يعرض 1 - 20 نتائج من 109 نتيجة بحث عن '"msc:34D05"', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Cheng, Ye, Shi, Bao, Ding, Liangliang

    وصف الملف: application/pdf

    Relation: mr:MR4263158; zbl:07361062; reference:[1] Ahn, S. M., Ha, S.-Y.: Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises.J. Math. Phys. 51 (2010), Article ID 103301, 17 pages. Zbl 1314.92019, MR 2761313, 10.1063/1.3496895; reference:[2] Albi, G., Balagué, D., Carrillo, J. A., Brecht, J. von: Stability analysis of flock and mill rings for second order models in swarming.SIAM J. Appl. Math. 74 (2014), 794-818. Zbl 1305.37044, MR 3215070, 10.1137/13091779X; reference:[3] Atay, F. M.: The consensus problem in networks with transmission delays.Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 371 (2013), Article ID 20120460, 13 pages. Zbl 1353.94089, MR 3094343, 10.1098/rsta.2012.0460; reference:[4] Bánhelyi, B., Csendes, T., Krisztin, T., Neumaier, A.: Global attractivity of the zero solution for Wright's equation.SIAM J. Appl. Dyn. Syst. 13 (2014), 537-563. Zbl 1301.34094, MR 3183042, 10.1137/120904226; reference:[5] Bliman, P.-A., Ferrari-Trecate, G.: Average consensus problems in networks of agents with delayed communications.Automatica 44 (2008), 1985-1995. Zbl 1283.93013, MR 2531328, 10.1016/j.automatica.2007.12.010; reference:[6] Cucker, F., Dong, J.-G.: A general collision-avoiding flocking framework.IEEE Trans. Autom. Control 56 (2011), 1124-1129. Zbl 1368.93261, MR 2815917, 10.1109/TAC.2011.2107113; reference:[7] Cucker, F., Smale, S.: Emergent behavior in flocks.IEEE Trans. Autom. Control 52 (2007), 852-862. Zbl 1366.91116, MR 2324245, 10.1109/TAC.2007.895842; reference:[8] Dehghani, M. A., Menhaj, M. B.: Communication free leader-follower formation control of unmanned aircraft systems.Robot. Auton. Syst. 80 (2016), 69-75. 10.1016/j.robot.2016.03.008; reference:[9] Silva, V. de, Ghrist, R.: Coverage in sensor networks via persistent homology.Algebr. Geom. Topol. 7 (2007), 339-358. Zbl 1134.55003, MR 2308949, 10.2140/agt.2007.7.339; reference:[10] Erban, R., Haškovec, J., Sun, Y.: A Cucker-Smale model with noise and delay.SIAM J. Appl. Math. 76 (2016), 1535-1557. Zbl 1345.60063, MR 3534479, 10.1137/15M1030467; reference:[11] Jabin, P.-E., Motsch, S.: Clustering and asymptotic behavior in opinion formation.J. Differ. Equations 257 (2014), 4165-4187. Zbl 1316.34051, MR 3264419, 10.1016/j.jde.2014.08.005; reference:[12] Krisztin, T.: On stability properties for one-dimensional functional differential equations.Funkc. Ekvacioj, Ser. Int. 34 (1991), 241-256. Zbl 0746.34045, MR 1130462; reference:[13] Lin, P., Jia, Y.: Average consensus in networks of multi-agents with both switching topology and coupling time-delay.Physica A 387 (2008), 303-313. 10.1016/j.physa.2007.08.040; reference:[14] Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory.IEEE Trans. Autom. Control 51 (2006), 401-420. Zbl 1366.93391, MR 2205679, 10.1109/TAC.2005.864190; reference:[15] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays.IEEE Trans. Autom. Control 49 (2004), 1520-1533. Zbl 1365.93301, MR 2086916, 10.1109/TAC.2004.834113; reference:[16] Sharifi, F., Mirzaei, M., Zhang, Y., Gordon, B. W.: Cooperative multi-vehicle search and coverage problem in uncertain environments.Unmanned Syst. 3 (2015), 35-47. 10.1142/S230138501550003X; reference:[17] Shen, J.: Cucker-Smale flocking under hierarchical leadership.SIAM J. Appl. Math. 68 (2008), 694-719. Zbl 1311.92196, MR 2375291, 10.1137/060673254; reference:[18] So, J. W.-H., Tang, X., Zou, X.: Stability in a linear delay system without instantaneous negative feedback.SIAM J. Math. Anal. 33 (2002), 1297-1304. Zbl 1019.34074, MR 1920631, 10.1137/S0036141001389263; reference:[19] So, J. W.-H., Yu, J. S., Chen, M.-P.: Asymptotic stability for scalar delay differential equations.Funkc. Ekvacioj, Ser. Int. 39 (1996), 1-17. Zbl 0930.34056, MR 1401650; reference:[20] Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G. J.: Protocols for self-organisation of a wireless sensor network.IEEE Pers. Commun. 7 (2000), 16-27. 10.1109/98.878532; reference:[21] Wei, J.: Bifurcation analysis in a scalar delay differential equation.Nonlinearity 20 (2007), 2483-2498. Zbl 1141.34045, MR 2361242, 10.1088/0951-7715/20/11/002; reference:[22] Wright, E. M.: A non-linear difference-differential equation.J. Reine Angew. Math. 194 (1955), 66-87. Zbl 0064.34203, MR 0072363, 10.1515/crll.1955.194.66; reference:[23] Xiao, F., Wang, L.: State consensus for multi-agent systems with switching topologies and time-varying delays.Int. J. Control 79 (2006), 1277-1284. Zbl 1330.94022, MR 2252185, 10.1080/00207170600825097; reference:[24] Yoneyama, T.: On the 3/2 stability theorem for one-dimensional delay-differential equations.J. Math. Anal. Appl. 125 (1987), 161-173. Zbl 0655.34062, MR 0891356, 10.1016/0022-247X(87)90171-5; reference:[25] Zhang, X., Liu, L., Feng, G.: Leader-follower consensus of time-varying nonlinear multiagent systems.Automatica 52 (2015), 8-14. Zbl 1309.93018, MR 3310808, 10.1016/j.automatica.2014.10.127; reference:[26] Zhou, N., Xia, Y.: Coordination control design for formation reconfiguration of multiple spacecraft.IET Control Theory Appl. 9 (2015), 2222-2231. MR 3442965, 10.1049/iet-cta.2015.0144; reference:[27] Zuo, Z., Tie, L.: A new class of finite-time nonlinear consensus protocols for multi-agent systems.Int. J. Control 87 (2014), 363-370. Zbl 1317.93027, MR 3172512, 10.1080/00207179.2013.834484

  2. 2
    Academic Journal

    المؤلفون: Hai, Pham Viet

    وصف الملف: application/pdf

    Relation: mr:MR4226473; zbl:07332708; reference:[1] Barreira, L., Valls, C.: Polynomial growth rates.Nonlinear Anal., Theory Methods Appl. 71 (2009), 5208-5219. Zbl 1181.34046, MR 2560190, 10.1016/j.na.2009.04.005; reference:[2] Bătăran, F., Preda, C., Preda, P.: Extending some results of L. Barreira and C. Valls to the case of linear skew-product semiflows.Result. Math. 72 (2017), 965-978. Zbl 1375.37091, MR 3684470, 10.1007/s00025-017-0666-8; reference:[3] Coffman, C. V., Schäffer, J. J.: Dichotomies for linear difference equations.Math. Ann. 172 (1967), 139-166. Zbl 0189.40303, MR 0214946, 10.1007/BF01350095; reference:[4] Daletskij, Ju. L., Krejn, M. G.: Stability of Solutions of Differential Equations in Banach Space.Translations of Mathematical Monographs 43. American Mathematical Society, Providence (1974). Zbl 0286.34094, MR 0352639, 10.1090/mmono/043; reference:[5] Hai, P. V.: On the polynomial stability of evolution families.Appl. Anal. 95 (2016), 1239-1255. Zbl 1343.34143, MR 3479001, 10.1080/00036811.2015.1058364; reference:[6] Hai, P. V.: Polynomial stability of evolution cocycles and Banach function spaces.Bull. Belg. Math. Soc.---Simon Stevin 26 (2019), 299-314. Zbl 07094830, MR 3975830, 10.36045/bbms/1561687567; reference:[7] Levitan, B. M., Zhikov, V. V.: Almost Periodic Functions and Differential Equations.Cambridge University Press, Cambridge (1982). Zbl 0499.43005, MR 0690064; reference:[8] Li, T.: Die Stabilitätsfrage bei Differenzengleichungen.Acta Math. 63 (1934), 99-141 German \99999JFM99999 60.0397.03. MR 1555392, 10.1007/BF02547352; reference:[9] Massera, J. L., Schäffer, J. J.: Linear Differential Equations and Function Spaces.Pure and Applied Mathematics 21. Academic Press, New York (1966). Zbl 0243.34107, MR 0212324; reference:[10] Megan, M., Sasu, A. L., Sasu, B.: Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows.Bull. Belg. Math. Soc.---Simon Stevin 10 (2003), 1-21. Zbl 1045.34022, MR 2032321, 10.36045/bbms/1047309409; reference:[11] Megan, M., Sasu, B., Sasu, A. L.: Exponential expansiveness and complete admissibility for evolution families.Czech. Math. J. 54 (2004), 739-749. Zbl 1080.34546, MR 2086730, 10.1007/s10587-004-6422-8; reference:[12] Minh, N. V., Räbiger, F., Schnaubelt, R.: Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line.Integral Equations Oper. Theory 32 (1998), 332-353. Zbl 0977.34056, MR 1652689, 10.1007/BF01203774; reference:[13] Perron, O.: Die Stabilitätsfrage bei Differentialgleichungen.Math. Z. 32 (1930), 703-728 German \99999JFM99999 56.1040.01. MR 1545194, 10.1007/BF01194662; reference:[14] Popa, I.-L., Ceauşu, T., Megan, M.: Nonuniform power instability and Lyapunov sequences.Appl. Math. Comput. 247 (2014), 969-975. Zbl 1338.34101, MR 3270899, 10.1016/j.amc.2014.09.051; reference:[15] Popa, I.-L., Megan, M., Ceauşu, T.: Exponential dichotomies for linear discrete-time systems in Banach spaces.Appl. Anal. Discrete Math. 6 (2012), 140-155. Zbl 1289.39030, MR 2952610, 10.2298/AADM120319008P; reference:[16] Preda, C., Preda, P., Petre, A.-P.: On the uniform exponential stability of linear skew-product three-parameter semiflows.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 269-279. Zbl 1274.34174, MR 2856303; reference:[17] Sasu, B.: New criteria for exponential expansiveness of variational difference equations.J. Math. Anal. Appl. 327 (2007), 287-297. Zbl 1115.39005, MR 2277412, 10.1016/j.jmaa.2006.04.024; reference:[18] Slyusarchuk, V. E.: Instability of difference equations with respect to the first approximation.Differ. Uravn. 22 (1986), 722-723 Russian. Zbl 0606.39003, MR 0843238

  3. 3
    Academic Journal

    المؤلفون: Luey, Sokea, Usami, Hiroyuki

    وصف الملف: application/pdf

    Relation: mr:MR4260838; zbl:Zbl 07332702; reference:[1] Bodine, S., Lutz, D.A.: Asymptotic Integration of Differential and Difference Equations.Lecture Notes in Math., vol. 2129, Springer, 2015. MR 3362540; reference:[2] Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations.Heath, 1965. Zbl 0154.09301, MR 0190463; reference:[3] Došlý, O., Řehák, P.: Half-linear Differential Equations.Elsevier, 2005. MR 2158903; reference:[4] Hartman, P.: Ordinary Differential Equations.Birkhäuser, 1982. Zbl 0476.34002, MR 0658490; reference:[5] Mizukami, M., Naito, M., Usami, H.: Asymptotic behavior of solutions of a class of second order quasilinear ordinary differential equations.Hiroshima Math. J. 32 (2002), 51–78. Zbl 1017.34053, MR 1892669, 10.32917/hmj/1151007642; reference:[6] Naito, Y., Tanaka, S.: Sharp conditions for the existence of sign-changing solutions to equations involving the one-dimensional p-Laplacian.Nonlinear Anal. 69 (2008), 3070–3083. MR 2452116

  4. 4
    Academic Journal

    المؤلفون: Du, Bo

    وصف الملف: application/pdf

    Relation: mr:MR4055580; zbl:Zbl 07177920; reference:[1] Aouiti, C., all., I. B. Gharbia at: Dynamics of impulsive neutral-type BAM neural networks.J. Franklin Inst. 356 (2019), 2294-2324. MR 3925987, 10.1016/j.jfranklin.2019.01.028; reference:[2] Arik, S.: A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays.J. Franklin Inst. 356 (2019), 276-291. MR 3906098, 10.1016/j.jfranklin.2018.11.002; reference:[3] Askari, E., Setarehdan, S., Mohammadi, A. Sheikhani A. M., Teshnehlab, H.: Designing a model to detect the brain connections abnormalities in children with autism using 3D-cellular neural networks.J. Integr. Neurosci. 17 (2018), 391-411. 10.3233/jin-180075; reference:[4] Barbalat, I.: Systems d'equations differential d'oscillationsn onlinearities.Rev. Rounmaine Math. Pure Appl. 4 (1959), 267-270. MR 0111896; reference:[5] Cheng, Z., Li, F.: Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay.Mediterr. J. Math. 15 (2018), 134-153. MR 3808561, 10.1007/s00009-018-1184-y; reference:[6] Chua, L., Yang, L.: Cellular neural networks: application.IEEE. Trans. Circuits Syst. 35 (1988), 1273-1290. MR 0960778, 10.1109/31.7601; reference:[7] Dharani, S., Rakkiyappan, R., Cao, J.: New delay-dependent stability criteria for switched hopfield neural networks of neutral type with additive time-varying delay components.Neurocomputing 151 (2015), 827-834. 10.1016/j.neucom.2014.10.014; reference:[8] Ding, H., Liang, J., Xiao, T.: Existence of almost periodic solutions for SICNNs with time-varying delays.Physics Lett. A 372 (2008), 5411-5416. MR 2438234, 10.1016/j.physleta.2008.06.042; reference:[9] Gaines, R., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations.Springer, Berlin 1977. MR 0637067, 10.1007/bfb0089538; reference:[10] Gang, Y.: New results on the stability of fuzzy cellular neural networks with time-varying leakage delays.Neural Computing Appl. 25 (2014), 1709-1715. MR 2907168, 10.1007/s00521-014-1662-5; reference:[11] Guan, K.: Global power-rate synchronization of chaotic neural networks with proportional delay via impulsive control.Neurocomputing 283 (2018), 256-265. 10.1016/j.neucom.2018.01.027; reference:[12] Guo, R., Ge, W., all., Z. Zhang at: Finite time state estimation of complex-valued BAM neutral-type neural networks with time-varying delays.Int. J. Control, Automat. Systems 17 (2019), 3, 801-809. 10.1007/s12555-018-0542-7; reference:[13] Huang, Z.: Almost periodic solutions for fuzzy cellular neural networks with multi-proportional delays.Int. J. Machine Learning Cybernet. 8 (2017), 1323-1331. 10.1007/s13042-016-0507-1; reference:[14] Li, Y., Li, B., Yao, S., Xiong, L.: The global exponential pseudo almost periodic synchronization of quaternion-valued cellular neural networks with time-varying delay.Neurocomputing 303 (2018), 75-87. 10.1016/j.neucom.2018.04.044; reference:[15] Li, X., Huang, L., Zhou, H.: Global stability of cellular neural networks with constant and variable delays.Nonlinear Anal. TMA 53 (2003), 319-333. MR 1964329, 10.1016/s0362-546x(02)00176-1; reference:[16] Liu, B.: Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays.Math. Methods App. Sci. 40 (2017), 167-174. MR 3583044, 10.1002/mma.3976; reference:[17] Manivannan, R., Samidurai, R., Cao, J., Alsaedi, A.: New delay-interval-dependent stability criteria for switched hopfield neural networks of neutral type with successive time-varying delay components.Cognit. Neurodyn. 10 (2016), 6, 543-562. 10.1007/s11571-016-9396-y; reference:[18] Ozcan, N.: Stability analysis of Cohen-Grossberg neural networks of neutral-type: Multiple delays case.Neural Networks 113 (2019), 20-27. 10.1016/j.neunet.2019.01.017; reference:[19] Rakkiyappan, R., Balasubramaniam, P.: New global exponential stability results for neutral type neural networks with distributed time delays.Neurocomputing 71 (2008), 1039-1045. MR 2458370, 10.1016/j.neucom.2007.11.002; reference:[20] Samidurai, R., Rajavel, S., Sriraman, R., Cao, J., Alsaedi, A., Alsaadi, F. E.: Novel results on stability analysis of neutral-type neural networks with additive time-varying delay components and leakage delay.Int. J. Control Automat. Syst. 15 (2017), 4, 1888-1900. 10.1007/s12555-016-9483-1; reference:[21] all., R. Saml et: Some generalized global stability criteria for delayed Cohen-Grossberg neural networks of neutral-type.Neural Networks 116 (2019), 198-207. 10.1016/j.neunet.2019.04.023; reference:[22] Shi, K., Zhu, H., Zhong, S., Zeng, Y., Zhang, Y.: New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approach.J. Frankl. Inst. 352 (2015), 1, 155-176. MR 3292322, 10.1016/j.jfranklin.2014.10.005; reference:[23] Singh, V.: Improved global robust stability criterion for delayed neural networks.Chao. Solit. Fract. 31 (2007), 224-229. MR 2263282, 10.1016/j.chaos.2005.09.050; reference:[24] Singh, V.: On global robust stability of interval Hopfield neural networks with delay.Chao. Solit. Fract. 33 (2007), 1183-1188. MR 2318906, 10.1016/j.chaos.2006.01.121; reference:[25] Xiao, S.: Global exponential convergence of HCNNs with neutral type proportional delays and D operator.Neural Process. Lett. 49 (2019), 347-356. 10.1007/s11063-018-9817-5; reference:[26] Xin, Y., Cheng, Z. B.: Neutral operator with variable parameter and third-order neutral differential equation.Adv. Diff. Equ. 273 (2014), 1-18. MR 3359150, 10.1186/1687-1847-2014-273; reference:[27] Yao, L.: Global convergence of CNNs with neutral type delays and D operator.Neural Comput. Appl. 29 (2018), 105-109. 10.1007/s00521-016-2403-8; reference:[28] Yu, Y.: Global exponential convergence for a class of neutral functional differential equations with proportional delays.Math. Methods Appl. Sci. 39 (2016), 4520-4525. MR 3549409, 10.1002/mma.3880; reference:[29] Yu, Y.: Global exponential convergence for a class of HCNNs with neutral time-proportional delays.Appl. Math. Comput. 285 (2016), 1-7. MR 3494408, 10.1016/j.amc.2016.03.018; reference:[30] Zhang, X., Han, Q.: Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach.Neural Networks 54 (2014), 57-69. 10.1016/j.neunet.2014.02.012; reference:[31] Zhang, X., Han, Q.: Neuronal state estimation for neural networks with two additive time-varying delay components.IEEE Trans. Cybernetics 47 (2017), 3184-3194. 10.1109/tcyb.2017.2690676; reference:[32] Zhang, X., Han, Q., Wang, L.: Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays.IEEE Trans. Neural Networks Learning Systems 29 (2018), 5319-5329. MR 3867847, 10.1109/tnnls.2018.2797279; reference:[33] Zhang, X., Han, Q., Zeng, Z.: Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities.IEEE Trans. Cybernetics 48 (2018), 1660-1671. 10.1109/tcyb.2017.2776283; reference:[34] Zhang, H., all., T. Ma et: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control.IEEE Trans. Systems Man Cybernet. 40 (2010), 831-844. MR 2904149, 10.1109/tsmcb.2009.2030506; reference:[35] Zhang, H., Qiu, Z., Xiong, L.: Stochastic stability criterion of neutral-type neural networks with additive time-varying delay and uncertain semi-Markov jump.Neurocomputing 333 (2019), 395-406. 10.1016/j.neucom.2018.12.028; reference:[36] Zheng, M., all., L. Li et: Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks.Comm. Nonlinear Sci. Numer. Simul. 59 (2018), 272-291. MR 3758388, 10.1016/j.cnsns.2017.11.025; reference:[37] Zhou, Q.: Weighted pseudo anti-periodic solutions for cellular neural networks with mixed delays.Asian J. Control 19 (2017), 1557-1563. MR 3685941, 10.1002/asjc.1468; reference:[38] Zhou, Q., Shao, J.: Weighted pseudo-anti-periodic SICNNs with mixed delays.Neural Computing Appl. 29 (2018), 272-291. 10.1007/s00521-016-2582-3

  5. 5
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3895262; zbl:Zbl 06997372; reference:[1] Afuwape, A. U.: Further ultimate boundedness results for a third-order non-linear system of differential equations.Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 4 (1985), 347-361. Zbl 0592.34024, MR 0805225; reference:[2] Afuwape, A. U., Omeike, M. O.: Further ultimate boundedness of solutions of some system of third order nonlinear ordinary differential equations.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 43 (2004),7-20. Zbl 1068.34052, MR 2124598; reference:[3] \`El'sgol'ts, L. \`E.: Introduction to the Theory of Differential Equations With Deviating Arguments.Translated from the Russian by Robert J. McLaughlin. Holden-Day, San Francisco-London-Amsterdam (1966). Zbl 0133.33502, MR 0192154; reference:[4] Graef, J. R., Beldjerd, D., Remili, M.: On stability, ultimate boundedness, and existence of periodic solutions of certain third order differential equations with delay.Panam. Math. J. 25 (2015), 82-94. Zbl 1331.34145, MR 3364326; reference:[5] Graef, J. R., Oudjedi, L. D., Remili, M.: Stability and square integrability of solutions of nonlinear third order differential equations.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22 (2015), 313-324. Zbl 1326.34088, MR 3405345; reference:[6] Omeike, M.: Stability and boundedness of solutions of some non-autonomous delay differential equation of the third order.An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 55 (2009), 49-58. Zbl 1199.34390, MR 2510712; reference:[7] Omeike, M. O.: New results on the asymptotic behavior of a third-order nonlinear differential equation.Differ. Equ. Appl. 2 (2010), 39-51. Zbl 1198.34085, MR 2654750, 10.7153/dea-02-04; reference:[8] Omeike, M. O.: New results on the stability of solution of some non-autonomous delay differential equations of the third order.Differ. Uravn. Protsessy Upr. (2010), 18-29. MR 2766411; reference:[9] Qian, C.: On global stability of third-order nonlinear differential equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 42 (2000), 651-661. Zbl 0969.34048, MR 1776296, 10.1016/S0362-546X(99)00120-0; reference:[10] Qian, C.: Asymptotic behavior of a third-order nonlinear differential equation.J. Math. Anal. Appl. 284 (2003), 191-205. Zbl 1054.34078, MR 1996127, 10.1016/S0022-247X(03)00302-0; reference:[11] Reissig, R., Sansone, G., Conti, R.: Non-linear Differential Equations of Higher Order.Monographs and Textbooks on Pure and Applied Mathematics. Noordhoff International Publishing, Leyden (1974). Zbl 0275.34001, MR 0344556; reference:[12] Remili, M., Beldjerd, D.: On the asymptotic behavior of the solutions of third order delay differential equations.Rend. Circ. Mat. Palermo (2) 63 (2014), 447-455. Zbl 1321.34097, MR 3298595, 10.1007/s12215-014-0169-3; reference:[13] Remili, M., Beldjerd, D.: A boundedness and stability results for a kind of third order delay differential equations.Appl. Appl. Math. 10 (2015), 772-782. Zbl 1331.34135, MR 3447611; reference:[14] Remili, M., Beldjerd, D.: On ultimate boundedness and existence of periodic solutions of kind of third order delay differential equations.Acta Univ. M. Belii, Ser. Math. 24 (2016), 43-57. Zbl 06699479, MR 3492940; reference:[15] Remili, M., Beldjerd, D.: Stability and ultimate boundedness of solutions of some third order differential equations with delay.Journal of the Association of Arab Universities for Basic and Applied Sciences 23 (2017), 90-95. MR 3447611, 10.1016/j.jaubas.2016.05.002; reference:[16] Remili, M., Oudjedi, D. L.: Stability and boundedness of the solutions of non autonomous third order differential equations with delay.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 53 (2014), 139-147. Zbl 1317.34157, MR 3331011; reference:[14] Remili, M., Oudjedi, L. D.: Uniform stability and boundedness of a kind of third order delay differential equations.Bull. Comput. Appl. Math. 2 (2014), 25-35. MR 3569688; reference:[18] Remili, M., Oudjedi, L. D.: Boundedness and stability in third order nonlinear differential equations with bounded delay.An. Univ. Oradea, Fasc. Mat. 23 (2016), 135-143. Zbl 1349.34303, MR 3496022; reference:[19] Remili, M., Oudjedi, L. D.: Boundedness and stability in third order nonlinear differential equations with multiple deviating arguments.Arch. Math., Brno 52 (2016), 79-90. Zbl 06644060, MR 3535630, 10.5817/AM2016-2-79; reference:[20] Remili, M., Oudjedi, L. D.: Stability of the solutions of nonlinear third order differential equations with multiple deviating arguments.Acta Univ. Sapientiae, Math. 8 (2016), 150-165. Zbl 1351.34087, MR 3535706, 10.1515/ausm-2016-0009; reference:[21] Sadek, A. I.: On the stability of solutions of some non-autonomous delay differential equations of the third order.Asymptotic Anal. 43 (2005), 1-7. Zbl 1075.34075, MR 2148124; reference:[22] Tunç, C.: On asymptotic stability of solutions to third order nonlinear differential equations with retarded argument.Commun. Appl. Anal. 11 (2007), 515-528. Zbl 1139.34054, MR 2368199; reference:[23] Tunç, C.: Stability and boundedness of solutions of nonlinear differential equations of third-order with delay.Differ. Uravn. Protsessy Upr. (2007), 13 pages. MR 2384532; reference:[24] Tunç, C.: On the stability and boundedness of solutions to third order nonlinear differential equations with retarded argument.Nonlinear Dyn. 57 (2009), 97-106. Zbl 1176.34064, MR 2511159, 10.1007/s11071-008-9423-6; reference:[25] Tunç, C.: Some stability and boundedness conditions for non-autonomous differential equations with deviating arguments.Electron. J. Qual. Theory Differ. Equ. 2010 (2010), paper No. 1, 12 pages. Zbl 1201.34123, MR 2577154; reference:[26] Tunç, C.: The boundedness of solutions to nonlinear third order differential equations.Nonlinear Dyn. Syst. Theory 10 (2010), 97-102. Zbl 1300.34077, MR 2643196; reference:[27] Tunç, C., Gözen, M.: Stability and uniform boundedness in multidelay functional differential equations of third order.Abstr. Appl. Anal. 2013 (2013), Article ID 248717, 7 pages. Zbl 1276.34058, MR 3055944, 10.1155/2013/248717; reference:[28] Zhu, Y.: On stability, boundedness and existence of periodic solution of a kind of third order nonlinear delay differential system.Ann. Differ. Equations 8 (1992), 249-259. Zbl 0758.34072, MR 1190138

  6. 6
    Academic Journal

    المؤلفون: Medveď, Milan, Pekárková, Eva

    وصف الملف: application/pdf

    Relation: mr:MR3475109; zbl:Zbl 06562205; reference:[1] Agarwal, R.P., Djebali, S., Moussaoui, T., Mustafa, O.G.: On the asymptotic integration of nonlinear differential equations.J. Comput. Appl. Math 202 (2007), 352–376. Zbl 1123.34038, MR 2319962, 10.1016/j.cam.2005.11.038; reference:[2] Bartušek, M., Medveď, M.: Existence of global solutions for systems of second-order functional-differential equations with $p$-Laplacian.EJDE 40 (2008), 1–8. Zbl 1171.34335, MR 2392944; reference:[3] Bartušek, M., Pekárková, E.: On the existence of proper solutions of quasilinear second order differential equations.EJQTDE 1 (2007), 1–14. MR 2295683; reference:[4] Bihari, I.: A generalization of a lemma of Bellman and its applications to uniqueness problems of differential equations.Acta Math. Hungar. 7 (1956), 81–94. MR 0079154, 10.1007/BF02022967; reference:[5] Caligo, D.: Comportamento asintotico degli integrali dell’equazione $y^{\prime \prime }(x)+A(x)y(x)=0,$ nell’ipotesi $\lim _{x\rightarrow +\infty }A(x)=0$.Boll. Un. Mat. Ital. (2) 3 (1941), 286–295. MR 0005219; reference:[6] Cohen, D.S.: The asymptotic behavior of a class of nonlinear differntial equations.Proc. Amer. Math. Soc. 18 (1967), 607–609. MR 0212289, 10.1090/S0002-9939-1967-0212289-3; reference:[7] Constantin, A.: On the asymptotic behavior of second order nonlinear differential equations.Rend. Mat. Appl. (7) 13 (4) (1993), 627–634. MR 1283990; reference:[8] Constantin, A.: Solutions globales d’équations différentielles perturbées.C. R. Acad. Sci. Paris Sér. I Math. 320 (11) (1995), 1319–1322. MR 1338279; reference:[9] Constantin, A.: On the existence of positive solutions of second order differential equations.Ann. Mat. Pura Appl. (4) 184 (2) (2005), 131–138. Zbl 1223.34041, MR 2149089, 10.1007/s10231-004-0100-1; reference:[10] Dannan, F.M.: Integral inequalities of Gronwall-Bellman-Bihari type and asymptotic behavior of certain second order nonlinear differential equations.J. Math. anal. Appl. 108 (1) (1985), 151–164. MR 0791139, 10.1016/0022-247X(85)90014-9; reference:[11] Kusano, T., Trench, W.F.: Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations.J. London Math. Soc.(2) 31 (3) (1985), 478–486. MR 0812777, 10.1112/jlms/s2-31.3.478; reference:[12] Kusano, T., Trench, W.F.: Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations.Ann. Mat. Pura Appl. (4) 142 (1985), 381–392. MR 0839046; reference:[13] Lipovan, O.: On the asymptotic behaviour of the solutions to a class of second order nonlinear differential equations.Glasgow Math. J. 45 (1) (2003), 179–187. Zbl 1037.34041, MR 1973349, 10.1017/S0017089502001143; reference:[14] Medveď, M., Moussaoui, T.: Asymptotic integration of nonlinear $\Phi -$Laplacian differential equations.Nonlinear Anal. 72 (2010), 1–8. Zbl 1192.34059, MR 2577598, 10.1016/j.na.2009.09.042; reference:[15] Medveď, M., Pekárková, E.: Existence of global solutions for systems of second-order differential equations with $p$-Laplacian.EJDE 2007 (136) (2007), 1–9. Zbl 1138.34316, MR 2349964; reference:[16] Medveď, M., Pekárková, E.: Long time behavior of second order differential equations with $p$-Laplacian.EJDE 2008 (108) (2008), 1–12. MR 2430905; reference:[17] Mustafa, O.G., Rogovchenko, Y.V.: Global existence of solutions with prescribed asymptotic behavior for second-order nonlinear differential equations.Nonlinear Anal. 51 (2002), 339–368. Zbl 1017.34005, MR 1918348, 10.1016/S0362-546X(01)00834-3; reference:[18] Mustafa, O.G., Rogovchenko, Y.V.: Asymptotic behavior of nonoscillatory solutions of second-order nonlinear differential equations.Dynamic Systems and Applications 4 (2004), 312–319. Zbl 1082.34042, MR 2117799; reference:[19] Pekárková, E.: Estimations of noncontinuable solutions of second order differential equations with $p$-Laplacian.Arch. Math.( Brno) 46 (2010), 135–144. Zbl 1240.34187, MR 2684255; reference:[20] Philos, Ch.G., Purnaras, I.K., Tsamatos, P.Ch.: Large time asymptotic to polynomials solutions for nonlinear differential equations.Nonlinear Anal. 59 (2004), 1157–1179. MR 2098511, 10.1016/S0362-546X(04)00323-2; reference:[21] Rogovchenko, S.P., Rogovchenko, Y.V.: Asymptotics of solutions for a class of second order nonlinear differential equations.Portugal. Math. 57 (1) (2000), 17–32.; reference:[22] Rogovchenko, Y.V.: On asymptotic behavior of solutions for a class of second order nonlinear differential equations.Collect. Math. 49 (1) (1998), 113–120. MR 1629766; reference:[23] Tong, J.: The asymptotic behavior of a class of nonlinear differential equations of second order.Proc. Amer. Math. Soc. 54 (1982), 235–236. Zbl 0491.34036, MR 0637175, 10.1090/S0002-9939-1982-0637175-4; reference:[24] Trench, W.F.: On the asymptotic behavior of solutions of second order linear differential equations.Proc. Amer. Math. Soc. 54 (1963), 12–14. MR 0142844, 10.1090/S0002-9939-1963-0142844-7

  7. 7
    Academic Journal

    المؤلفون: Kadeřábek, Zdeněk

    وصف الملف: application/pdf

    Relation: mr:MR3475112; zbl:Zbl 06562208; reference:[1] Kadeřábek, Z.: The autonomous system derived from Van der Pol-Mathieu equation.Aplimat - J. Appl. Math., Slovak Univ. Tech., Vol. 5 (2), vol. 5, 2012, pp. 85–96.; reference:[2] Kalas, J., Kadeřábek, Z.: Periodic solutions of a generalized Van der Pol-Mathieu differential equation.Appl. Math. Comput. 234 (2014), 192–202. Zbl 1309.34068, MR 3190531, 10.1016/j.amc.2014.01.161; reference:[3] Kuznetsov, N.V., Leonov, G.A.: Computation of Lyapunov quantities.Proceedings of the 6th EUROMECH Nonlinear Dynamics Conference, 2008, IPACS Electronic Library, pp. 1–10.; reference:[4] Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory.2nd ed., Springer-Verlag New York, 1998. Zbl 0914.58025, MR 1711790; reference:[5] Momeni, I., Moslehi-Frad, M., Shukla, P.K.: A Van der Pol-Mathieu equation for the dynamics of dust grain charge in dusty plasmas.J. Phys. A: Math. Theor. 40 (2007), F473–F481. MR 2345462, 10.1088/1751-8113/40/24/F06; reference:[6] Perko, L.: Differential Equations and Dynamical Systems.2nd ed., Springer, 1996. Zbl 0854.34001, MR 1418638, 10.1007/978-1-4684-0249-0; reference:[7] Veerman, F., Verhulst, F.: Quasiperiodic phenomena in the Van der Pol-Mathieu equation.J. Sound Vibration 326 (1–2) (2009), 314–320. 10.1016/j.jsv.2009.04.040; reference:[8] Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems.2nd ed., Springer, 2006. MR 1036522

  8. 8
    Academic Journal

    المؤلفون: Raffoul, Youssef N.

    وصف الملف: application/pdf

    Relation: mr:MR3475110; zbl:Zbl 06562206; reference:[1] Adivar, M.: Function bounds for solutions of Volterra integrodynamic equations on time scales.EJQTDE (7) (2010), 1–22. MR 2577160; reference:[2] Adivar, M., Raffoul, Y.: Existence results for periodic solutions of integro-dynamic equations on time scales.Ann. Mat. Pura Appl. (4) 188 (4) (2009), 543–559. DOI: http://dx.doi.org/10.1007/s1023-008-0088-z Zbl 1176.45008, MR 2533954, 10.1007/s10231-008-0088-z; reference:[3] Adivar, M., Raffoul, Y.: Stability and periodicity in dynamic delay equations.Comput. Math. Appl. 58 (2009), 264–272. Zbl 1189.34143, MR 2535793, 10.1016/j.camwa.2009.03.065; reference:[4] Adivar, M., Raffoul, Y.: A note on “Stability and periodicity in dynamic delay equations”.Comput. Math. Appl. 59 (2010), 3351–3354. Zbl 1198.34150, MR 2651874, 10.1016/j.camwa.2010.03.025; reference:[5] Adivar, M., Raffoul, Y.: Necessary and sufficient conditions for uniform stability of Volterra integro-dynamic equations using new resolvent equation.An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat 21 (3) (2013), 17–32. Zbl 1313.45008, MR 3145088; reference:[6] Akın–Bohner, E., Raffoul, Y.: Boundeness in functional dynamic equations on time scales.Adv. Difference Equ. (2006), 1–18. MR 2255160; reference:[7] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications.Birkhäuser, Boston, 2001. Zbl 0978.39001, MR 1843232; reference:[8] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales.Birkhäuser, Boston, 2003. Zbl 1025.34001, MR 1962542; reference:[9] Bohner, M., Raffoul, Y.: Volterra Dynamic Equations on Time Scales.preprint.; reference:[10] Burton, T.A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations.Dover, New York, 2005. Zbl 1209.34001, MR 2761514; reference:[11] Burton, T.A.: Stability by Fixed Point Theory for Functional Differential Equations.Dover, New York, 2006. Zbl 1160.34001, MR 2281958; reference:[12] Eloe, P., Islam, M., Zhang, B.: Uniform asymptotic stability in linear Volterra integrodifferential equations with applications to delay systems.Dynam. Systems Appl. 9 (2000), 331–344. MR 1844634; reference:[13] Grace, S., Graef, J., Zafer, A.: Oscillation of integro-dynamic equations on time scales.Appl. Math. Lett. 26 (4) (2013), 383–386. Zbl 1261.45005, MR 3019962, 10.1016/j.aml.2012.10.001; reference:[14] Kulik, T., Tisdell, C.: Volterra integral equations on time scales: basic qualitative and quantitative results with applications to initial value problems on unbounded domains.Int. J. Difference Equ. 3 (1) (2008), 103–133. MR 2548121; reference:[15] Lupulescu, V., Ntouyas, S., Younus, A.: Qualitative aspects of a Volterra integro-dynamic system on time scales.EJQTDE (5) (2013), 1–35. MR 3011509; reference:[16] Peterson, A., Raffoul, Y.: Exponential stability of dynamic equations on time scales.Adv. Difference Equ. 2 (2005), 133–144. Zbl 1100.39013, MR 2197128; reference:[17] Peterson, A., Tisdell, C.C.: Boundedness and uniqueness of solutions to dynamic equations on time scales.J. Differ. Equations Appl. 10 (13–15) (2004), 1295–1306. Zbl 1072.39017, MR 2100729, 10.1080/10236190410001652793; reference:[18] Raffoul, Y.: Boundedness in nonlinear differential equations.Nonlinear Studies 10 (2003), 343–350. Zbl 1050.34046, MR 2021322; reference:[19] Raffoul, Y.: Boundedness in nonlinear functional differential equations with applications to Volterra integrodifferential.J. Integral Equations Appl. 16 (4) (2004). Zbl 1090.34056, MR 2133906, 10.1216/jiea/1181075297

  9. 9
    Conference
  10. 10
  11. 11
    Academic Journal

    المؤلفون: Omeike, M. O.

    وصف الملف: application/pdf

    Relation: mr:MR3215283; zbl:Zbl 06391569; reference:[1] Chukwu, E.N.: On boundedness of solutions of third ordr differential equations.Ann. Math. Pura Appl. (4) 104 (1975), 123–149. MR 0377180; reference:[2] Ezeilo, J.O.C.: A generalization of a boundedness theorem for a certain third-order differential equation.Proc. Cambridge Philos. Soc. 63 (1967), 735–742. MR 0213657; reference:[3] Liapunov, A.M.: Stability of Motion.Academic Press London, 1906. MR 0208093; reference:[4] Mehri, B., Shadman, D.: Boundedness of solutions of certain third order differential equations.Math. Inequal. Appl. 2 (1999), no. 4, 545–549. MR 1717047; reference:[5] Omeike, M.O., Afuwape, A.U.: New result on the ultimate boundedness of solutions of certain third-order vector differential equations.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 49 (2010), no. 1, 55–61. MR 2797523; reference:[6] Rao, M.R.M.: Ordinary Differential Equations.Affiliated East West Private Limited, London, 1980. Zbl 0482.34001; reference:[7] Reissig, R., Sansone, G., Conti, R.: Nonlinear Differential Equations of Higher Order.Noordhoff Groningen, 1974.; reference:[8] Tejumola, H.O.: A note on the boundedness and the stability of solutions of certain third order differential equations.Ann. Mat. Pura Appl. (4) 92 (1972), no. 4, 65–75. Zbl 0242.34046, MR 0318615, 10.1007/BF02417936; reference:[9] Tunc, C.: Uniform ultimate boundedness of the solutions of third order nonlinear differential equations.Kuwait J. Sci. Engrg. 12 (2005), no. 1, 39–48. Zbl 1207.34043, MR 2145249; reference:[10] Tunc, C.: On the stability and boundedness of solutions of nonlinear vector differential equations of third-order.Nonlinear Anal. 70 (2009), 2232–2236. Zbl 1162.34043, MR 2498299, 10.1016/j.na.2008.03.002; reference:[11] Tunc, C., Ates, M.: Stability and boundedness results for solutions of certain third order nonlinear vector differential equations.Nonlinear Dynam. 45 (2006), no. 3–4, 271–281. Zbl 1132.34328, MR 2250136

  12. 12
    Academic Journal
  13. 13
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3144182; zbl:Zbl 06321158; reference:[1] Bartušek, M.: Monotonicity theorems concerning differential equations $y^{\prime \prime }+f(t,y,y^{\prime })=0$.Arch. Math. (Brno) 12 (4) (1976), 169–178. MR 0430410; reference:[2] Bartušek, M.: Monotonicity theorems for second order non-linear differential equations.Arch. Math. (Brno) 16 (3) (1980), 127–136. MR 0594458; reference:[3] Bartušek, M.: On properties of oscillatory solutions of nonlinear differential equations of the $n$-th order.Diff. Equat. and Their Appl., Equadiff 6, vol. 1192, Lecture Notes in Math., Berlin, 1985, pp. 107–113.; reference:[4] Bartušek, M.: On oscillatory solutions of differential inequalities.Czechoslovak Math. J. 42 (117) (1992), 45–52. Zbl 0756.34033, MR 1152168; reference:[5] Bartušek, M.: Singular solutions for the differential equation with $p$-Laplacian.Arch. Math. (Brno) 41 (2005), 123–128. Zbl 1116.34325, MR 2142148; reference:[6] Bartušek, M., Došlá, Z., Cecchi, M., Marini, M.: On oscillatory solutions of quasilinear differential equations.J. Math. Anal. Appl. 320 (2006), 108–120. Zbl 1103.34016, MR 2230460, 10.1016/j.jmaa.2005.06.057; reference:[7] Došlá, Z., Cecchi, M., Marini, M.: On second order differential equations with nonhomogenous $\Phi $–Laplacian.Boundary Value Problems 2010 (2010), 17pp., ID 875675. MR 2595170; reference:[8] Došlá, Z., Háčik, M., Muldon, M. E.: Further higher monotonicity properties of Sturm-Liouville function.Arch. Math. (Brno) 29 (1993), 83–96. MR 1242631; reference:[9] Došlý, O., Řehák, P.: Half-linear differential equations.Elsevier, Amsterdam, 2005. Zbl 1090.34001, MR 2158903; reference:[10] Kiguradze, I., Chanturia, T.: Asymptotic properties of solutions of nonautonomous ordinary differential equations.Kluwer, Dordrecht, 1993. Zbl 0782.34002; reference:[11] Lorch, L., Muldon, M. E., Szego, P.: Higher monotonicity of certain Sturm-Liouville functions III.Canad. J. Math. 22 (1970), 1238–1265. MR 0274845, 10.4153/CJM-1970-142-1; reference:[12] Mirzov, J. D.: Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations.Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., Masaryk University, Brno, 2001. MR 2144761; reference:[13] Naito, M.: Existence of positive solutions of higher-order quasilinear ordinary differential equations.Ann. Mat. Pura Appl. (4) 186 (2007), 59–84. Zbl 1232.34054, MR 2263331; reference:[14] Rohleder, M.: On the existence of oscillatory solutions of the second order nonlinear ODE.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 51 (2) (2012), 107–127. Zbl 1279.34050, MR 3058877

  14. 14
    Academic Journal

    المؤلفون: Vampolová, Jana

    وصف الملف: application/pdf

    Relation: mr:MR3202755; zbl:Zbl 06285760; reference:[1] Abraham, F. F.: Homogeneous Nucleation Theory. Acad. Press, New York, 1974.; reference:[2] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: On oscillatory solutions of quasilinear differential equations. J. Math. Anal. Appl. 320 (2006), 108–120. Zbl 1103.34016, MR 2230460, 10.1016/j.jmaa.2005.06.057; reference:[3] Bongiorno, V., Scriven, L. E., Davis, H. T.: Molecular theory of fluid interfaces. J. Colloid and Interface Science 57 (1967), 462–475. 10.1016/0021-9797(76)90225-3; reference:[4] Cecchi, M., Marini, M., Villari, G.: On some classes of continuable solutions of a nonlinear differential equation. J. Differential Equations 118 (1995), 403–419. Zbl 0827.34020, MR 1330834, 10.1006/jdeq.1995.1079; reference:[5] Cecchi, M., Marini, M., Villari, G.: Comparison results for oscillation of nonlinear differential equations. NoDea 6 (1999), 173–190. Zbl 0927.34023, MR 1694795, 10.1007/s000300050071; reference:[6] Derrick, G. H.: Comments on nonlinear wave equations as models for elementary particles. J. Math. Physics 5 (1965), 1252–1254. MR 0174304, 10.1063/1.1704233; reference:[7] Fife, P. C.: Mathematical Aspects of Reacting and Diffusing Systems. Lecture notes in Biomathematics Springer 28 (1979), 223–224. Zbl 0403.92004, MR 0527914; reference:[8] Fischer, R. A.: The wave of advance of advantageous genes. Journ. of Eugenics 7 (1937), 355–369. 10.1111/j.1469-1809.1937.tb02153.x; reference:[9] Gouin, H., Rotoli, G.: An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Research Communic. 24 (1997), 255–260. Zbl 0899.76064, 10.1016/S0093-6413(97)00022-0; reference:[10] Ho, L. F.: Asymptotic behavior of radial oscillatory solutions of a quasilinear elliptic equation. Nonlinear Analysis 41 (2000), 573–589. Zbl 0962.34019, MR 1780633, 10.1016/S0362-546X(98)00298-3; reference:[11] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions. Nonlinear Analysis 64 (2006), 762–787. Zbl 1103.34017, MR 2197094, 10.1016/j.na.2005.05.045; reference:[12] Kiguradze, I., Chanturia, T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer Acad. Publ., Dordrecht, 1993. Zbl 0782.34002, MR 1220223; reference:[13] Kulenović, M. R. S., Ljubović, Ć.: All solutions of the equilibrium capillary surface equation are oscillatory. Applied Mathematics Letters 13 (2000), 107–110. MR 1760271, 10.1016/S0893-9659(00)00041-0; reference:[14] Kusano, T., Manojlović, J. V.: Asymptotic analysis of Emden-Fowler differential equations in the framework of regular variation. Annali di Matematica Pura ed Applicata 190 (2011), 619–644. Zbl 1245.34039, MR 2861062, 10.1007/s10231-010-0166-x; reference:[15] Kwong, M. K., Wong, J. S. W.: A nonoscillation theorem for sublinear Emden-Fowler equations. Nonlinear Analysis 64 (2006), 1641–1646. Zbl 1099.34033, MR 2200164, 10.1016/j.na.2005.07.015; reference:[16] Kwong, M. K., Wong, J. S. W.: A nonoscillation theorem for superlinear Emden–Fowler equations with near-critical coefficients. J. Differential Equations 238 (2007), 18–42. Zbl 1125.34023, MR 2334590, 10.1016/j.jde.2007.03.021; reference:[17] Li, W. T.: Oscillation of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 217 (1998), 1–14. Zbl 0893.34023, 10.1006/jmaa.1997.5680; reference:[18] Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I.: Analytical–numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), 260–273. Zbl 1100.65066, MR 2202978, 10.1016/j.cam.2005.05.004; reference:[19] Linde, A. P.: Particle Physics and Inflationary Cosmology. Harwood Academic, Chur, Switzerland, 1990.; reference:[20] Ou, C. H., Wong, J. S. W.: On existence of oscillatory solutions of second order Emden–Fowler equations. J. Math. Anal. Appl. 277 (2003), 670–680. Zbl 1027.34039, MR 1961253, 10.1016/S0022-247X(02)00617-0; reference:[21] O’Regan, D.: Existence theory for nonlinear ordinary differential equations. Kluwer, Dordrecht, 1997. Zbl 1077.34505, MR 1449397; reference:[22] Rachůnková, I., Rachůnek, L.: Asymptotic formula for oscillatory solutions of some singular nonlinear differential equation. Abstract and Applied Analysis 2011 (2011), 1–9. Zbl 1222.34034; reference:[23] Rachůnková, I., Tomeček, J.: Bubble-type solutions of nonlinear singular problem. Mathematical and Computer Modelling 51 (2010), 658–669. 10.1016/j.mcm.2009.10.042; reference:[24] Rachůnková, I., Rachůnek, L., Tomeček, J.: Existence of oscillatory solutions of singular nonlinear differential equations. Abstract and Applied Analysis 2011 (2011), 20 pages. Zbl 1222.34035, MR 2795071; reference:[25] Rachůnková, I., Tomeček, J.: Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics. Nonlinear Analysis 72 (2010), 2114–2118. Zbl 1186.34014, MR 2577608, 10.1016/j.na.2009.10.011; reference:[26] Rachůnková, I., Tomeček, J.: Homoclinic solutions of singular nonautonomous second order differential equations. Boundary Value Problems 2009 (2009), 1–21. Zbl 1190.34028; reference:[27] Rohleder, M.: On the existence of oscillatory solutions of the second order nonlinear ODE. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 2 (2012), 107–127. Zbl 1279.34050, MR 3058877; reference:[28] van der Waals, J. D., Kohnstamm, R.: Lehrbuch der Thermodynamik. 1, Leipzig, 1908.; reference:[29] Wong, J. S. W.: Second–order nonlinear oscillations: A case history. In: Proceedings of the Conference on Differential & Difference Equations and Applications Hindawi (2006), 1131–1138. Zbl 1147.34024, MR 2309447; reference:[30] Wong, P. J. Y., Agarwal, R. P.: Oscillatory behavior of solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 198 (1996), 337–354. Zbl 0855.34039, MR 1376268, 10.1006/jmaa.1996.0086; reference:[31] Wong, P. J. Y., Agarwal, R. P.: The oscillation and asymptotically monotone solutions of second order quasilinear differential equations. Appl. Math. Comput. 79 (1996),207–237. MR 1407599

  15. 15
    Conference

    المؤلفون: Došlý, Ondřej

    مصطلحات موضوعية: msc:34C10, msc:34C11, msc:34D05

    وصف الملف: application/pdf

    Relation: mr:MR1981523; zbl:Zbl 1016.34030

  16. 16
    Academic Journal

    المؤلفون: Rohleder, Martin

    وصف الملف: application/pdf

    Relation: mr:MR3058877; zbl:Zbl 06204934; reference:[1] Bartušek, M., Cecchi, M, Došlá, Z., Marini, M.: On oscillatory solutions of quasilinear differential equations. J. Math. Anal. Appl. 320 (2006), 108–120. Zbl 1103.34016, MR 2230460, 10.1016/j.jmaa.2005.06.057; reference:[2] Cecchi, M, Marini, M., Villari, G.: On some classes of continuable solutions of a nonlinear differential equation., J. Differ. Equations 118, 2 (1995), 403–419. Zbl 0827.34020, MR 1330834, 10.1006/jdeq.1995.1079; reference:[3] Gouin, H., Rotoli, G.: An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Res. Commun. 24 (1997), 255–260. Zbl 0899.76064, 10.1016/S0093-6413(97)00022-0; reference:[4] Ho, L. F.: Asymptotic behavior of radial oscillatory solutions of a quasilinear elliptic equation. Nonlinear Anal. 41 (2000), 573–589. Zbl 0962.34019, MR 1780633, 10.1016/S0362-546X(98)00298-3; reference:[5] Kiguradze, I. T., Chanturia, T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluver Academic, Dordrecht, 1993. Zbl 0782.34002; reference:[6] Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E.: Efficient Numerical Solution of the Density Profile Equation in Hydrodynamics. J. Sci. Comput. 32 (2007), 411–424. Zbl 1179.76062, MR 2335787, 10.1007/s10915-007-9141-0; reference:[7] Kulenović, M. R. S., Ljubović, Ć.: All solutions of the equilibrium capillary surface equation are oscillatory. Appl. Math. Lett. 13 (2000), 107–110. MR 1760271, 10.1016/S0893-9659(00)00041-0; reference:[8] Li, W. T.: Oscillation of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 217 (1998), 1–14. Zbl 0893.34023, MR 1492076, 10.1006/jmaa.1997.5680; reference:[9] Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I.: Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), 260–273. Zbl 1100.65066, MR 2202978, 10.1016/j.cam.2005.05.004; reference:[10] Linde, A. P.: Particle Physics and Inflationary Cosmology. Harwood Academic, Chur, Switzerland, 1990.; reference:[11] O’Regan, D.: Existence Theory for Nonlinear Ordinary Differential Equations. Kluver Academic, Dordrecht, 1997. Zbl 1077.34505; reference:[12] O’Regan, D.: Theory of Singular Boundary Value Problems. World Scientific, Singapore, 1994. Zbl 0807.34028, MR 1286741; reference:[13] Ou, C. H., Wong, J. S. W.: On existence of oscillatory solutions of second order Emden–Fowler equations. J. Math. Anal. Appl. 277 (2003), 670–680. Zbl 1027.34039, MR 1961253, 10.1016/S0022-247X(02)00617-0; reference:[14] Rachůnková, I., Rachůnek, L., Tomeček, J.: Existence of oscillatory solutions of singular nonlinear differential equations. Abstr. Appl. Anal. 2011, Article ID 408525, 1–20. Zbl 1222.34035; reference:[15] Rachůnková, I., Tomeček, J.: Bubble-type solutions of nonlinear singular problems. Math. Comput. Modelling 51 (2010), 658–669. Zbl 1190.34029, 10.1016/j.mcm.2009.10.042; reference:[16] Rachůnková, I., Tomeček, J.: Homoclinic solutions of singular nonautonomous second order differential equations. Bound. Value Probl. 2009, Article ID 959636, 1–21. Zbl 1190.34028, MR 2552066; reference:[17] Rachůnková, I., Tomeček, J.: Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics. Nonlinear Anal. 72 (2010), 2114–2118. Zbl 1186.34014, MR 2577608, 10.1016/j.na.2009.10.011; reference:[18] Rachůnková, I., Tomeček, J., Stryja, J.:: Oscillatory solutions of singular equations arising in hydrodynamics. Adv. Difference Equ. Recent Trends in Differential and Difference Equations 2010, Article ID 872160, 1–13. Zbl 1203.34058, MR 2652448; reference:[19] Wong, J. S. W.: Second-order nonlinear oscillations: a case history. In: Differential & Difference Equations and Applications, Hindawi Publishing Corporation, New York, 2006, 1131–1138. Zbl 1147.34024, MR 2309447; reference:[20] Wong, J. S. W., Agarwal, R. P.: Oscillatory behavior of solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 198 (1996), 337–354. Zbl 0855.34039, MR 1376268, 10.1006/jmaa.1996.0086

  17. 17
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2978257; zbl:Zbl 1265.34113; reference:[1] Agarwal, R. P, Grace, S. R., O'Regan, D.: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations.Kluwer Acad., Dordrecht (2003). MR 2091751; reference:[2] Cecchi, M., Došlá, Z., Kiguradze, I., Marini, M.: On nonnegative solutions of singular boundary value problems for Emden-Fowler type differential systems.Differ. Integral Equ. 20 (2007), 1081-1106. Zbl 1212.34044, MR 2365203; reference:[3] Cecchi, M., Došlá, Z., Marini, M.: On the dynamics of the generalized Emden-Fowler equations.Georgian Math. J. 7 (2000), 269-282. MR 1779551, 10.1515/GMJ.2000.269; reference:[4] Cecchi, M., Došlá, Z., Marini, M.: On nonoscillatory solutions of differential equations with $p$-Laplacian.Adv. Math. Sci. Appl. 11 (2001), 419-436. Zbl 0996.34039, MR 1842385; reference:[5] Cecchi, M., Došlá, Z., Marini, M.: Principal solutions and minimal sets of quasilinear differential equations.Dynam. Systems Appl. 13 (2004), 221-232. Zbl 1123.34026, MR 2140874; reference:[6] Cecchi, M., Došlá, Z., Marini, M., Vrkoč, I.: Integral conditions for nonoscillation of second order nonlinear differential equations.Nonlinear Anal., Theory Methods Appl. 64 (2006), 1278-1289. Zbl 1114.34031, MR 2200492, 10.1016/j.na.2005.06.035; reference:[7] Cecchi, M., Furi, M., Marini, M.: On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals.Nonlinear Anal., Theory Methods Appl. 9 (1985), 171-180. Zbl 0563.34018, MR 0777986, 10.1016/0362-546X(85)90070-7; reference:[8] Chanturia, T. A.: On singular solutions of nonlinear systems of ordinary differential equations.Colloq. Math. Soc. Janos Bolyai 15 (1975), 107-119. MR 0591720; reference:[9] Chanturia, T. A.: On monotonic solutions of systems of nonlinear differential equations.Russian Ann. Polon. Math. 37 (1980), 59-70.; reference:[10] Došlá, Z., Marini, M., Matucci, S.: A boundary value problem on a half-line for differential equations with indefinite weight.(to appear) in Commun. Appl. Anal. MR 2867356; reference:[11] Došlý, O., Řehák, P.: Half-Linear Differential Equations.North-Holland Mathematics Studies 202, Elsevier, Amsterdam (2005). Zbl 1090.34001, MR 2158903; reference:[12] Garcia, H. M., Manasevich, R., Yarur, C.: On the structure of positive radial solutions to an equation containing a $p$-Laplacian with weight.J. Differ. Equations 223 (2006), 51-95. Zbl 1170.35404, MR 2210139, 10.1016/j.jde.2005.04.012; reference:[13] Lian, H., Pang, H., Ge, W.: Triple positive solutions for boundary value problems on infinite intervals.Nonlinear Anal., Theory Methods Appl. 67 (2007), 2199-2207. Zbl 1128.34011, MR 2331870, 10.1016/j.na.2006.09.016; reference:[14] Mirzov, J. D.: Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations.Folia Fac. Sci. Nat. Univ. Masaryk. Brun. Math. 14 (2004). Zbl 1154.34300, MR 2144761

  18. 18
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2856137; zbl:Zbl 1224.34152; reference:[1] Agarwal, R., Aktas, M. F., Tiryaki, A.: On oscillation criteria for third order nonlinear delay differential equations.Arch. Math. (Brno) 45 (2009), 1-18. Zbl 1212.34189, MR 2591657; reference:[2] Baculikova, B., Elabbasy, E. M., Saker, S. H., Dzurina, J.: Oscillation criteria for third-order nonlinear differential equations.Math. Slovaca 58 (2008), 201-202. Zbl 1174.34052, MR 2391214, 10.2478/s12175-008-0068-1; reference:[3] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: On nonoscillatory solutions of third order nonlinear differential equations.Dynam. Systems Appl. 9 (2000), 483-500. MR 1843694; reference:[4] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: Oscillation for third order nonlinear differential equations with deviating argument.Abstr. Appl. Anal. 2010, Article ID 278962, 19 p. (2010). Zbl 1192.34073, MR 2587610; reference:[5] Bartušek, M., Cecchi, M., Marini, M.: On Kneser solutions of nonlinear third order differential equations.J. Math. Anal. Appl. 261 (2001), 72-84. Zbl 0995.34025, MR 1850957, 10.1006/jmaa.2000.7473; reference:[6] Cecchi, M., Došlá, Z., Marini, M.: On third order differential equations with property A and B.J. Math. Anal. Appl. 231 (1999), 509-525. MR 1669163, 10.1006/jmaa.1998.6247; reference:[7] Cecchi, M., Došlá, Z., Marini, M.: On nonlinear oscillations for equations associated to disconjugate operators.Nonlinear Anal., Theory Methods Appl. 30 (1997), 1583-1594. MR 1490081, 10.1016/S0362-546X(97)00028-X; reference:[8] Coles, W. J.: Boundedness of solutions of two-dimensional first order differential systems.Boll. Un. Mat. Ital. 4 (1971), 225-231. Zbl 0229.34027, MR 0293162; reference:[9] Jaroš, J., Kusano, T., Marić, V.: Existence of regularly and rapidly varying solutions for a class of third order nonlinear ordinary differential equations.Publ. Inst. Math. Beograd 79 (2006), 51-64. MR 2275338, 10.2298/PIM0693051J; reference:[10] Kiguradze, I.: An oscillation criterion for a class of ordinary differential equations.Diff. Urav. 28 (1992), 201-214. Zbl 0768.34018, MR 1184921; reference:[11] Marini, M.: Criteri di limitatezza per le soluzioni dell'equazione lineare del secondo ordine.Boll. Un. Mat. Ital. 11 (1975), 154-165. Zbl 0332.34027, MR 0372326; reference:[12] Mojsej, I.: Asymptotic properties of solutions of third-order nonlinear differential equations with deviating argument.Nonlinear Analysis 68 (2008), 3581-3591. Zbl 1151.34053, MR 2401369, 10.1016/j.na.2007.04.001; reference:[13] Mojsej, I., Ohriska, J.: Comparison theorems for noncanonical third order nonlinear differential equations.Central Eur. J. Math. 5 (2007), 154-16. Zbl 1128.34021, MR 2287717, 10.2478/s11533-006-0044-3; reference:[14] Saker, S. H.: Oscillation criteria of Hille and Nehari types for third order delay differential equations.Commun. Appl. Anal. 11 (2007), 451-468. Zbl 1139.34049, MR 2368196; reference:[15] Tiryaki, A., Aktas, M. F.: Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping.J. Math. Anal. Appl. 325 (2007), 54-68. Zbl 1110.34048, MR 2273028, 10.1016/j.jmaa.2006.01.001; reference:[16] Tunc, C.: On the non-oscillation of solutions of some nonlinear differential equations of third order.Nonlinear Dyn. Syst. Theory 7 (2007), 419-430. Zbl 1140.34415, MR 2367678

  19. 19
    Academic Journal

    المؤلفون: Kamo, Ken-ichi, Usami, Hiroyuki

    وصف الملف: application/pdf

    Relation: mr:MR2471173; zbl:Zbl 1174.34433; reference:[1] Bellman, R.: Stability Theory of Differential Equations.McGraw-Hill New York (1953) (Reprint: Dover, 1969). Zbl 0053.24705, MR 0061235; reference:[2] Berkovich, L. M.: The generalized Emden-Fowler equation.In: Symmetry in Nonlinear Physics. Proc. 2nd International Conference, Kyiv, Ukraine, July 7-13, 1997 Institute of Mathematics of the National Academy of Sciences of Ukraine Kyiv (1997), 155-163. Zbl 0952.34030, MR 1600976; reference:[3] Kamo, K.: Asymptotic equivalence for positive decaying solutions of quasilinear ordinary differential equations and its application to elliptic problems.Arch. Math., Brno 40 (2004), 209-217. MR 2068692; reference:[4] Kamo, K., Usami, H.: Asymptotic forms of positive solutions of second-order quasilinear ordinary differential equation.Adv. Math. Sci. Appl. 10 (2000), 673-688. MR 1807447; reference:[5] Kamo, K., Usami, H.: Asymptotic forms of positive solutions of second-order quasilinear ordinary differential equations with sub-homogeneity.Hiroshima Math. J. 31 (2001), 35-49. Zbl 0997.34038, MR 1820693, 10.32917/hmj/1151511146; reference:[6] Kiguradze, I. T., Chanturiya, T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.Kluwer Dordrecht (1992).; reference:[7] Kura, T.: The weak supersolution-subsolution method for second order quasilinear elliptic equations.Hiroshima Math. J. 19 (1989), 1-36. Zbl 0735.35056, MR 1009660, 10.32917/hmj/1206129479; reference:[8] Lima, P. M.: Numerical methods and asymptotic error expansions for the Emden-Fowler equations.J. Comput. Appl. Math. 70 (1996), 245-266. Zbl 0854.65067, MR 1399872, 10.1016/0377-0427(95)00203-0; reference:[9] Luning, C. D., Perry, W. L.: Positive solutions of negative exponent generalized Emden-Fowler boundary value problems.SIAM J. Math. Anal. 12 (1981), 874-879. Zbl 0478.34021, MR 0635240, 10.1137/0512073; reference:[10] Mizukami, M., Naito, M., Usami, H.: Asymptotic behavior of solutions of a class of second order quasilinear ordinary differential equations.Hiroshima Math. J. 32 (2002), 51-78. Zbl 1017.34053, MR 1892669, 10.32917/hmj/1151007642; reference:[11] Tanigawa, T.: Existence and asymptotic behavior of positive solutions of second order quasilinear differential equations.Adv. Math. Sci. Appl. 9 (1999), 907-938. Zbl 1025.34043, MR 1725693

  20. 20
    Academic Journal

    المؤلفون: Sugie, Jitsuro, Onitsuka, Masakazu

    وصف الملف: application/pdf

    Relation: mr:MR2493428; zbl:Zbl 1212.34156; reference:[1] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations.Kluwer Academic Publishers, Dordrecht-Boston-London, 2002. Zbl 1073.34002, MR 2091751; reference:[2] Bihari, I.: On the second order half-linear differential equation.Studia Sci. Math. Hungar. 3 (1968), 411–437. Zbl 0167.37403, MR 0267190; reference:[3] Coppel, W. A.: Stability and Asymptotic Behavior of Differential Equations.Heath, Boston, 1965. Zbl 0154.09301, MR 0190463; reference:[4] Desoer, C. A.: Slowly varying system $\dot{x}=A(t)x$.IEEE Trans. Automat. Control AC-14 (1969), 780–781. MR 0276562, 10.1109/TAC.1969.1099336; reference:[5] Dickerson, J. R.: Stability of linear systems with parametric excitation.Trans. ASME Ser. E J. Appl. Mech. 37 (1970), 228–230. Zbl 0215.44602, MR 0274876, 10.1115/1.3408450; reference:[6] Došlý, O., Řehák, P.: Half-linear Differential Equations.North-Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. MR 2158903; reference:[7] Elbert, Á.: Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations.Ordinary and Partial Differential Equations (Dundee, 1982), Lecture Notes in Math. 964, Springer-Verlag, Berlin-Heidelberg-New York. Zbl 0528.34034, MR 0693113; reference:[8] Elbert, Á.: A half-linear second order differential equation.Qualitative Theory of Differential Equations, Vol I, II (Szeged, 1979) (Farkas, M., ed.), Colloq. Math. Soc. János Bolyai 30, North-Holland, Amsterdam-New York, 1981, pp. 153–180. Zbl 0511.34006, MR 0680591; reference:[9] Elbert, Á.: Asymptotic behaviour of autonomous half-linear differential systems on the plane.Studia Sci. Math. Hungar. 19 (1984), 447–464. Zbl 0629.34066, MR 0874513; reference:[10] Hatvani, L.: On the asymptotic stability for a two-dimensional linear nonautonomous differential system.Nonlinear Anal. 25 (1995), 991–1002. Zbl 0844.34050, MR 1350721, 10.1016/0362-546X(95)00093-B; reference:[11] Hatvani, L.: Integral conditions on the asymptotic stability for the damped linear oscillator with small damping.Proc. Amer. Math. Soc. 124 (1996), 415–422. Zbl 0844.34051, MR 1317039, 10.1090/S0002-9939-96-03266-2; reference:[12] Hatvani, L., Krisztin, T., Totik, V.: A necessary and sufficient condition for the asymptotic stability of the damped oscillator.J. Differential Equations 119 (1995), 209–223. Zbl 0831.34052, MR 1334491, 10.1006/jdeq.1995.1087; reference:[13] Hatvani, L., Totik, V.: Asymptotic stability for the equilibrium of the damped oscillator.Differential Integral Equations 6 (1993), 835–848. MR 1222304; reference:[14] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation.Results Math. 43 (2003), 129–149. Zbl 1047.34034, MR 1962855, 10.1007/BF03322729; reference:[15] LaSalle, J. P., Lefschetz, S.: Stability by Liapunov’s Direct Method, with Applications.Mathematics in Science and Engineering 4, Academic Press, New-York-London, 1961. MR 0132876; reference:[16] Li, H.-J., Yeh, C.-C.: Sturmian comparison theorem for half-linear second-order differential equations.Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1193–1204. Zbl 0873.34020, MR 1362999; reference:[17] Markus, L., Yamabe, H.: Global stability criteria for differential systems.Osaka Math. J. 12 (1960), 305–317. Zbl 0096.28802, MR 0126019; reference:[18] Mirzov, J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems.J. Math. Anal. Appl. 53 (1976), 418–425. Zbl 0327.34027, MR 0402184, 10.1016/0022-247X(76)90120-7; reference:[19] Pucci, P., Serrin, J.: Asymptotic stability for intermittently controlled nonlinear oscillators.SIAM J. Math. Anal. 25 (1994), 815–835. Zbl 0809.34067, MR 1271312, 10.1137/S0036141092240679; reference:[20] Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method.Applied Mathematical Sciences 22, Springer-Verlag, New York-Heidelberg-Berlin, 1977. Zbl 0364.34022, MR 0450715; reference:[21] Sugie, J., Onitsuka, M., Yamaguchi, A.: Asymptotic behavior of solutions of nonautonomous half-linear differential systems.Studia Sci. Math. Hungar. 44 (2007), 159–189. Zbl 1174.34042, MR 2325518; reference:[22] Sugie, J., Yamaoka, N.: Comparison theorems for oscillation of second-order half-linear differential equations.Acta Math. Hungar. 111 (2006), 165–179. Zbl 1116.34030, MR 2188979, 10.1007/s10474-006-0029-5; reference:[23] Vinograd, R. E.: On a criterion of instability in the sense of Lyapunov of the solutions of a linear system of ordinary differential equations.Dokl. Akad. Nauk 84 (1952), 201–204. MR 0050749; reference:[24] Yoshizawa, T.: Stability Theory by Liapunov’s Second Method.Math. Society Japan, Tokyo (1966). MR 0208086; reference:[25] Zubov, V. I.: Mathematical Methods for the Study of Automatic Control Systems.Pergamon Press, New-York-Oxford-London-Paris, 1962. Zbl 0103.06001, MR 0151695