يعرض 1 - 7 نتائج من 7 نتيجة بحث عن '"msc:35-02"', وقت الاستعلام: 0.33s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal

    المؤلفون: Mawhin, Jean

    وصف الملف: application/pdf

    Relation: mr:MR3238841; zbl:Zbl 06362260; reference:[1] Ambrosetti, A., Brézis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems.J. Funct. Anal. 122 (1994), 519-543. Zbl 0805.35028, MR 1276168, 10.1006/jfan.1994.1078; reference:[2] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical point theory and applications.J. Funct. Anal. 14 (1973), 349-381. Zbl 0273.49063, MR 0370183, 10.1016/0022-1236(73)90051-7; reference:[3] Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature.Commun. Math. Phys. 87 (1982), 131-152. Zbl 0512.53055, MR 0680653, 10.1007/BF01211061; reference:[4] Bereanu, C., Jebelean, P.: Multiple critical points for a class of periodic lower semicontinuous functionals.Discrete Contin. Dyn. Syst. 33 (2013), 47-66. Zbl 1281.34024, MR 2972945, 10.3934/dcds.2013.33.47; reference:[5] Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces.Proc. Am. Math. Soc. 137 (2009), 161-169. Zbl 1161.35024, MR 2439437, 10.1090/S0002-9939-08-09612-3; reference:[6] Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces.Math. Nachr. 283 (2010), 379-391. Zbl 1185.35113, MR 2643019, 10.1002/mana.200910083; reference:[7] Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for Neumann problems with $\phi$-Laplacians and pendulum-like nonlinearities.Discrete Contin. Dyn. Syst. 28 (2010), 637-648. Zbl 1193.35083, MR 2644761, 10.3934/dcds.2010.28.637; reference:[8] Bereanu, C., Jebelean, P., Mawhin, J.: Variational methods for nonlinear perturbations of singular $\phi$-Laplacians.Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 22 (2011), 89-111. MR 2799910, 10.4171/RLM/589; reference:[9] Bereanu, C., Jebelean, P., Mawhin, J.: Multiple solutions for Neumann and periodic problems with singular $\phi$-Laplacian.J. Funct. Anal. 261 (2011), 3226-3246. Zbl 1241.35076, MR 2835997, 10.1016/j.jfa.2011.07.027; reference:[10] Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities.Calc. Var. Partial Differ. Equ. 46 (2013), 113-122. Zbl 1262.35088, MR 3016504, 10.1007/s00526-011-0476-x; reference:[11] Bereanu, C., Jebelean, P., Mawhin, J.: The Dirichlet problem with mean curvature operator in Minkowski space---a variational approach.Adv. Nonlinear Stud 14 (2014), 315-326. Zbl 1305.35030, MR 3194356, 10.1515/ans-2014-0204; reference:[12] Bereanu, C., Jebelean, P., Şerban, C.: Nontrivial solutions for a class of one-parameter problems with singular $\phi$-Laplacian.Ann. Univ. Buchar., Math. Ser. 3(61) (2012), 155-162. Zbl 1274.35078, MR 3034970; reference:[13] Bereanu, C., Jebelean, P., Torres, P. J.: Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space.J. Funct. Anal. 264 (2013), 270-287. MR 2995707, 10.1016/j.jfa.2012.10.010; reference:[14] Bereanu, C., Jebelean, P., Torres, P. J.: Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space.J. Funct. Anal. 265 (2013), 644-659. Zbl 1285.35051, MR 3062540, 10.1016/j.jfa.2013.04.006; reference:[15] Bereanu, C., Torres, P. J.: Existence of at least two periodic solutions of the forced relativistic pendulum.Proc. Am. Math. Soc. 140 (2012), 2713-2719. Zbl 1275.34057, MR 2910759, 10.1090/S0002-9939-2011-11101-8; reference:[16] Brézis, H.: Positive solutions of nonlinear elliptic equations in the case of critical Sobolev exponent.Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vol. III, 129-146, Res. Notes Math. 70, Pitman, Boston, 1982. Zbl 0514.35031, MR 0670270; reference:[17] Brézis, H., Mawhin, J.: Periodic solutions of the forced relativistic pendulum.Differ. Integral Equ. 23 (2010), 801-810. Zbl 1240.34207, MR 2675583; reference:[18] Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents.Commun. Pure Appl. Math. 36 (1983), 437-477. Zbl 0541.35029, MR 0709644, 10.1002/cpa.3160360405; reference:[19] Coelho, I., Corsato, C., Obersnel, F., Omari, P.: Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation.Adv. Nonlinear Stud. 12 (2012), 621-638. Zbl 1263.34028, MR 2976056, 10.1515/ans-2012-0310; reference:[20] Coelho, I., Corsato, C., Rivetti, S.: Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball.Topol. Methods Nonlinear Anal (to appear).; reference:[21] Corsato, C., Obersnel, F., Omari, P., Rivetti, S.: Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space.J. Math. Anal. Appl. 405 (2013), 227-239. MR 3053503, 10.1016/j.jmaa.2013.04.003; reference:[22] Hammerstein, A.: Nichtlineare Integralgleichungen nebst Anwendungen.Acta Math. 54 (1930), 117-176 German. MR 1555304, 10.1007/BF02547519; reference:[23] Mawhin, J.: Semicoercive monotone variational problems.Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. MR 0938142; reference:[24] Mawhin, J.: Multiplicity of solutions of variational systems involving $\phi$-Laplacians with singular $\phi$ and periodic nonlinearities.Discrete Contin. Dyn. Syst. 32 (2012), 4015-4026. Zbl 1260.34076, MR 2945817, 10.3934/dcds.2012.32.4015; reference:[25] Mawhin, J., Jr., J. R. Ward, Willem, M.: Variational methods and semilinear elliptic equations.Arch. Ration. Mech. Anal. 95 (1986), 269-277. Zbl 0656.35044, MR 0853968, 10.1007/BF00251362; reference:[26] Mawhin, J., Willem, M.: Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations.J. Differ. Equations 52 (1984), 264-287. Zbl 0557.34036, MR 0741271, 10.1016/0022-0396(84)90180-3; reference:[27] Pohožaev, S. I.: On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$.Russian Dokl. Akad. Nauk SSSR 165 (1965), 36-39. MR 0192184; reference:[28] Rabinowitz, P. H.: On a class of functionals invariant under a $\mathbb Z^n$ action.Trans. Am. Math. Soc. 310 (1988), 303-311. MR 0965755; reference:[29] Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 77-109. Zbl 0612.58011, MR 0837231, 10.1016/S0294-1449(16)30389-4; reference:[30] Willem, M.: Minimax Theorems.Progress in Nonlinear Differential Equations and Their Applications 24 Birkhäuser, Boston (1996). Zbl 0856.49001, MR 1400007

  3. 3
    Conference

    المؤلفون: Roach, Gary F.

    مصطلحات موضوعية: msc:35-02, msc:35P25, msc:35R30, msc:47J10

    وصف الملف: application/pdf

    Relation: mr:MR1151435; zbl:Zbl 0747.35028

  4. 4
    Academic Journal

    المؤلفون: Franců, Jan

    وصف الملف: application/pdf

    Relation: mr:MR1254746; zbl:Zbl 0808.47038; reference:[1] J. Franců: Monotone operators, Survey directed to differential equations.Aplikace matematiky 35 (1990), 257–301. MR 1065003

  5. 5
    Academic Journal

    المؤلفون: Franců, Jan

    وصف الملف: application/pdf

    Relation: mr:MR1065003; zbl:Zbl 0724.47025; reference:[1] K. Deimling: Nonlinear functional analysis.Springer 1985. Zbl 0559.47040, MR 0787404; reference:[2] P. Doktor: Modern methods of solving partial differential equations.(Czech), Lecture Notes, SPN, Prague, 1976.; reference:[3] S. Fučík: Solvability of nonlinear equations and boundary value problems.D. Reidel Publ. Соmр., Dordrecht; JČSMF, Prague, 1980. MR 0620638; reference:[4] S. Fučík A. Kufner: Nonlinear differential equations;.Czech edition - SNTL, Prague 1978; English translation - Elsevier, Amsterdam 1980. MR 0558764; reference:[5] S. Fučík J. Milota: Mathematical analysis II.(Czech), Lecture Notes, SPN, Prague 1980.; reference:[6] S. Fučík J. Nečas J. Souček V. Souček: Spectral analysis of nonlinear operators.Lecture Notes in Math. 346, Springer, Berlin 1973; JCSMF, Prague 1973. MR 0467421; reference:[7] R. I. Kačurovskij: Nonlinear monotone operators in Banach spaces.(Russian), Uspechi Mat. Nauk 23 (1968), 2, 121-168. MR 0226455; reference:[8] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities and their applications.Academic Press, New York 1980; Russian translation - Mir, Moscow 1983. MR 0738631; reference:[9] A. N. Kolmogorov S. V. Fomin: Introductory real analysis.(Russian), Moscow 1954, English translation - Prentice Hall, New York 1970, Czech translation - SNTL, Prague 1975. MR 0267052; reference:[10] A. Kufner O. John S. Fučík: Function spaces.Academia, Prague 1977. MR 0482102; reference:[11] J. Nečas: Introduction to the theory of nonlinear elliptic equations.Teubner-Texte zur Math. 52, Leipzig, 1983. MR 0731261; reference:[12] D. Pascali S. Sburlan: Nonlinear mappings of monotone type.Editura Academiei, Bucuresti 1978. MR 0531036; reference:[13] A. Pultr: Subspaces of Euclidean spaces.(Czech), Matematický seminář - 22, SNTL, Prague 1987.; reference:[14] E. Zeidler: Lectures on nonlinear functional analysis II - Monotone operators.(German), Teubner-Texte zur Math. 9, Leipzig 1977; Revised extended English translation: Nonlinear functional analysis and its application II, Springer, New York (to appear). MR 0628004; reference:[15] J. Nečas: Nonlinear elliptic equations.(French), Czech. Math. J. 19 (1969), 252-274.; reference:[16] M. Feistauer A. Ženíšek: Compactness method in the finite element theory of nonlinear elliptic problems.Numer. Math. 52 (1988), 147-163. MR 0923708, 10.1007/BF01398687

  6. 6
    Conference

    المؤلفون: Uraltseva, N. N.

    مصطلحات موضوعية: msc:35-02, msc:35A05, msc:35K60

    وصف الملف: application/pdf

    Relation: zbl:Zbl 0784.35054

  7. 7
    Conference

    المؤلفون: Trudinger, Neil S.

    مصطلحات موضوعية: msc:35-02, msc:35J60, msc:35J65

    وصف الملف: application/pdf

    Relation: mr:MR0877133; zbl:Zbl 0695.35075