يعرض 1 - 12 نتائج من 12 نتيجة بحث عن '"msc:35J10"', وقت الاستعلام: 0.53s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3483231; zbl:Zbl 06587882; reference:[1] Bongioanni, B., Harboure, E., Salinas, O.: Commutators of Riesz transforms related to Schrödinger operators.J. Fourier Anal. Appl. 17 (2011), 115-134. Zbl 1213.42075, MR 2765594, 10.1007/s00041-010-9133-6; reference:[2] Bramanti, M., Cerutti, C. M.: Commutators of singular integrals on homogeneous spaces.Boll. Unione Mat. Ital. 10 (1996), 843-883. MR 1430157; reference:[3] Cao, J., Liu, Y., Yang, D.: Hardy spaces $H^1_{\mathcal L}({\mathbb R}^n)$ associated to Schrödinger type operators $(-\Delta)^2+V^2$.Houston J. Math. 36 (2010), 1067-1095. MR 2753734; reference:[4] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorem for Hardy spaces in several variables.Ann. Math. 103 (1976), 611-635. MR 0412721, 10.2307/1970954; reference:[5] Duong, X. T., Yan, L.: Commutators of BMO functions and singular integral operators with non-smooth kernels.Bull. Aust. Math. Soc. 67 (2003), 187-200. Zbl 1023.42010, MR 1972709, 10.1017/S0004972700033669; reference:[6] Dziubański, J., Zienkiewicz, J.: Hardy space $H^1$ associated to Schrödinger operators with potentials satisfying reverse Hölder inequality.Rev. Mat. Iberoam 15 (1999), 279-296. MR 1715409, 10.4171/RMI/257; reference:[7] Guo, Z., Li, P., Peng, L.: $L^p$ boundedness of commutators of Riesz transform associated to Schrödinger operator.J. Math. Anal. Appl. 341 (2008), 421-432. MR 2394095, 10.1016/j.jmaa.2007.05.024; reference:[8] Janson, S.: Mean oscillation and commutators of singular integral operators.Ark. Math. 16 (1978), 263-270. Zbl 0404.42013, MR 0524754, 10.1007/BF02386000; reference:[9] Li, H. Q.: $L^p$ estimates of Schrödinger operators on nilpotent groups.J. Funct. Anal. 161 (1999), French 152-218. MR 1670222, 10.1006/jfan.1998.3347; reference:[10] Li, P., Peng, L.: Endpoint estimates for commutators of Riesz transforms associated with Schrödinger operators.Bull. Aust. Math. Soc. 82 (2010), 367-389. Zbl 1210.47048, MR 2737950, 10.1017/S0004972710000390; reference:[11] Liu, Y.: $L^p$ estimates for Schrödinger type operators on the Heisenberg group.J. Korean Math. Soc. 47 (2010), 425-443. Zbl 1187.22008, MR 2605991, 10.4134/JKMS.2010.47.2.425; reference:[12] Liu, Y., Dong, J.: Some estimates of higher order Riesz transform related to Schrödinger type operators.Potential Anal. 32 (2010), 41-55. Zbl 1197.42008, MR 2575385, 10.1007/s11118-009-9143-7; reference:[13] Liu, Y., Huang, J. Z., Dong, J. F.: Commutators of Calderón-Zygmund operators related to admissible functions on spaces of homogeneous type and applications to Schrödinger operators.Sci. China. Math. 56 (2013), 1895-1913. Zbl 1278.42031, MR 3090862, 10.1007/s11425-012-4551-3; reference:[14] Liu, Y., Huang, J., Xie, D.: Some estimates of Schrödinger type operators on the Heisenberg group.Arch. Math. 94 (2010), 255-264. Zbl 1189.22006, MR 2602452, 10.1007/s00013-009-0098-0; reference:[15] Liu, Y., Sheng, J.: Some estimates for commutators of Riesz transforms associated with Schrödinger operators.J. Math. Anal. Appl. 419 (2014), 298-328. MR 3217150, 10.1016/j.jmaa.2014.04.053; reference:[16] Liu, Y., Wang, L., Dong, J.: Commutators of higher order Riesz transform associated with Schrödinger operators.J. Funct. Spaces Appl. 2013 (2013), Article ID 842375, 15 pages. Zbl 1279.47052, MR 3053277; reference:[17] Shen, Z.: $L^{p}$ estimates for Schrödinger operators with certain potentials.Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546. MR 1343560, 10.5802/aif.1463; reference:[18] Sugano, S.: $L^p$ estimates for some Schrödinger operators and a Calderón-Zygmund operator of Schrödinger type.Tokyo J. Math. 30 (2007), 179-197. MR 2328062, 10.3836/tjm/1184963655; reference:[19] Zhong, J.: Harmonic Analysis for some Schrödinger Type Operators.Ph.D. Thesis, Princeton University (1993). MR 2689454

  2. 2
    Academic Journal

    المؤلفون: Yang, Sibei

    وصف الملف: application/pdf

    Relation: mr:MR3407603; zbl:Zbl 06537690; reference:[1] Bonami, A., Grellier, S., Ky, L. D.: Paraproducts and products of functions in BMO$(\mathbb R^n)$ and ${\cal H}^1(\mathbb R^n)$ through wavelets.J. Math. Pures Appl. (9) 97 (2012), 230-241 French summary. MR 2887623, 10.1016/j.matpur.2011.06.002; reference:[2] Bonami, A., Iwaniec, T., Jones, P., Zinsmeister, M.: On the product of functions in BMO and $H^1$.Ann. Inst. Fourier 57 (2007), 1405-1439. Zbl 1132.42010, MR 2364134; reference:[3] Bui, T. A., Cao, J., Ky, L. D., Yang, D., Yang, S.: Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates.Anal. Geom. Metr. Spaces (electronic only) 1 (2013), 69-129. Zbl 1261.42034, MR 3108869, 10.2478/agms-2012-0006; reference:[4] Cao, J., Chang, D.-C., Yang, D., Yang, S.: Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces.Commun. Pure Appl. Anal. 13 (2014), 1435-1463. MR 3177739, 10.3934/cpaa.2014.13.1435; reference:[5] Duong, X. T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds.J. Am. Math. Soc. 18 (2005), 943-973. Zbl 1078.42013, MR 2163867, 10.1090/S0894-0347-05-00496-0; reference:[6] Dziubański, J., Zienkiewicz, J.: A characterization of Hardy spaces associated with certain Schrödinger operators.Potential Anal. 41 (2014), 917-930. Zbl 1301.42039, MR 3264827, 10.1007/s11118-014-9400-2; reference:[7] Dziubański, J., Zienkiewicz, J.: On isomorphisms of Hardy spaces associated with Schrödinger operators.J. Fourier Anal. Appl. 19 (2013), 447-456. Zbl 1305.42025, MR 3048584, 10.1007/s00041-013-9262-9; reference:[8] Fefferman, C. L., Stein, E. M.: $H^p$ spaces of several variables.Acta Math. 129 (1972), 137-193. MR 0447953, 10.1007/BF02392215; reference:[9] García-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies 116 North-Holland, Amsterdam (1985). MR 0807149; reference:[10] Grafakos, L.: Modern Fourier Analysis.Graduate Texts in Mathematics 250 Springer, New York (2009). Zbl 1158.42001, MR 2463316; reference:[11] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates.Mem. Am. Math. Soc. 1007 (2011), 78 pages. Zbl 1232.42018, MR 2868142; reference:[12] Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators.Math. Ann. 344 (2009), 37-116. Zbl 1162.42012, MR 2481054, 10.1007/s00208-008-0295-3; reference:[13] Hofmann, S., Mayboroda, S., McIntosh, A.: Second order elliptic operators with complex bounded measurable coefficients in $L^p$, Sobolev and Hardy spaces.Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 723-800 French summary. Zbl 1243.47072, MR 2931518, 10.24033/asens.2154; reference:[14] Hou, S., Yang, D., Yang, S.: Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications.Commun. Contemp. Math. 15 (2013), Article ID1350029, 37 pages. Zbl 1285.42020, MR 3139410; reference:[15] Janson, S.: Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation.Duke Math. J. 47 (1980), 959-982. Zbl 0453.46027, MR 0596123, 10.1215/S0012-7094-80-04755-9; reference:[16] Jiang, R., Yang, D.: Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates.Commun. Contemp. Math. 13 (2011), 331-373. Zbl 1221.42042, MR 2794490, 10.1142/S0219199711004221; reference:[17] Jiang, R., Yang, D.: New Orlicz-Hardy spaces associated with divergence form elliptic operators.J. Funct. Anal. 258 (2010), 1167-1224. Zbl 1205.46014, MR 2565837, 10.1016/j.jfa.2009.10.018; reference:[18] Jiang, R., Yang, D., Yang, D.: Maximal function characterizations of Hardy spaces associated with magnetic Schrödinger operators.Forum Math. 24 (2012), 471-494. Zbl 1248.42023, MR 2926631, 10.1515/form.2011.067; reference:[19] Ky, L. D.: Endpoint estimates for commutators of singular integrals related to Schrödinger operators.To appear in Rev. Mat. Iberoam.; reference:[20] Ky, L. D.: New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators.Integral Equations Oper. Theory 78 (2014), 115-150. Zbl 1284.42073, MR 3147406, 10.1007/s00020-013-2111-z; reference:[21] Ky, L. D.: Bilinear decompositions and commutators of singular integral operators.Trans. Am. Math. Soc. 365 (2013), 2931-2958. Zbl 1272.42010, MR 3034454; reference:[22] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034 Springer, Berlin (1983). Zbl 0557.46020, MR 0724434; reference:[23] Ouhabaz, E. M.: Analysis of Heat Equations on Domains.London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). Zbl 1082.35003, MR 2124040; reference:[24] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces.Pure and Applied Mathematics 146 Marcel Dekker, New York (1991). Zbl 0724.46032, MR 1113700; reference:[25] Semenov, Y. A.: Stability of $L^p$-spectrum of generalized Schrödinger operators and equivalence of Green's functions.Int. Math. Res. Not. 12 (1997), 573-593. Zbl 0905.47031, MR 1456565, 10.1155/S107379289700038X; reference:[26] Simon, B.: Functional Integration and Quantum Physics.AMS Chelsea Publishing, Providence (2005). Zbl 1061.28010, MR 2105995; reference:[27] Strömberg, J.-O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces.Indiana Univ. Math. J. 28 (1979), 511-544. MR 0529683, 10.1512/iumj.1979.28.28037; reference:[28] Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces.Lecture Notes in Mathematics 1381 Springer, Berlin (1989). Zbl 0676.42021, MR 1011673, 10.1007/BFb0091160; reference:[29] Yan, L.: Classes of Hardy spaces associated with operators, duality theorem and applications.Trans. Am. Math. Soc. 360 (2008), 4383-4408. Zbl 1273.42022, MR 2395177, 10.1090/S0002-9947-08-04476-0; reference:[30] Yang, D., Yang, S.: Musielak-Orlicz Hardy spaces associated with operators and their applications.J. Geom. Anal. 24 (2014), 495-570. Zbl 1302.42033, MR 3145932, 10.1007/s12220-012-9344-y; reference:[31] Yang, D., Yang, S.: Local Hardy spaces of Musielak-Orlicz type and their applications.Sci. China Math. 55 (2012), 1677-1720. Zbl 1266.42055, MR 2955251, 10.1007/s11425-012-4377-z

  3. 3
    Conference
  4. 4
    Conference

    المؤلفون: Krbec, Miroslav, Schott, Thomas

    مصطلحات موضوعية: msc:35J10, msc:46E30, msc:46E35

    وصف الملف: application/pdf

  5. 5
    Academic Journal

    المؤلفون: Mouayn, Zouhaïr

    وصف الملف: application/pdf

    Relation: mr:MR2305867; zbl:Zbl 1164.33301; reference:[1] L. Landau, E. Lifschitz: Quantum Mechanics: Non-relativistic Theory.Pergamon Press, New York, 1965.; reference:[2] E. V. Ferapontov, A. P. Veselov: Integrable Schrödinger operators with magnetic fields: Factorization method on curved surfaces.J. Math. Phys. 42 (2001), 590–607. MR 1808441, 10.1063/1.1334903; reference:[3] A. Comtet: On the Landau levels on the hyperbolic plane.Ann. Phys. 173 (1986), 185–209. Zbl 0635.58034, MR 0870891; reference:[4] J. Negro, M. A. del Olmo, and A. Rodriguez-Marco: Landau quantum systems: an approach based on symmetry.J. Phys. A, Math. Gen. 35 (2002), 2283–2307. MR 1908725, 10.1088/0305-4470/35/9/317; reference:[5] M. Flensted-Jensen: Spherical functions on a simply connected semisimple Lie group.Am. J. Math. 99 (1977), 341–361. Zbl 0372.43005, MR 0458063, 10.2307/2373823; reference:[6] Z. Mouayn: Characterization of hyperbolic Landau states by coherent state transforms.J. Phys. A, Math. Gen. 36 (2003), 8071–8076. Zbl 1058.81037, MR 2007510, 10.1088/0305-4470/36/29/311; reference:[7] S. A. Albeverio, P. Exner, and V. A. Geyler: Geometric phase related to point-interaction transport on a magnetic Lobachevsky plane.Lett. Math. Phys. 55 (2001), 9–16. MR 1845795, 10.1023/A:1010943228970; reference:[8] I. S. Gradshteyn, I. M. Ryzhik: Table of Integrals, Series and Products.Academic Press, New York-London-Toronto, 1980. MR 0582453; reference:[9] : Analyse Harmonique (Ecole d’été, d’analyse harmonique, Université de Nancy I, Septembre 15 au Octobre 3, 1980). Les Cours du C.I.M.P.A.P. Eymard, J. L. Clerc, J. Faraut, M. Raïs, and R. Takahashi (eds.), Centre International de Mathématiques Pures et Appliquées, C.I.M.P.A, 1980. (French)

  6. 6
    Academic Journal

    المؤلفون: Milatovic, Ognjen

    وصف الملف: application/pdf

    Relation: mr:MR2076861; zbl:Zbl 1127.35348; reference:[1] Aubin T.: Some Nonlinear Problems in Riemannian Geometry.Springer-Verlag, Berlin, 1998. Zbl 0896.53003, MR 1636569; reference:[2] Braverman M., Milatovic O., Shubin M.: Essential self-adjointness of Schrödinger type operators on manifolds.Russian Math. Surveys 57 4 (2002), 641-692. Zbl 1052.58027, MR 1942115; reference:[3] Kato T.: Schrödinger operators with singular potentials.Israel J. Math. 13 (1972), 135-148. MR 0333833; reference:[4] Kato T.: A second look at the essential selfadjointness of the Schrödinger operators.Physical reality and mathematical description, Reidel, Dordrecht, 1974, pp.193-201. MR 0477431; reference:[5] Kato T.: On some Schrödinger operators with a singular complex potential.Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 5 (1978), 105-114. Zbl 0376.47021, MR 0492961; reference:[6] Kato T.: Perturbation Theory for Linear Operators.Springer-Verlag, New York, 1980. Zbl 0836.47009; reference:[7] Milatovic O.: Self-adjointness of Schrödinger-type operators with singular potentials on manifolds of bounded geometry.Electron. J. Differential Equations, No. 64 (2003), 8pp (electronic). Zbl 1037.58013, MR 1993772; reference:[8] Reed M., Simon B.: Methods of Modern Mathematical Physics I, II: Functional Analysis. Fourier Analysis, Self-adjointness.Academic Press, New York e.a., 1975. MR 0751959; reference:[9] Shubin M.A.: Spectral theory of elliptic operators on noncompact manifolds.Astérisque no. 207 (1992), 35-108. MR 1205177; reference:[10] Taylor M.: Partial Differential Equations II: Qualitative Studies of Linear Equations.Springer-Verlag, New York e.a., 1996. MR 1395149

  7. 7
    Academic Journal

    المؤلفون: Medková, Dagmar

    وصف الملف: application/pdf

    Relation: mr:MR1658269; zbl:Zbl 0949.31004; reference:[1] R. S. Angell, R. E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges.Čas. pěst. mat. 113 (1988), 387–402. MR 0981880; reference:[2] Yu. D. Burago, V. G. Maz’ya: Potential theory and function theory for irregular regions.Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad, 1969. MR 0240284; reference:[3] H. Federer: Geometric Measure Theory.Springer-Verlag Berlin, Heidelberg, New York, 1969. Zbl 0176.00801, MR 0257325; reference:[4] I. Gohberg, A. Marcus: Some remarks on topologically equivalent norms.Izvestija Mold. Fil. Akad. Nauk SSSR 10(76) (1960), 91–95.; reference:[5] N. V. Grachev, V. G. Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries.Vest. Leningrad. Univ. 19(4) (1986), 60–64. MR 0880678; reference:[6] N. V. Grachev, V. G. Maz’ya: Invertibility of boundary integral operators of elasticity on surfaces with conic points.Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.; reference:[7] N. V. Grachev, V. G. Maz’ya: Solvability of a boundary integral equation on a polyhedron.Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.; reference:[8] H. Heuser: Funktionalanalysis.Teubner, Stuttgart, 1975. Zbl 0309.47001, MR 0482021; reference:[9] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823.Springer-Verlag, Berlin, 1980, pp. . MR 0590244; reference:[10] J. Král, W. L. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory.Aplikace matematiky 31 (1986), 293–308. MR 0854323; reference:[11] N. L. Landkof: Fundamentals of modern potential theory.Izdat. Nauka, Moscow, 1966. (Russian) MR 0214795; reference:[12] V. G. Maz’ya: Boundary integral equations. Sovremennyje problemy matematiki, fundamental’nyje napravlenija, 27.Viniti, Moskva, 1988. (Russian); reference:[13] D. Medková: On the convergence of Neumann series for noncompact operator.Czechoslovak Math. J. 41(116) (1991), 312–316. MR 1105448; reference:[14] D. Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary.Czechoslovak Math. J. 47(122) (1997), 651–680. MR 1479311, 10.1023/A:1022818618177; reference:[15] I. Netuka: The third boundary value problem in potential theory.Czechoslovak Math. J. 22(97) (1972), 554–580. Zbl 0242.31007, MR 0313528; reference:[16] I. Netuka: Smooth surfaces with infinite cyclic variation.Čas. pěst. mat. 96 (1971), 86–101. (Czech) Zbl 0204.08002, MR 0284553; reference:[17] C. Neumann: Untersuchungen über das logarithmische und Newtonsche Potential.Teubner Verlag, Leipzig, 1877.; reference:[18] C. Neumann: Zur Theorie des logarithmischen und des Newtonschen Potentials.Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig 22 (1870), 49–56, 264–321.; reference:[19] C. Neumann: Über die Methode des arithmetischen Mittels.Hirzel, Leipzig, 1887 (erste Abhandlung), 1888 (zweite Abhandlung).; reference:[20] J. Plemelj: Potentialtheoretische Untersuchungen.B. G. Teubner, Leipzig, 1911.; reference:[21] J. Radon: Über Randwertaufgaben beim logarithmischen Potential.Sitzber. Akad. Wiss. Wien 128 (1919), 1123–1167.; reference:[22] J. Radon: ARRAY(0x9436470).Birkhäuser, Vienna, 1987.; reference:[23] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron.The panel method. Applicable Analysis 45 (1992), 1–4, 135–177. MR 1293594, 10.1080/00036819208840093; reference:[24] A. Rathsfeld: The invertibility of the double layer potential operator in the space of continuous functions defined over a polyhedron. The panel method. Erratum.Applicable Analysis 56 (1995), 109–115. Zbl 0921.31004, MR 1378015, 10.1080/00036819508840313; reference:[25] F. Riesz, B. Sz. Nagy: Leçons d’analyse fonctionnelles.Budapest, 1952.; reference:[26] M. Schechter: Principles of Functional Analysis.Academic Press, 1973. MR 0445263; reference:[27] L. Schwartz: Theorie des distributions.Hermann, Paris, 1950. Zbl 0037.07301, MR 0209834; reference:[28] K. Yosida: Functional Analysis.Springer-Verlag, Berlin, 1965. Zbl 0126.11504

  8. 8
    Academic Journal

    مصطلحات موضوعية: msc:35J10, msc:35P10, msc:47F05

    وصف الملف: application/pdf

    Relation: mr:MR1046285; zbl:Zbl 0734.35055; reference:[1] Ф. Pucc Б. Секефальви-Надъ: Лекции по функциональному анализу.,,Мир", Москва, 1979.; reference:[2] X. Трибель: Теория интерполяции, функциональные пространства, дифференциальне операторы.,,Мир", Москва, 1980. Zbl 1170.01312; reference:[3] M. Рид Б. Саймон: Методы соврзменной математической физики.2,,,Мир", Москва,1978. Zbl 1234.93001

  9. 9
    Conference

    المؤلفون: Evans, W. D., Lewis, R., Saitó, Y.

    مصطلحات موضوعية: msc:35J10, msc:35P05, msc:81U10

    وصف الملف: application/pdf

    Relation: zbl:Zbl 0728.35075

  10. 10
    Academic Journal

    المؤلفون: Fortunato, Donato

    مصطلحات موضوعية: msc:35J10, msc:35P05, msc:47F05

    وصف الملف: application/pdf

    Relation: mr:MR526148; zbl:Zbl 0388.35018; reference:[1] V. BENCI D. FORTUNATO: Discreteness conditions of the spectrum of Schrödinger operators.J. Math. Anal. and Appl. 64 (1978), 695-700. MR 0481616; reference:[2] F. E. BROWDER: On the spectral theory of elliptic differential operators.Mat. Annalen 142 (1961), 22-130. Zbl 0104.07502, MR 0209909; reference:[3] I. M. GLAZMAN: Direct methods of the qualitative spectral analysis of singular differential operators.Israel Program of Translations, Jerusalem (1965). MR 0190800; reference:[4] T. KATO: Perturbation theory for linear operators.Springer Verlag, New York (1966). Zbl 0148.12601, MR 0203473; reference:[5] T. KATO: Schrödinger operators with singular potentials.Israel J. Math. 13 (1973), 135-148. Zbl 0246.35025, MR 0333833; reference:[6] V. B. LIDSKII: Conditions for the complete continuity of the resolvent of a nonself-adjoint differential operators.Dokl. Akad. Nauk SSSR 113 (1957), 28-31. MR 0091385; reference:[7] A. M. MOLCHANOV: The conditions for the discreteness of the spectrum of self-adjoint second-order differential equations.Trudy Moskov. Mat. Obšč. 2 (1953), 169-300. MR 0057422; reference:[8] M. A. NAIMARK: The spectrum of singular non self-adjoint second order differential operators.Dokl. Akad. Nauk SSSR (1952), 41-44. MR 0051402; reference:[9] B. S. PAVLOV: The non self-adjoint Schrödinger operator.Topics Math. Phys. 1 (1967), 83-113.; reference:[10] M. REED B. SIMON: Methods of modern Mathematical Physics, I.Academic Press New York (1972). MR 0751959; reference:[11] M. SCHECHTER: Principles of functional analysis.Academic Press, New York (1971). Zbl 0211.14501, MR 0445263; reference:[12] T. KATO: On some Schrödinger operators with a singular complex potential.Ann. Sc. Norm. Sup. Pisa 5 (1978), 105-114. Zbl 0376.47021, MR 0492961

  11. 11
    Academic Journal

    المؤلفون: Trlifaj, Ladislav

    مصطلحات موضوعية: msc:34L99, msc:35J10

    وصف الملف: application/pdf

    Relation: mr:MR0447783; zbl:Zbl 0372.34016; reference:[1] А. О. Гельфонд: Исчисление конечных разностей.Гос. изд. Физ.-Мат. Лит., Москва, 1959. Zbl 1047.90504; reference:[2] А. О. Myschkis: Lineare Differentialgleichungen mit nacheilendem Argument.Deutscher Verlag der Wissenschaften, Berlin, 1955. Zbl 0067.31802, MR 0073844; reference:[3] E. Pinney: Ordinary Difference-Differential Equations.University of California Press, Berkeley and Los Angeles, 1958. Zbl 0091.07901, MR 0097597; reference:[4] К. Г. Валеев И. Р. Карганьян: .в сборнике: Функциональные и дифференциально-разностные уравнения. Издание Института математики АН УССР, Киев, 1974. Zbl 1235.49003; reference:[5] S. Flügge: Practical Quantum Mechanics I.Springer-Verlag, Berlin-Heidelberg-New York, 1971. MR 1746199; reference:[6] B. van der Pol H. Bremer: Operational Calculus Based on the Two-sided Laplace Integral.Cambridge, 1950. MR 0038476; reference:[7] G. Doetsch: Handbuch der Laplace-Transformation vol. I + II.Birkhäuser Verlag, Basel and Stuttgart, 1950+ 1955. MR 0344808; reference:[8] H. Bateman: Higher Transcendental Functions vol. III.McGraw-Hill Book Com., New York, Toronto and London, 1955. Zbl 0064.06302, MR 0066496; reference:[9] A. de Shalit I. Talmi: Nuclear Shell Theory.Academic Press, New York and London, 1963. MR 0154642

  12. 12
    Academic Journal

    المؤلفون: Simon, Barry

    مصطلحات موضوعية: msc:35J10, msc:81Q05, msc:81Q10

    وصف الملف: application/pdf

    Relation: mr:MR1042257; zbl:Zbl 0738.35076