Zbl 1224.35189; reference:[1] Amadori, A. L., Karlsen, K. H., Chioma, C. La: Non-linear degenerate integro-partial differential evolution equations related to geometric Lévy processes and applications to backward stochastic differential equations.Stochastics Stochastics Rep. 76 (2004), 147-177. Zbl 1049.60050, MR 2060349, 10.1080/10451120410001696289; reference:[2] Chadam, J. M., Yin, H. M.: An iteration procedure for a class of integrodifferential equations of parabolic type.J. Integral Equations Appl. 2 (1990), 31-47. Zbl 0701.45004, MR 1033202, 10.1216/JIE-1989-2-1-31; reference:[3] Coleman, B. D., Gurtin, M. E.: On the stability against shear waves of steady flows of non-linear viscoelastic fluids.J. Fluid Mech. 33 (1968), 165-181. Zbl 0207.25302, 10.1017/S0022112068002430; reference:[4] Dafermos, C. M.: An abstract Volterra equation with application to linear viscoelasticity.J. Differ. Equations 7 (1970), 554-569. MR 0259670, 10.1016/0022-0396(70)90101-4; reference:[5] Dafermos, C.: Stabilizing effects of dissipation.Proc. Int. Conf. Equadiff 82, Würzburg 1982. Lect. Notes Math. Vol. 1017 (1983), 140-147. Zbl 0547.35014, MR 0726578, 10.1007/BFb0103245; reference:[6] Dafermos, C. M., Nohel, J. A.: A nonlinear hyperbolic Volterra equation in viscoelasticity. Contributions to analysis and geometry.Suppl. Am. J. Math. (1981), 87-116. MR 0648457; reference:[7] Engler, H.: Global smooth solutions for a class of parabolic integrodifferential equations.Trans. Am. Math. Soc. 348 (1996), 267-290. Zbl 0848.45002, MR 1321573, 10.1090/S0002-9947-96-01472-9; reference:[8] Engler, H.: On some parabolic integro-differential equations: Existence and asymptotics of solutions.Proc. Int. Conf. Equadiff 82, Würzburg 1982. Lect. Notes Math. Vol. 1017 (1983), 161-167. Zbl 0539.35074, MR 0726581, 10.1007/BFb0103248; reference:[9] Gordeziani, D. G., (Dzhangveladze), T. A. Jangveladze, Korshiya, T. K.: Existence and uniqueness of the solution of certain nonlinear parabolic problems.Differ. Equations 19 (1983), 887-895. MR 0708616; reference:[10] Gripenberg, G.: Global existence of solutions of Volterra integrodifferential equations of parabolic type.J. Differ. Equations 102 (1993), 382-390. Zbl 0780.45012, MR 1216735, 10.1006/jdeq.1993.1035; reference:[11] Gripenberg, G., Londen, S.-O., Staffans, O.: Volterra Integral and Functional Equations. Encyclopedia of Mathematics and Its Applications, Vol. 34.Cambridge University Press Cambridge (1990). MR 1050319; reference:[12] Gurtin, M. E., Pipkin, A. C.: A general theory of heat conduction with finite wave speeds.Arch. Ration. Mech. Anal. 31 (1968), 113-126. Zbl 0164.12901, MR 1553521, 10.1007/BF00281373; reference:[13] (Dzhangveladze), T. A. Jangvelazde: On the solvability of the first boundary value problem for a nonlinear integro-differential equation of parabolic type.Soobsch. Akad. Nauk Gruz. SSR 114 (1984), 261-264 Russian. MR 0782476; reference:[14] (Dzhangveladze), T. A. Jangveladze, Kiguradze, Z. V.: Asymptotic behavior of the solution of a nonlinear integro-differential diffusion equation.Differ. Equ. 44 (2008), 538-550. MR 2432866, 10.1134/S0012266108040083; reference:[15] (Dzhangveladze), T. A. Jangveladze, Kiguradze, Z. V.: Asymptotics of a solution of a nonlinear system of diffusion of a magnetic field into a substance.Sib. Mat. Zh. 47 (2006), 1058-1070 Russian English translation: Sib. Math. J. 47 (2006), 867-878. MR 2266515, 10.1007/s11202-006-0095-5; reference:[16] (Dzhangveladze), T. A. Jangveladze, Kiguradze, Z. V.: Estimates of the stabilization rate as $t\rightarrow\infty$ of solutions of the nonlinear integro-differential diffusion system.Appl. Math. Inform. Mech. 8 (2003), 1-19. MR 2072736; reference:[17] (Dzhangvelazde), T. A. Jangveladze, Kiguradze, Z. V.: On the stabilization of solutions of an initial-boundary value problem for a nonlinear integro-differential equation.Differ. Equ. 43 (2007), 854-861 Translation from Differ. Uravn. 43 (2007), 833-840 Russian. MR 2383832, 10.1134/S0012266107060110; reference:[18] (Dzhangveladze), T. A. Jangveladze, Lyubimov, B. Ya., Korshiya, T. K.: Numerical solution of a class of non-isothermal diffusion problems of an electromagnetic field.Tr. Inst. Prikl. Mat. Im. I. N. Vekua 18 (1986), 5-47 Russian. MR 0897501; reference:[19] Kačur, J.: Application of Rothe's method to evolution integrodifferential equations.J. Reine Angew. Math. 388 (1988), 73-105. Zbl 0638.65098, MR 0944184; reference:[20] Landau, L. D., Lifshitz, E. M.: Electrodynamics of Continuous Media.Pergamon Press Oxford-London-New York (1960). Zbl 0122.45002, MR 0121049; reference:[21] Laptev, G.: Mathematical singularities of a problem on the penetration of a magnetic field into a substance.Zh. Vychisl. Mat. Mat. Fiz. 28 (1988), 1332-1345 Russian English translation: U.S.S.R. Comput. Math. Math. Phys. 28 (1990), 35-45. MR 0967528; reference:[22] Laptev, G.: Quasilinear parabolic equations which contains in coefficients Volterra's operator.Math. Sbornik 136 (1988), 530-545 Russian English translation: Sbornik Math. 64 (1989), 527-542. MR 0965891; reference:[23] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non-linéaires.Dunod/Gauthier-Villars Paris (1969), French. Zbl 0189.40603, MR 0259693; reference:[24] Long, N. T., Dinh, A. P. N.: Nonlinear parabolic problem associated with the penetration of a magnetic field into a substance.Math. Methods Appl. Sci. 16 (1993), 281-295. Zbl 0797.35099, MR 1213185, 10.1002/mma.1670160404; reference:[25] Long, N. T., Dinh, A. P. N.: Periodic solutions of a nonlinear parabolic equation associated with the penetration of a magnetic field into a substance.Comput. Math. Appl. 30 (1995), 63-78. Zbl 0834.35070, MR 1336663, 10.1016/0898-1221(95)00068-A; reference:[26] MacCamy, R. C.: An integro-differential equation with application in heat flow.Q. Appl. Math. 35 (1977), 1-19. Zbl 0351.45018, MR 0452184, 10.1090/qam/452184; reference:[27] Renardy, M., Hrusa, W. J., Nohel, J. A.: Mathematical Problems in Viscoelasticity. Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 35.Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1987). MR 0919738; reference:[28] Vishik, M.: Über die Lösbarkeit von Randwertaufgaben für quasilineare parabolische Gleichungen höherer Ordnung (On solvability of the boundary value problems for higher order quasilinear parabolic equations).Mat. Sb. N. Ser. 59 (1962), 289-325 Russian.; reference:[29] Yin, H. M.: The classical solutions for nonlinear parabolic integrodifferential equations.J. Integral Equations Appl. 1 (1988), 249-263. Zbl 0671.45004, MR 0978743, 10.1216/JIE-1988-1-2-249

  19. 19
    Academic Journal

    المؤلفون: Murakawa, Hideki

    وصف الملف: application/pdf

    Relation: mr:MR2588624; zbl:Zbl 1205.35143; reference:[1] L. Chen and A. Jüngel: Analysis of a multidimensional parabolic population model with strong cross-diffusion.SIAM J. Math. Anal. 36 (2006), 301–322. MR 2083864; reference:[2] L. Chen and A. Jüngel: Analysis of a parabolic cross-diffusion population model without self-diffusion.J. Differential Equations 224 (2006), 39–59. MR 2220063; reference:[3] E. N. Dancer, D. Hilhorst, M. Mimura, and L. A. Peletier: Spatial segregation limit of a competition-diffusion system.European J. Appl. Math. 10 (1999), 97–115. MR 1687440; reference:[4] D. Hilhorst, M. Iida, M. Mimura, and H. Ninomiya: A competition-diffusion system approximation to the classical two-phase Stefan problem.Japan J. Indust. Appl. Math. 18 (2001), 161–180. MR 1842906; reference:[5] D. Hilhorst, M. Iida, M. Mimura, and H. Ninomiya: Relative compactness in $L^p$ of solutions of some $2m$ components competition-diffusion systems.Discrete Contin. Dyn. Syst. 21 (2008), 1, 233–244. MR 2379463; reference:[6] D. Hilhorst, M. Mimura, and H. Ninomiya: Fast reaction limit of competition-diffusion systems.In: Handbook of Differential Equations: Evolutionary Equations Vol. 5 (C. M. Dafermos and M. Pokorny, eds.). Elsevier/North Holland, Amsterdam 2009, pp. 105–168. MR 2562164; reference:[7] M. Iida, M. Mimura, and H. Ninomiya: Diffusion, cross-diffusion and competitive interaction.J. Math. Biol. 53 (2006), 617–641. MR 2251792; reference:[8] T. Kadota and K. Kuto: Positive steady states for a prey-predator model with some nonlinear diffusion terms.J. Math. Anal. Appl. 323 (2006), 1387–1401. MR 2260190; reference:[9] R. Kersner: Nonlinear heat conduction with absorption: space localization and extinction in finite time.SIAM J. Appl. Math. 43 (1983), 1274–1285. Zbl 0536.35039, MR 0722941; reference:[10] P. Knabner: Mathematische Modelle für Transport und Sorption gelöster Stoffe in porösen Medien.Verlag Peter Lang, Frankfurt 1991. Zbl 0731.35054, MR 1218175; reference:[11] H. Murakawa: On reaction-diffusion system approximations to the classical Stefan problems.In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005 (M. Beneš, M. Kimura and T. Nakaki, eds.), COE Lecture Note Vol. 3, Faculty of Mathematics, Kyushu University 2006, pp. 117–125. Zbl 1144.80365, MR 2279052; reference:[12] H. Murakawa: Reaction-diffusion system approximation to degenerate parabolic systems.Nonlinearity 20 (2007), 2319–2332. MR 2356112; reference:[13] H. Murakawa: A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem.Nonlinear Anal. 69 (2008), 3512–3524. Zbl 1158.35379, MR 2450556; reference:[14] H. Murakawa: A Solution of Nonlinear Degenerate Parabolic Problems by Semilinear Reaction-Diffusion Systems.Ph.D. Thesis, Graduate School of Mathematics, Kyushu University, 2008.; reference:[15] H. Murakawa: Discrete-time approximation to nonlinear degenerate parabolic problems using a semilinear reaction-diffusion system.Preprint.; reference:[16] H. Murakawa: A relation between cross-diffusion and reaction-diffusion.Preprint.; reference:[17] R. H. Nochetto: A note on the approximation of free boundaries by finite element methods.RAIRO Modél. Math. Anal. Numér. 20 (1986), 355–368. Zbl 0596.65092, MR 0852686; reference:[18] A. Okubo and S. A. Levin: Diffusion and Ecological Problems: Modern Perspectives.Second edition. (Interdisciplinary Applied Mathematics 14.) Springer–Verlag, New York 2001. MR 1895041; reference:[19] N. Shigesada, K. Kawasaki, and E. Teramoto: Spatial segregation of interacting species.J. Theor. Biol. 79 (1979), 83–99. MR 0540951; reference:[20] K. Tomoeda: Support re-splitting phenomena caused by an interaction between diffusion and absorption.Proc. Equadiff–11 2005, pp. 499–506.