-
1Academic Journal
المؤلفون: Cheng, Ye, Shi, Bao, Ding, Liangliang
مصطلحات موضوعية: keyword:consensus, keyword:multi-agent system, keyword:nonlinear dynamics, keyword:time-varying delay, keyword:Hopf bifurcation, msc:34A34, msc:34D05, msc:34K25
وصف الملف: application/pdf
Relation: mr:MR4263158; zbl:07361062; reference:[1] Ahn, S. M., Ha, S.-Y.: Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises.J. Math. Phys. 51 (2010), Article ID 103301, 17 pages. Zbl 1314.92019, MR 2761313, 10.1063/1.3496895; reference:[2] Albi, G., Balagué, D., Carrillo, J. A., Brecht, J. von: Stability analysis of flock and mill rings for second order models in swarming.SIAM J. Appl. Math. 74 (2014), 794-818. Zbl 1305.37044, MR 3215070, 10.1137/13091779X; reference:[3] Atay, F. M.: The consensus problem in networks with transmission delays.Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 371 (2013), Article ID 20120460, 13 pages. Zbl 1353.94089, MR 3094343, 10.1098/rsta.2012.0460; reference:[4] Bánhelyi, B., Csendes, T., Krisztin, T., Neumaier, A.: Global attractivity of the zero solution for Wright's equation.SIAM J. Appl. Dyn. Syst. 13 (2014), 537-563. Zbl 1301.34094, MR 3183042, 10.1137/120904226; reference:[5] Bliman, P.-A., Ferrari-Trecate, G.: Average consensus problems in networks of agents with delayed communications.Automatica 44 (2008), 1985-1995. Zbl 1283.93013, MR 2531328, 10.1016/j.automatica.2007.12.010; reference:[6] Cucker, F., Dong, J.-G.: A general collision-avoiding flocking framework.IEEE Trans. Autom. Control 56 (2011), 1124-1129. Zbl 1368.93261, MR 2815917, 10.1109/TAC.2011.2107113; reference:[7] Cucker, F., Smale, S.: Emergent behavior in flocks.IEEE Trans. Autom. Control 52 (2007), 852-862. Zbl 1366.91116, MR 2324245, 10.1109/TAC.2007.895842; reference:[8] Dehghani, M. A., Menhaj, M. B.: Communication free leader-follower formation control of unmanned aircraft systems.Robot. Auton. Syst. 80 (2016), 69-75. 10.1016/j.robot.2016.03.008; reference:[9] Silva, V. de, Ghrist, R.: Coverage in sensor networks via persistent homology.Algebr. Geom. Topol. 7 (2007), 339-358. Zbl 1134.55003, MR 2308949, 10.2140/agt.2007.7.339; reference:[10] Erban, R., Haškovec, J., Sun, Y.: A Cucker-Smale model with noise and delay.SIAM J. Appl. Math. 76 (2016), 1535-1557. Zbl 1345.60063, MR 3534479, 10.1137/15M1030467; reference:[11] Jabin, P.-E., Motsch, S.: Clustering and asymptotic behavior in opinion formation.J. Differ. Equations 257 (2014), 4165-4187. Zbl 1316.34051, MR 3264419, 10.1016/j.jde.2014.08.005; reference:[12] Krisztin, T.: On stability properties for one-dimensional functional differential equations.Funkc. Ekvacioj, Ser. Int. 34 (1991), 241-256. Zbl 0746.34045, MR 1130462; reference:[13] Lin, P., Jia, Y.: Average consensus in networks of multi-agents with both switching topology and coupling time-delay.Physica A 387 (2008), 303-313. 10.1016/j.physa.2007.08.040; reference:[14] Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory.IEEE Trans. Autom. Control 51 (2006), 401-420. Zbl 1366.93391, MR 2205679, 10.1109/TAC.2005.864190; reference:[15] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays.IEEE Trans. Autom. Control 49 (2004), 1520-1533. Zbl 1365.93301, MR 2086916, 10.1109/TAC.2004.834113; reference:[16] Sharifi, F., Mirzaei, M., Zhang, Y., Gordon, B. W.: Cooperative multi-vehicle search and coverage problem in uncertain environments.Unmanned Syst. 3 (2015), 35-47. 10.1142/S230138501550003X; reference:[17] Shen, J.: Cucker-Smale flocking under hierarchical leadership.SIAM J. Appl. Math. 68 (2008), 694-719. Zbl 1311.92196, MR 2375291, 10.1137/060673254; reference:[18] So, J. W.-H., Tang, X., Zou, X.: Stability in a linear delay system without instantaneous negative feedback.SIAM J. Math. Anal. 33 (2002), 1297-1304. Zbl 1019.34074, MR 1920631, 10.1137/S0036141001389263; reference:[19] So, J. W.-H., Yu, J. S., Chen, M.-P.: Asymptotic stability for scalar delay differential equations.Funkc. Ekvacioj, Ser. Int. 39 (1996), 1-17. Zbl 0930.34056, MR 1401650; reference:[20] Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G. J.: Protocols for self-organisation of a wireless sensor network.IEEE Pers. Commun. 7 (2000), 16-27. 10.1109/98.878532; reference:[21] Wei, J.: Bifurcation analysis in a scalar delay differential equation.Nonlinearity 20 (2007), 2483-2498. Zbl 1141.34045, MR 2361242, 10.1088/0951-7715/20/11/002; reference:[22] Wright, E. M.: A non-linear difference-differential equation.J. Reine Angew. Math. 194 (1955), 66-87. Zbl 0064.34203, MR 0072363, 10.1515/crll.1955.194.66; reference:[23] Xiao, F., Wang, L.: State consensus for multi-agent systems with switching topologies and time-varying delays.Int. J. Control 79 (2006), 1277-1284. Zbl 1330.94022, MR 2252185, 10.1080/00207170600825097; reference:[24] Yoneyama, T.: On the 3/2 stability theorem for one-dimensional delay-differential equations.J. Math. Anal. Appl. 125 (1987), 161-173. Zbl 0655.34062, MR 0891356, 10.1016/0022-247X(87)90171-5; reference:[25] Zhang, X., Liu, L., Feng, G.: Leader-follower consensus of time-varying nonlinear multiagent systems.Automatica 52 (2015), 8-14. Zbl 1309.93018, MR 3310808, 10.1016/j.automatica.2014.10.127; reference:[26] Zhou, N., Xia, Y.: Coordination control design for formation reconfiguration of multiple spacecraft.IET Control Theory Appl. 9 (2015), 2222-2231. MR 3442965, 10.1049/iet-cta.2015.0144; reference:[27] Zuo, Z., Tie, L.: A new class of finite-time nonlinear consensus protocols for multi-agent systems.Int. J. Control 87 (2014), 363-370. Zbl 1317.93027, MR 3172512, 10.1080/00207179.2013.834484
-
2Academic Journal
المؤلفون: Hai, Pham Viet
مصطلحات موضوعية: keyword:polynomial expansiveness, keyword:evolution family, msc:34D05, msc:34E05
وصف الملف: application/pdf
Relation: mr:MR4226473; zbl:07332708; reference:[1] Barreira, L., Valls, C.: Polynomial growth rates.Nonlinear Anal., Theory Methods Appl. 71 (2009), 5208-5219. Zbl 1181.34046, MR 2560190, 10.1016/j.na.2009.04.005; reference:[2] Bătăran, F., Preda, C., Preda, P.: Extending some results of L. Barreira and C. Valls to the case of linear skew-product semiflows.Result. Math. 72 (2017), 965-978. Zbl 1375.37091, MR 3684470, 10.1007/s00025-017-0666-8; reference:[3] Coffman, C. V., Schäffer, J. J.: Dichotomies for linear difference equations.Math. Ann. 172 (1967), 139-166. Zbl 0189.40303, MR 0214946, 10.1007/BF01350095; reference:[4] Daletskij, Ju. L., Krejn, M. G.: Stability of Solutions of Differential Equations in Banach Space.Translations of Mathematical Monographs 43. American Mathematical Society, Providence (1974). Zbl 0286.34094, MR 0352639, 10.1090/mmono/043; reference:[5] Hai, P. V.: On the polynomial stability of evolution families.Appl. Anal. 95 (2016), 1239-1255. Zbl 1343.34143, MR 3479001, 10.1080/00036811.2015.1058364; reference:[6] Hai, P. V.: Polynomial stability of evolution cocycles and Banach function spaces.Bull. Belg. Math. Soc.---Simon Stevin 26 (2019), 299-314. Zbl 07094830, MR 3975830, 10.36045/bbms/1561687567; reference:[7] Levitan, B. M., Zhikov, V. V.: Almost Periodic Functions and Differential Equations.Cambridge University Press, Cambridge (1982). Zbl 0499.43005, MR 0690064; reference:[8] Li, T.: Die Stabilitätsfrage bei Differenzengleichungen.Acta Math. 63 (1934), 99-141 German \99999JFM99999 60.0397.03. MR 1555392, 10.1007/BF02547352; reference:[9] Massera, J. L., Schäffer, J. J.: Linear Differential Equations and Function Spaces.Pure and Applied Mathematics 21. Academic Press, New York (1966). Zbl 0243.34107, MR 0212324; reference:[10] Megan, M., Sasu, A. L., Sasu, B.: Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows.Bull. Belg. Math. Soc.---Simon Stevin 10 (2003), 1-21. Zbl 1045.34022, MR 2032321, 10.36045/bbms/1047309409; reference:[11] Megan, M., Sasu, B., Sasu, A. L.: Exponential expansiveness and complete admissibility for evolution families.Czech. Math. J. 54 (2004), 739-749. Zbl 1080.34546, MR 2086730, 10.1007/s10587-004-6422-8; reference:[12] Minh, N. V., Räbiger, F., Schnaubelt, R.: Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line.Integral Equations Oper. Theory 32 (1998), 332-353. Zbl 0977.34056, MR 1652689, 10.1007/BF01203774; reference:[13] Perron, O.: Die Stabilitätsfrage bei Differentialgleichungen.Math. Z. 32 (1930), 703-728 German \99999JFM99999 56.1040.01. MR 1545194, 10.1007/BF01194662; reference:[14] Popa, I.-L., Ceauşu, T., Megan, M.: Nonuniform power instability and Lyapunov sequences.Appl. Math. Comput. 247 (2014), 969-975. Zbl 1338.34101, MR 3270899, 10.1016/j.amc.2014.09.051; reference:[15] Popa, I.-L., Megan, M., Ceauşu, T.: Exponential dichotomies for linear discrete-time systems in Banach spaces.Appl. Anal. Discrete Math. 6 (2012), 140-155. Zbl 1289.39030, MR 2952610, 10.2298/AADM120319008P; reference:[16] Preda, C., Preda, P., Petre, A.-P.: On the uniform exponential stability of linear skew-product three-parameter semiflows.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 269-279. Zbl 1274.34174, MR 2856303; reference:[17] Sasu, B.: New criteria for exponential expansiveness of variational difference equations.J. Math. Anal. Appl. 327 (2007), 287-297. Zbl 1115.39005, MR 2277412, 10.1016/j.jmaa.2006.04.024; reference:[18] Slyusarchuk, V. E.: Instability of difference equations with respect to the first approximation.Differ. Uravn. 22 (1986), 722-723 Russian. Zbl 0606.39003, MR 0843238
-
3Academic Journal
المؤلفون: Luey, Sokea, Usami, Hiroyuki
مصطلحات موضوعية: keyword:half-linear ordinary differential equation, keyword:asymptotic form, msc:34A34, msc:34D05, msc:34E10
وصف الملف: application/pdf
Relation: mr:MR4260838; zbl:Zbl 07332702; reference:[1] Bodine, S., Lutz, D.A.: Asymptotic Integration of Differential and Difference Equations.Lecture Notes in Math., vol. 2129, Springer, 2015. MR 3362540; reference:[2] Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations.Heath, 1965. Zbl 0154.09301, MR 0190463; reference:[3] Došlý, O., Řehák, P.: Half-linear Differential Equations.Elsevier, 2005. MR 2158903; reference:[4] Hartman, P.: Ordinary Differential Equations.Birkhäuser, 1982. Zbl 0476.34002, MR 0658490; reference:[5] Mizukami, M., Naito, M., Usami, H.: Asymptotic behavior of solutions of a class of second order quasilinear ordinary differential equations.Hiroshima Math. J. 32 (2002), 51–78. Zbl 1017.34053, MR 1892669, 10.32917/hmj/1151007642; reference:[6] Naito, Y., Tanaka, S.: Sharp conditions for the existence of sign-changing solutions to equations involving the one-dimensional p-Laplacian.Nonlinear Anal. 69 (2008), 3070–3083. MR 2452116
-
4Academic Journal
المؤلفون: Du, Bo
مصطلحات موضوعية: keyword:periodic solution, keyword:$D$ operator, keyword:existence, keyword:stability, msc:34D05, msc:34D20
وصف الملف: application/pdf
Relation: mr:MR4055580; zbl:Zbl 07177920; reference:[1] Aouiti, C., all., I. B. Gharbia at: Dynamics of impulsive neutral-type BAM neural networks.J. Franklin Inst. 356 (2019), 2294-2324. MR 3925987, 10.1016/j.jfranklin.2019.01.028; reference:[2] Arik, S.: A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays.J. Franklin Inst. 356 (2019), 276-291. MR 3906098, 10.1016/j.jfranklin.2018.11.002; reference:[3] Askari, E., Setarehdan, S., Mohammadi, A. Sheikhani A. M., Teshnehlab, H.: Designing a model to detect the brain connections abnormalities in children with autism using 3D-cellular neural networks.J. Integr. Neurosci. 17 (2018), 391-411. 10.3233/jin-180075; reference:[4] Barbalat, I.: Systems d'equations differential d'oscillationsn onlinearities.Rev. Rounmaine Math. Pure Appl. 4 (1959), 267-270. MR 0111896; reference:[5] Cheng, Z., Li, F.: Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay.Mediterr. J. Math. 15 (2018), 134-153. MR 3808561, 10.1007/s00009-018-1184-y; reference:[6] Chua, L., Yang, L.: Cellular neural networks: application.IEEE. Trans. Circuits Syst. 35 (1988), 1273-1290. MR 0960778, 10.1109/31.7601; reference:[7] Dharani, S., Rakkiyappan, R., Cao, J.: New delay-dependent stability criteria for switched hopfield neural networks of neutral type with additive time-varying delay components.Neurocomputing 151 (2015), 827-834. 10.1016/j.neucom.2014.10.014; reference:[8] Ding, H., Liang, J., Xiao, T.: Existence of almost periodic solutions for SICNNs with time-varying delays.Physics Lett. A 372 (2008), 5411-5416. MR 2438234, 10.1016/j.physleta.2008.06.042; reference:[9] Gaines, R., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations.Springer, Berlin 1977. MR 0637067, 10.1007/bfb0089538; reference:[10] Gang, Y.: New results on the stability of fuzzy cellular neural networks with time-varying leakage delays.Neural Computing Appl. 25 (2014), 1709-1715. MR 2907168, 10.1007/s00521-014-1662-5; reference:[11] Guan, K.: Global power-rate synchronization of chaotic neural networks with proportional delay via impulsive control.Neurocomputing 283 (2018), 256-265. 10.1016/j.neucom.2018.01.027; reference:[12] Guo, R., Ge, W., all., Z. Zhang at: Finite time state estimation of complex-valued BAM neutral-type neural networks with time-varying delays.Int. J. Control, Automat. Systems 17 (2019), 3, 801-809. 10.1007/s12555-018-0542-7; reference:[13] Huang, Z.: Almost periodic solutions for fuzzy cellular neural networks with multi-proportional delays.Int. J. Machine Learning Cybernet. 8 (2017), 1323-1331. 10.1007/s13042-016-0507-1; reference:[14] Li, Y., Li, B., Yao, S., Xiong, L.: The global exponential pseudo almost periodic synchronization of quaternion-valued cellular neural networks with time-varying delay.Neurocomputing 303 (2018), 75-87. 10.1016/j.neucom.2018.04.044; reference:[15] Li, X., Huang, L., Zhou, H.: Global stability of cellular neural networks with constant and variable delays.Nonlinear Anal. TMA 53 (2003), 319-333. MR 1964329, 10.1016/s0362-546x(02)00176-1; reference:[16] Liu, B.: Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays.Math. Methods App. Sci. 40 (2017), 167-174. MR 3583044, 10.1002/mma.3976; reference:[17] Manivannan, R., Samidurai, R., Cao, J., Alsaedi, A.: New delay-interval-dependent stability criteria for switched hopfield neural networks of neutral type with successive time-varying delay components.Cognit. Neurodyn. 10 (2016), 6, 543-562. 10.1007/s11571-016-9396-y; reference:[18] Ozcan, N.: Stability analysis of Cohen-Grossberg neural networks of neutral-type: Multiple delays case.Neural Networks 113 (2019), 20-27. 10.1016/j.neunet.2019.01.017; reference:[19] Rakkiyappan, R., Balasubramaniam, P.: New global exponential stability results for neutral type neural networks with distributed time delays.Neurocomputing 71 (2008), 1039-1045. MR 2458370, 10.1016/j.neucom.2007.11.002; reference:[20] Samidurai, R., Rajavel, S., Sriraman, R., Cao, J., Alsaedi, A., Alsaadi, F. E.: Novel results on stability analysis of neutral-type neural networks with additive time-varying delay components and leakage delay.Int. J. Control Automat. Syst. 15 (2017), 4, 1888-1900. 10.1007/s12555-016-9483-1; reference:[21] all., R. Saml et: Some generalized global stability criteria for delayed Cohen-Grossberg neural networks of neutral-type.Neural Networks 116 (2019), 198-207. 10.1016/j.neunet.2019.04.023; reference:[22] Shi, K., Zhu, H., Zhong, S., Zeng, Y., Zhang, Y.: New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approach.J. Frankl. Inst. 352 (2015), 1, 155-176. MR 3292322, 10.1016/j.jfranklin.2014.10.005; reference:[23] Singh, V.: Improved global robust stability criterion for delayed neural networks.Chao. Solit. Fract. 31 (2007), 224-229. MR 2263282, 10.1016/j.chaos.2005.09.050; reference:[24] Singh, V.: On global robust stability of interval Hopfield neural networks with delay.Chao. Solit. Fract. 33 (2007), 1183-1188. MR 2318906, 10.1016/j.chaos.2006.01.121; reference:[25] Xiao, S.: Global exponential convergence of HCNNs with neutral type proportional delays and D operator.Neural Process. Lett. 49 (2019), 347-356. 10.1007/s11063-018-9817-5; reference:[26] Xin, Y., Cheng, Z. B.: Neutral operator with variable parameter and third-order neutral differential equation.Adv. Diff. Equ. 273 (2014), 1-18. MR 3359150, 10.1186/1687-1847-2014-273; reference:[27] Yao, L.: Global convergence of CNNs with neutral type delays and D operator.Neural Comput. Appl. 29 (2018), 105-109. 10.1007/s00521-016-2403-8; reference:[28] Yu, Y.: Global exponential convergence for a class of neutral functional differential equations with proportional delays.Math. Methods Appl. Sci. 39 (2016), 4520-4525. MR 3549409, 10.1002/mma.3880; reference:[29] Yu, Y.: Global exponential convergence for a class of HCNNs with neutral time-proportional delays.Appl. Math. Comput. 285 (2016), 1-7. MR 3494408, 10.1016/j.amc.2016.03.018; reference:[30] Zhang, X., Han, Q.: Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach.Neural Networks 54 (2014), 57-69. 10.1016/j.neunet.2014.02.012; reference:[31] Zhang, X., Han, Q.: Neuronal state estimation for neural networks with two additive time-varying delay components.IEEE Trans. Cybernetics 47 (2017), 3184-3194. 10.1109/tcyb.2017.2690676; reference:[32] Zhang, X., Han, Q., Wang, L.: Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays.IEEE Trans. Neural Networks Learning Systems 29 (2018), 5319-5329. MR 3867847, 10.1109/tnnls.2018.2797279; reference:[33] Zhang, X., Han, Q., Zeng, Z.: Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities.IEEE Trans. Cybernetics 48 (2018), 1660-1671. 10.1109/tcyb.2017.2776283; reference:[34] Zhang, H., all., T. Ma et: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control.IEEE Trans. Systems Man Cybernet. 40 (2010), 831-844. MR 2904149, 10.1109/tsmcb.2009.2030506; reference:[35] Zhang, H., Qiu, Z., Xiong, L.: Stochastic stability criterion of neutral-type neural networks with additive time-varying delay and uncertain semi-Markov jump.Neurocomputing 333 (2019), 395-406. 10.1016/j.neucom.2018.12.028; reference:[36] Zheng, M., all., L. Li et: Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks.Comm. Nonlinear Sci. Numer. Simul. 59 (2018), 272-291. MR 3758388, 10.1016/j.cnsns.2017.11.025; reference:[37] Zhou, Q.: Weighted pseudo anti-periodic solutions for cellular neural networks with mixed delays.Asian J. Control 19 (2017), 1557-1563. MR 3685941, 10.1002/asjc.1468; reference:[38] Zhou, Q., Shao, J.: Weighted pseudo-anti-periodic SICNNs with mixed delays.Neural Computing Appl. 29 (2018), 272-291. 10.1007/s00521-016-2582-3
-
5Academic Journal
المؤلفون: Beldjerd, Djamila, Remili, Moussadek
مصطلحات موضوعية: keyword:third-order differential equation, keyword:boundedness, keyword:square integrability, msc:34C11, msc:34D05
وصف الملف: application/pdf
Relation: mr:MR3895262; zbl:Zbl 06997372; reference:[1] Afuwape, A. U.: Further ultimate boundedness results for a third-order non-linear system of differential equations.Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 4 (1985), 347-361. Zbl 0592.34024, MR 0805225; reference:[2] Afuwape, A. U., Omeike, M. O.: Further ultimate boundedness of solutions of some system of third order nonlinear ordinary differential equations.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 43 (2004),7-20. Zbl 1068.34052, MR 2124598; reference:[3] \`El'sgol'ts, L. \`E.: Introduction to the Theory of Differential Equations With Deviating Arguments.Translated from the Russian by Robert J. McLaughlin. Holden-Day, San Francisco-London-Amsterdam (1966). Zbl 0133.33502, MR 0192154; reference:[4] Graef, J. R., Beldjerd, D., Remili, M.: On stability, ultimate boundedness, and existence of periodic solutions of certain third order differential equations with delay.Panam. Math. J. 25 (2015), 82-94. Zbl 1331.34145, MR 3364326; reference:[5] Graef, J. R., Oudjedi, L. D., Remili, M.: Stability and square integrability of solutions of nonlinear third order differential equations.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22 (2015), 313-324. Zbl 1326.34088, MR 3405345; reference:[6] Omeike, M.: Stability and boundedness of solutions of some non-autonomous delay differential equation of the third order.An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 55 (2009), 49-58. Zbl 1199.34390, MR 2510712; reference:[7] Omeike, M. O.: New results on the asymptotic behavior of a third-order nonlinear differential equation.Differ. Equ. Appl. 2 (2010), 39-51. Zbl 1198.34085, MR 2654750, 10.7153/dea-02-04; reference:[8] Omeike, M. O.: New results on the stability of solution of some non-autonomous delay differential equations of the third order.Differ. Uravn. Protsessy Upr. (2010), 18-29. MR 2766411; reference:[9] Qian, C.: On global stability of third-order nonlinear differential equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 42 (2000), 651-661. Zbl 0969.34048, MR 1776296, 10.1016/S0362-546X(99)00120-0; reference:[10] Qian, C.: Asymptotic behavior of a third-order nonlinear differential equation.J. Math. Anal. Appl. 284 (2003), 191-205. Zbl 1054.34078, MR 1996127, 10.1016/S0022-247X(03)00302-0; reference:[11] Reissig, R., Sansone, G., Conti, R.: Non-linear Differential Equations of Higher Order.Monographs and Textbooks on Pure and Applied Mathematics. Noordhoff International Publishing, Leyden (1974). Zbl 0275.34001, MR 0344556; reference:[12] Remili, M., Beldjerd, D.: On the asymptotic behavior of the solutions of third order delay differential equations.Rend. Circ. Mat. Palermo (2) 63 (2014), 447-455. Zbl 1321.34097, MR 3298595, 10.1007/s12215-014-0169-3; reference:[13] Remili, M., Beldjerd, D.: A boundedness and stability results for a kind of third order delay differential equations.Appl. Appl. Math. 10 (2015), 772-782. Zbl 1331.34135, MR 3447611; reference:[14] Remili, M., Beldjerd, D.: On ultimate boundedness and existence of periodic solutions of kind of third order delay differential equations.Acta Univ. M. Belii, Ser. Math. 24 (2016), 43-57. Zbl 06699479, MR 3492940; reference:[15] Remili, M., Beldjerd, D.: Stability and ultimate boundedness of solutions of some third order differential equations with delay.Journal of the Association of Arab Universities for Basic and Applied Sciences 23 (2017), 90-95. MR 3447611, 10.1016/j.jaubas.2016.05.002; reference:[16] Remili, M., Oudjedi, D. L.: Stability and boundedness of the solutions of non autonomous third order differential equations with delay.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 53 (2014), 139-147. Zbl 1317.34157, MR 3331011; reference:[14] Remili, M., Oudjedi, L. D.: Uniform stability and boundedness of a kind of third order delay differential equations.Bull. Comput. Appl. Math. 2 (2014), 25-35. MR 3569688; reference:[18] Remili, M., Oudjedi, L. D.: Boundedness and stability in third order nonlinear differential equations with bounded delay.An. Univ. Oradea, Fasc. Mat. 23 (2016), 135-143. Zbl 1349.34303, MR 3496022; reference:[19] Remili, M., Oudjedi, L. D.: Boundedness and stability in third order nonlinear differential equations with multiple deviating arguments.Arch. Math., Brno 52 (2016), 79-90. Zbl 06644060, MR 3535630, 10.5817/AM2016-2-79; reference:[20] Remili, M., Oudjedi, L. D.: Stability of the solutions of nonlinear third order differential equations with multiple deviating arguments.Acta Univ. Sapientiae, Math. 8 (2016), 150-165. Zbl 1351.34087, MR 3535706, 10.1515/ausm-2016-0009; reference:[21] Sadek, A. I.: On the stability of solutions of some non-autonomous delay differential equations of the third order.Asymptotic Anal. 43 (2005), 1-7. Zbl 1075.34075, MR 2148124; reference:[22] Tunç, C.: On asymptotic stability of solutions to third order nonlinear differential equations with retarded argument.Commun. Appl. Anal. 11 (2007), 515-528. Zbl 1139.34054, MR 2368199; reference:[23] Tunç, C.: Stability and boundedness of solutions of nonlinear differential equations of third-order with delay.Differ. Uravn. Protsessy Upr. (2007), 13 pages. MR 2384532; reference:[24] Tunç, C.: On the stability and boundedness of solutions to third order nonlinear differential equations with retarded argument.Nonlinear Dyn. 57 (2009), 97-106. Zbl 1176.34064, MR 2511159, 10.1007/s11071-008-9423-6; reference:[25] Tunç, C.: Some stability and boundedness conditions for non-autonomous differential equations with deviating arguments.Electron. J. Qual. Theory Differ. Equ. 2010 (2010), paper No. 1, 12 pages. Zbl 1201.34123, MR 2577154; reference:[26] Tunç, C.: The boundedness of solutions to nonlinear third order differential equations.Nonlinear Dyn. Syst. Theory 10 (2010), 97-102. Zbl 1300.34077, MR 2643196; reference:[27] Tunç, C., Gözen, M.: Stability and uniform boundedness in multidelay functional differential equations of third order.Abstr. Appl. Anal. 2013 (2013), Article ID 248717, 7 pages. Zbl 1276.34058, MR 3055944, 10.1155/2013/248717; reference:[28] Zhu, Y.: On stability, boundedness and existence of periodic solution of a kind of third order nonlinear delay differential system.Ann. Differ. Equations 8 (1992), 249-259. Zbl 0758.34072, MR 1190138
-
6Academic Journal
المؤلفون: Medveď, Milan, Pekárková, Eva
مصطلحات موضوعية: keyword:$p$-Laplacian, keyword:differential equation, keyword:asymptotic integration, msc:34D05, msc:35B40
وصف الملف: application/pdf
Relation: mr:MR3475109; zbl:Zbl 06562205; reference:[1] Agarwal, R.P., Djebali, S., Moussaoui, T., Mustafa, O.G.: On the asymptotic integration of nonlinear differential equations.J. Comput. Appl. Math 202 (2007), 352–376. Zbl 1123.34038, MR 2319962, 10.1016/j.cam.2005.11.038; reference:[2] Bartušek, M., Medveď, M.: Existence of global solutions for systems of second-order functional-differential equations with $p$-Laplacian.EJDE 40 (2008), 1–8. Zbl 1171.34335, MR 2392944; reference:[3] Bartušek, M., Pekárková, E.: On the existence of proper solutions of quasilinear second order differential equations.EJQTDE 1 (2007), 1–14. MR 2295683; reference:[4] Bihari, I.: A generalization of a lemma of Bellman and its applications to uniqueness problems of differential equations.Acta Math. Hungar. 7 (1956), 81–94. MR 0079154, 10.1007/BF02022967; reference:[5] Caligo, D.: Comportamento asintotico degli integrali dell’equazione $y^{\prime \prime }(x)+A(x)y(x)=0,$ nell’ipotesi $\lim _{x\rightarrow +\infty }A(x)=0$.Boll. Un. Mat. Ital. (2) 3 (1941), 286–295. MR 0005219; reference:[6] Cohen, D.S.: The asymptotic behavior of a class of nonlinear differntial equations.Proc. Amer. Math. Soc. 18 (1967), 607–609. MR 0212289, 10.1090/S0002-9939-1967-0212289-3; reference:[7] Constantin, A.: On the asymptotic behavior of second order nonlinear differential equations.Rend. Mat. Appl. (7) 13 (4) (1993), 627–634. MR 1283990; reference:[8] Constantin, A.: Solutions globales d’équations différentielles perturbées.C. R. Acad. Sci. Paris Sér. I Math. 320 (11) (1995), 1319–1322. MR 1338279; reference:[9] Constantin, A.: On the existence of positive solutions of second order differential equations.Ann. Mat. Pura Appl. (4) 184 (2) (2005), 131–138. Zbl 1223.34041, MR 2149089, 10.1007/s10231-004-0100-1; reference:[10] Dannan, F.M.: Integral inequalities of Gronwall-Bellman-Bihari type and asymptotic behavior of certain second order nonlinear differential equations.J. Math. anal. Appl. 108 (1) (1985), 151–164. MR 0791139, 10.1016/0022-247X(85)90014-9; reference:[11] Kusano, T., Trench, W.F.: Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations.J. London Math. Soc.(2) 31 (3) (1985), 478–486. MR 0812777, 10.1112/jlms/s2-31.3.478; reference:[12] Kusano, T., Trench, W.F.: Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations.Ann. Mat. Pura Appl. (4) 142 (1985), 381–392. MR 0839046; reference:[13] Lipovan, O.: On the asymptotic behaviour of the solutions to a class of second order nonlinear differential equations.Glasgow Math. J. 45 (1) (2003), 179–187. Zbl 1037.34041, MR 1973349, 10.1017/S0017089502001143; reference:[14] Medveď, M., Moussaoui, T.: Asymptotic integration of nonlinear $\Phi -$Laplacian differential equations.Nonlinear Anal. 72 (2010), 1–8. Zbl 1192.34059, MR 2577598, 10.1016/j.na.2009.09.042; reference:[15] Medveď, M., Pekárková, E.: Existence of global solutions for systems of second-order differential equations with $p$-Laplacian.EJDE 2007 (136) (2007), 1–9. Zbl 1138.34316, MR 2349964; reference:[16] Medveď, M., Pekárková, E.: Long time behavior of second order differential equations with $p$-Laplacian.EJDE 2008 (108) (2008), 1–12. MR 2430905; reference:[17] Mustafa, O.G., Rogovchenko, Y.V.: Global existence of solutions with prescribed asymptotic behavior for second-order nonlinear differential equations.Nonlinear Anal. 51 (2002), 339–368. Zbl 1017.34005, MR 1918348, 10.1016/S0362-546X(01)00834-3; reference:[18] Mustafa, O.G., Rogovchenko, Y.V.: Asymptotic behavior of nonoscillatory solutions of second-order nonlinear differential equations.Dynamic Systems and Applications 4 (2004), 312–319. Zbl 1082.34042, MR 2117799; reference:[19] Pekárková, E.: Estimations of noncontinuable solutions of second order differential equations with $p$-Laplacian.Arch. Math.( Brno) 46 (2010), 135–144. Zbl 1240.34187, MR 2684255; reference:[20] Philos, Ch.G., Purnaras, I.K., Tsamatos, P.Ch.: Large time asymptotic to polynomials solutions for nonlinear differential equations.Nonlinear Anal. 59 (2004), 1157–1179. MR 2098511, 10.1016/S0362-546X(04)00323-2; reference:[21] Rogovchenko, S.P., Rogovchenko, Y.V.: Asymptotics of solutions for a class of second order nonlinear differential equations.Portugal. Math. 57 (1) (2000), 17–32.; reference:[22] Rogovchenko, Y.V.: On asymptotic behavior of solutions for a class of second order nonlinear differential equations.Collect. Math. 49 (1) (1998), 113–120. MR 1629766; reference:[23] Tong, J.: The asymptotic behavior of a class of nonlinear differential equations of second order.Proc. Amer. Math. Soc. 54 (1982), 235–236. Zbl 0491.34036, MR 0637175, 10.1090/S0002-9939-1982-0637175-4; reference:[24] Trench, W.F.: On the asymptotic behavior of solutions of second order linear differential equations.Proc. Amer. Math. Soc. 54 (1963), 12–14. MR 0142844, 10.1090/S0002-9939-1963-0142844-7
-
7Academic Journal
المؤلفون: Kadeřábek, Zdeněk
مصطلحات موضوعية: keyword:Van der Pol-Mathieu equation, keyword:periodic solutions, keyword:autonomous system, keyword:generalized Hopf bifurcation, keyword:Bautin bifurcation, keyword:averaging method, keyword:limit cycles, msc:34C05, msc:34C23, msc:34C25, msc:34C29, msc:34D05
وصف الملف: application/pdf
Relation: mr:MR3475112; zbl:Zbl 06562208; reference:[1] Kadeřábek, Z.: The autonomous system derived from Van der Pol-Mathieu equation.Aplimat - J. Appl. Math., Slovak Univ. Tech., Vol. 5 (2), vol. 5, 2012, pp. 85–96.; reference:[2] Kalas, J., Kadeřábek, Z.: Periodic solutions of a generalized Van der Pol-Mathieu differential equation.Appl. Math. Comput. 234 (2014), 192–202. Zbl 1309.34068, MR 3190531, 10.1016/j.amc.2014.01.161; reference:[3] Kuznetsov, N.V., Leonov, G.A.: Computation of Lyapunov quantities.Proceedings of the 6th EUROMECH Nonlinear Dynamics Conference, 2008, IPACS Electronic Library, pp. 1–10.; reference:[4] Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory.2nd ed., Springer-Verlag New York, 1998. Zbl 0914.58025, MR 1711790; reference:[5] Momeni, I., Moslehi-Frad, M., Shukla, P.K.: A Van der Pol-Mathieu equation for the dynamics of dust grain charge in dusty plasmas.J. Phys. A: Math. Theor. 40 (2007), F473–F481. MR 2345462, 10.1088/1751-8113/40/24/F06; reference:[6] Perko, L.: Differential Equations and Dynamical Systems.2nd ed., Springer, 1996. Zbl 0854.34001, MR 1418638, 10.1007/978-1-4684-0249-0; reference:[7] Veerman, F., Verhulst, F.: Quasiperiodic phenomena in the Van der Pol-Mathieu equation.J. Sound Vibration 326 (1–2) (2009), 314–320. 10.1016/j.jsv.2009.04.040; reference:[8] Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems.2nd ed., Springer, 2006. MR 1036522
-
8Academic Journal
المؤلفون: Raffoul, Youssef N.
مصطلحات موضوعية: keyword:necessary, keyword:sufficient, keyword:time scales, keyword:Lyapunov functionals, keyword:stability, keyword:zero solution, msc:34D05, msc:34N05, msc:39A12, msc:45D05
وصف الملف: application/pdf
Relation: mr:MR3475110; zbl:Zbl 06562206; reference:[1] Adivar, M.: Function bounds for solutions of Volterra integrodynamic equations on time scales.EJQTDE (7) (2010), 1–22. MR 2577160; reference:[2] Adivar, M., Raffoul, Y.: Existence results for periodic solutions of integro-dynamic equations on time scales.Ann. Mat. Pura Appl. (4) 188 (4) (2009), 543–559. DOI: http://dx.doi.org/10.1007/s1023-008-0088-z Zbl 1176.45008, MR 2533954, 10.1007/s10231-008-0088-z; reference:[3] Adivar, M., Raffoul, Y.: Stability and periodicity in dynamic delay equations.Comput. Math. Appl. 58 (2009), 264–272. Zbl 1189.34143, MR 2535793, 10.1016/j.camwa.2009.03.065; reference:[4] Adivar, M., Raffoul, Y.: A note on “Stability and periodicity in dynamic delay equations”.Comput. Math. Appl. 59 (2010), 3351–3354. Zbl 1198.34150, MR 2651874, 10.1016/j.camwa.2010.03.025; reference:[5] Adivar, M., Raffoul, Y.: Necessary and sufficient conditions for uniform stability of Volterra integro-dynamic equations using new resolvent equation.An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat 21 (3) (2013), 17–32. Zbl 1313.45008, MR 3145088; reference:[6] Akın–Bohner, E., Raffoul, Y.: Boundeness in functional dynamic equations on time scales.Adv. Difference Equ. (2006), 1–18. MR 2255160; reference:[7] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications.Birkhäuser, Boston, 2001. Zbl 0978.39001, MR 1843232; reference:[8] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales.Birkhäuser, Boston, 2003. Zbl 1025.34001, MR 1962542; reference:[9] Bohner, M., Raffoul, Y.: Volterra Dynamic Equations on Time Scales.preprint.; reference:[10] Burton, T.A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations.Dover, New York, 2005. Zbl 1209.34001, MR 2761514; reference:[11] Burton, T.A.: Stability by Fixed Point Theory for Functional Differential Equations.Dover, New York, 2006. Zbl 1160.34001, MR 2281958; reference:[12] Eloe, P., Islam, M., Zhang, B.: Uniform asymptotic stability in linear Volterra integrodifferential equations with applications to delay systems.Dynam. Systems Appl. 9 (2000), 331–344. MR 1844634; reference:[13] Grace, S., Graef, J., Zafer, A.: Oscillation of integro-dynamic equations on time scales.Appl. Math. Lett. 26 (4) (2013), 383–386. Zbl 1261.45005, MR 3019962, 10.1016/j.aml.2012.10.001; reference:[14] Kulik, T., Tisdell, C.: Volterra integral equations on time scales: basic qualitative and quantitative results with applications to initial value problems on unbounded domains.Int. J. Difference Equ. 3 (1) (2008), 103–133. MR 2548121; reference:[15] Lupulescu, V., Ntouyas, S., Younus, A.: Qualitative aspects of a Volterra integro-dynamic system on time scales.EJQTDE (5) (2013), 1–35. MR 3011509; reference:[16] Peterson, A., Raffoul, Y.: Exponential stability of dynamic equations on time scales.Adv. Difference Equ. 2 (2005), 133–144. Zbl 1100.39013, MR 2197128; reference:[17] Peterson, A., Tisdell, C.C.: Boundedness and uniqueness of solutions to dynamic equations on time scales.J. Differ. Equations Appl. 10 (13–15) (2004), 1295–1306. Zbl 1072.39017, MR 2100729, 10.1080/10236190410001652793; reference:[18] Raffoul, Y.: Boundedness in nonlinear differential equations.Nonlinear Studies 10 (2003), 343–350. Zbl 1050.34046, MR 2021322; reference:[19] Raffoul, Y.: Boundedness in nonlinear functional differential equations with applications to Volterra integrodifferential.J. Integral Equations Appl. 16 (4) (2004). Zbl 1090.34056, MR 2133906, 10.1216/jiea/1181075297
-
9Conference
المؤلفون: Marek, Ivo
مصطلحات موضوعية: keyword:input/output system, keyword:non-oscillatory behavior, keyword:stochastic model, keyword:chemical system, msc:34A34, msc:34D05, msc:37E10, msc:93A30, msc:93D25, msc:93E15
وصف الملف: application/pdf
Relation: mr:MR3204412; zbl:Zbl 1313.93020
-
10
المؤلفون: Girbig, Dorothee
مصطلحات موضوعية: msc:34D05, ddc:570, msc:62C99, Institut für Biochemie und Biologie
وصف الملف: application/pdf
-
11Academic Journal
المؤلفون: Omeike, M. O.
مصطلحات موضوعية: keyword:boundedness, keyword:stability, keyword:Liapunov function, keyword:differential equations of third order, msc:34C11, msc:34D05, msc:34D20, msc:34D40
وصف الملف: application/pdf
Relation: mr:MR3215283; zbl:Zbl 06391569; reference:[1] Chukwu, E.N.: On boundedness of solutions of third ordr differential equations.Ann. Math. Pura Appl. (4) 104 (1975), 123–149. MR 0377180; reference:[2] Ezeilo, J.O.C.: A generalization of a boundedness theorem for a certain third-order differential equation.Proc. Cambridge Philos. Soc. 63 (1967), 735–742. MR 0213657; reference:[3] Liapunov, A.M.: Stability of Motion.Academic Press London, 1906. MR 0208093; reference:[4] Mehri, B., Shadman, D.: Boundedness of solutions of certain third order differential equations.Math. Inequal. Appl. 2 (1999), no. 4, 545–549. MR 1717047; reference:[5] Omeike, M.O., Afuwape, A.U.: New result on the ultimate boundedness of solutions of certain third-order vector differential equations.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 49 (2010), no. 1, 55–61. MR 2797523; reference:[6] Rao, M.R.M.: Ordinary Differential Equations.Affiliated East West Private Limited, London, 1980. Zbl 0482.34001; reference:[7] Reissig, R., Sansone, G., Conti, R.: Nonlinear Differential Equations of Higher Order.Noordhoff Groningen, 1974.; reference:[8] Tejumola, H.O.: A note on the boundedness and the stability of solutions of certain third order differential equations.Ann. Mat. Pura Appl. (4) 92 (1972), no. 4, 65–75. Zbl 0242.34046, MR 0318615, 10.1007/BF02417936; reference:[9] Tunc, C.: Uniform ultimate boundedness of the solutions of third order nonlinear differential equations.Kuwait J. Sci. Engrg. 12 (2005), no. 1, 39–48. Zbl 1207.34043, MR 2145249; reference:[10] Tunc, C.: On the stability and boundedness of solutions of nonlinear vector differential equations of third-order.Nonlinear Anal. 70 (2009), 2232–2236. Zbl 1162.34043, MR 2498299, 10.1016/j.na.2008.03.002; reference:[11] Tunc, C., Ates, M.: Stability and boundedness results for solutions of certain third order nonlinear vector differential equations.Nonlinear Dynam. 45 (2006), no. 3–4, 271–281. Zbl 1132.34328, MR 2250136
-
12Academic Journal
المؤلفون: Došlý, Ondřej, Jansová, Eva, Kalas, Josef
مصطلحات موضوعية: keyword:ordinary linear differential equations, keyword:differential equations with complex coefficients, keyword:dynamic systems, keyword:nonlinear second order differential equations, msc:01A70, msc:34-03, msc:34C10, msc:34D05
وصف الملف: application/pdf
Relation: mr:MR3194764; zbl:Zbl 06424472
-
13Academic Journal
المؤلفون: Bartušek, Miroslav, Kokologiannaki, Chrysi G.
مصطلحات موضوعية: keyword:monotonicity, keyword:oscillatory solutions, msc:34C10, msc:34C15, msc:34D05
وصف الملف: application/pdf
Relation: mr:MR3144182; zbl:Zbl 06321158; reference:[1] Bartušek, M.: Monotonicity theorems concerning differential equations $y^{\prime \prime }+f(t,y,y^{\prime })=0$.Arch. Math. (Brno) 12 (4) (1976), 169–178. MR 0430410; reference:[2] Bartušek, M.: Monotonicity theorems for second order non-linear differential equations.Arch. Math. (Brno) 16 (3) (1980), 127–136. MR 0594458; reference:[3] Bartušek, M.: On properties of oscillatory solutions of nonlinear differential equations of the $n$-th order.Diff. Equat. and Their Appl., Equadiff 6, vol. 1192, Lecture Notes in Math., Berlin, 1985, pp. 107–113.; reference:[4] Bartušek, M.: On oscillatory solutions of differential inequalities.Czechoslovak Math. J. 42 (117) (1992), 45–52. Zbl 0756.34033, MR 1152168; reference:[5] Bartušek, M.: Singular solutions for the differential equation with $p$-Laplacian.Arch. Math. (Brno) 41 (2005), 123–128. Zbl 1116.34325, MR 2142148; reference:[6] Bartušek, M., Došlá, Z., Cecchi, M., Marini, M.: On oscillatory solutions of quasilinear differential equations.J. Math. Anal. Appl. 320 (2006), 108–120. Zbl 1103.34016, MR 2230460, 10.1016/j.jmaa.2005.06.057; reference:[7] Došlá, Z., Cecchi, M., Marini, M.: On second order differential equations with nonhomogenous $\Phi $–Laplacian.Boundary Value Problems 2010 (2010), 17pp., ID 875675. MR 2595170; reference:[8] Došlá, Z., Háčik, M., Muldon, M. E.: Further higher monotonicity properties of Sturm-Liouville function.Arch. Math. (Brno) 29 (1993), 83–96. MR 1242631; reference:[9] Došlý, O., Řehák, P.: Half-linear differential equations.Elsevier, Amsterdam, 2005. Zbl 1090.34001, MR 2158903; reference:[10] Kiguradze, I., Chanturia, T.: Asymptotic properties of solutions of nonautonomous ordinary differential equations.Kluwer, Dordrecht, 1993. Zbl 0782.34002; reference:[11] Lorch, L., Muldon, M. E., Szego, P.: Higher monotonicity of certain Sturm-Liouville functions III.Canad. J. Math. 22 (1970), 1238–1265. MR 0274845, 10.4153/CJM-1970-142-1; reference:[12] Mirzov, J. D.: Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations.Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., Masaryk University, Brno, 2001. MR 2144761; reference:[13] Naito, M.: Existence of positive solutions of higher-order quasilinear ordinary differential equations.Ann. Mat. Pura Appl. (4) 186 (2007), 59–84. Zbl 1232.34054, MR 2263331; reference:[14] Rohleder, M.: On the existence of oscillatory solutions of the second order nonlinear ODE.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 51 (2) (2012), 107–127. Zbl 1279.34050, MR 3058877
-
14Academic Journal
المؤلفون: Vampolová, Jana
مصطلحات موضوعية: keyword:singular ordinary differential equation of the second order, keyword:time singularities, keyword:unbounded domain, keyword:asymptotic properties, keyword:Kneser solutions, keyword:damped solutions, keyword:non-oscillatory solutions, msc:34A12, msc:34D05
وصف الملف: application/pdf
Relation: mr:MR3202755; zbl:Zbl 06285760; reference:[1] Abraham, F. F.: Homogeneous Nucleation Theory. Acad. Press, New York, 1974.; reference:[2] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: On oscillatory solutions of quasilinear differential equations. J. Math. Anal. Appl. 320 (2006), 108–120. Zbl 1103.34016, MR 2230460, 10.1016/j.jmaa.2005.06.057; reference:[3] Bongiorno, V., Scriven, L. E., Davis, H. T.: Molecular theory of fluid interfaces. J. Colloid and Interface Science 57 (1967), 462–475. 10.1016/0021-9797(76)90225-3; reference:[4] Cecchi, M., Marini, M., Villari, G.: On some classes of continuable solutions of a nonlinear differential equation. J. Differential Equations 118 (1995), 403–419. Zbl 0827.34020, MR 1330834, 10.1006/jdeq.1995.1079; reference:[5] Cecchi, M., Marini, M., Villari, G.: Comparison results for oscillation of nonlinear differential equations. NoDea 6 (1999), 173–190. Zbl 0927.34023, MR 1694795, 10.1007/s000300050071; reference:[6] Derrick, G. H.: Comments on nonlinear wave equations as models for elementary particles. J. Math. Physics 5 (1965), 1252–1254. MR 0174304, 10.1063/1.1704233; reference:[7] Fife, P. C.: Mathematical Aspects of Reacting and Diffusing Systems. Lecture notes in Biomathematics Springer 28 (1979), 223–224. Zbl 0403.92004, MR 0527914; reference:[8] Fischer, R. A.: The wave of advance of advantageous genes. Journ. of Eugenics 7 (1937), 355–369. 10.1111/j.1469-1809.1937.tb02153.x; reference:[9] Gouin, H., Rotoli, G.: An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Research Communic. 24 (1997), 255–260. Zbl 0899.76064, 10.1016/S0093-6413(97)00022-0; reference:[10] Ho, L. F.: Asymptotic behavior of radial oscillatory solutions of a quasilinear elliptic equation. Nonlinear Analysis 41 (2000), 573–589. Zbl 0962.34019, MR 1780633, 10.1016/S0362-546X(98)00298-3; reference:[11] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions. Nonlinear Analysis 64 (2006), 762–787. Zbl 1103.34017, MR 2197094, 10.1016/j.na.2005.05.045; reference:[12] Kiguradze, I., Chanturia, T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer Acad. Publ., Dordrecht, 1993. Zbl 0782.34002, MR 1220223; reference:[13] Kulenović, M. R. S., Ljubović, Ć.: All solutions of the equilibrium capillary surface equation are oscillatory. Applied Mathematics Letters 13 (2000), 107–110. MR 1760271, 10.1016/S0893-9659(00)00041-0; reference:[14] Kusano, T., Manojlović, J. V.: Asymptotic analysis of Emden-Fowler differential equations in the framework of regular variation. Annali di Matematica Pura ed Applicata 190 (2011), 619–644. Zbl 1245.34039, MR 2861062, 10.1007/s10231-010-0166-x; reference:[15] Kwong, M. K., Wong, J. S. W.: A nonoscillation theorem for sublinear Emden-Fowler equations. Nonlinear Analysis 64 (2006), 1641–1646. Zbl 1099.34033, MR 2200164, 10.1016/j.na.2005.07.015; reference:[16] Kwong, M. K., Wong, J. S. W.: A nonoscillation theorem for superlinear Emden–Fowler equations with near-critical coefficients. J. Differential Equations 238 (2007), 18–42. Zbl 1125.34023, MR 2334590, 10.1016/j.jde.2007.03.021; reference:[17] Li, W. T.: Oscillation of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 217 (1998), 1–14. Zbl 0893.34023, 10.1006/jmaa.1997.5680; reference:[18] Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I.: Analytical–numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), 260–273. Zbl 1100.65066, MR 2202978, 10.1016/j.cam.2005.05.004; reference:[19] Linde, A. P.: Particle Physics and Inflationary Cosmology. Harwood Academic, Chur, Switzerland, 1990.; reference:[20] Ou, C. H., Wong, J. S. W.: On existence of oscillatory solutions of second order Emden–Fowler equations. J. Math. Anal. Appl. 277 (2003), 670–680. Zbl 1027.34039, MR 1961253, 10.1016/S0022-247X(02)00617-0; reference:[21] O’Regan, D.: Existence theory for nonlinear ordinary differential equations. Kluwer, Dordrecht, 1997. Zbl 1077.34505, MR 1449397; reference:[22] Rachůnková, I., Rachůnek, L.: Asymptotic formula for oscillatory solutions of some singular nonlinear differential equation. Abstract and Applied Analysis 2011 (2011), 1–9. Zbl 1222.34034; reference:[23] Rachůnková, I., Tomeček, J.: Bubble-type solutions of nonlinear singular problem. Mathematical and Computer Modelling 51 (2010), 658–669. 10.1016/j.mcm.2009.10.042; reference:[24] Rachůnková, I., Rachůnek, L., Tomeček, J.: Existence of oscillatory solutions of singular nonlinear differential equations. Abstract and Applied Analysis 2011 (2011), 20 pages. Zbl 1222.34035, MR 2795071; reference:[25] Rachůnková, I., Tomeček, J.: Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics. Nonlinear Analysis 72 (2010), 2114–2118. Zbl 1186.34014, MR 2577608, 10.1016/j.na.2009.10.011; reference:[26] Rachůnková, I., Tomeček, J.: Homoclinic solutions of singular nonautonomous second order differential equations. Boundary Value Problems 2009 (2009), 1–21. Zbl 1190.34028; reference:[27] Rohleder, M.: On the existence of oscillatory solutions of the second order nonlinear ODE. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 2 (2012), 107–127. Zbl 1279.34050, MR 3058877; reference:[28] van der Waals, J. D., Kohnstamm, R.: Lehrbuch der Thermodynamik. 1, Leipzig, 1908.; reference:[29] Wong, J. S. W.: Second–order nonlinear oscillations: A case history. In: Proceedings of the Conference on Differential & Difference Equations and Applications Hindawi (2006), 1131–1138. Zbl 1147.34024, MR 2309447; reference:[30] Wong, P. J. Y., Agarwal, R. P.: Oscillatory behavior of solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 198 (1996), 337–354. Zbl 0855.34039, MR 1376268, 10.1006/jmaa.1996.0086; reference:[31] Wong, P. J. Y., Agarwal, R. P.: The oscillation and asymptotically monotone solutions of second order quasilinear differential equations. Appl. Math. Comput. 79 (1996),207–237. MR 1407599
-
15Conference
-
16Academic Journal
المؤلفون: Rohleder, Martin
مصطلحات موضوعية: keyword:singular ordinary differential equation of the second order, keyword:time singularities, keyword:unbounded domain, keyword:asymptotic properties, keyword:damped solutions, keyword:oscillatory solutions, msc:34A12, msc:34C11, msc:34C15, msc:34D05
وصف الملف: application/pdf
Relation: mr:MR3058877; zbl:Zbl 06204934; reference:[1] Bartušek, M., Cecchi, M, Došlá, Z., Marini, M.: On oscillatory solutions of quasilinear differential equations. J. Math. Anal. Appl. 320 (2006), 108–120. Zbl 1103.34016, MR 2230460, 10.1016/j.jmaa.2005.06.057; reference:[2] Cecchi, M, Marini, M., Villari, G.: On some classes of continuable solutions of a nonlinear differential equation., J. Differ. Equations 118, 2 (1995), 403–419. Zbl 0827.34020, MR 1330834, 10.1006/jdeq.1995.1079; reference:[3] Gouin, H., Rotoli, G.: An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Res. Commun. 24 (1997), 255–260. Zbl 0899.76064, 10.1016/S0093-6413(97)00022-0; reference:[4] Ho, L. F.: Asymptotic behavior of radial oscillatory solutions of a quasilinear elliptic equation. Nonlinear Anal. 41 (2000), 573–589. Zbl 0962.34019, MR 1780633, 10.1016/S0362-546X(98)00298-3; reference:[5] Kiguradze, I. T., Chanturia, T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluver Academic, Dordrecht, 1993. Zbl 0782.34002; reference:[6] Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E.: Efficient Numerical Solution of the Density Profile Equation in Hydrodynamics. J. Sci. Comput. 32 (2007), 411–424. Zbl 1179.76062, MR 2335787, 10.1007/s10915-007-9141-0; reference:[7] Kulenović, M. R. S., Ljubović, Ć.: All solutions of the equilibrium capillary surface equation are oscillatory. Appl. Math. Lett. 13 (2000), 107–110. MR 1760271, 10.1016/S0893-9659(00)00041-0; reference:[8] Li, W. T.: Oscillation of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 217 (1998), 1–14. Zbl 0893.34023, MR 1492076, 10.1006/jmaa.1997.5680; reference:[9] Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I.: Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), 260–273. Zbl 1100.65066, MR 2202978, 10.1016/j.cam.2005.05.004; reference:[10] Linde, A. P.: Particle Physics and Inflationary Cosmology. Harwood Academic, Chur, Switzerland, 1990.; reference:[11] O’Regan, D.: Existence Theory for Nonlinear Ordinary Differential Equations. Kluver Academic, Dordrecht, 1997. Zbl 1077.34505; reference:[12] O’Regan, D.: Theory of Singular Boundary Value Problems. World Scientific, Singapore, 1994. Zbl 0807.34028, MR 1286741; reference:[13] Ou, C. H., Wong, J. S. W.: On existence of oscillatory solutions of second order Emden–Fowler equations. J. Math. Anal. Appl. 277 (2003), 670–680. Zbl 1027.34039, MR 1961253, 10.1016/S0022-247X(02)00617-0; reference:[14] Rachůnková, I., Rachůnek, L., Tomeček, J.: Existence of oscillatory solutions of singular nonlinear differential equations. Abstr. Appl. Anal. 2011, Article ID 408525, 1–20. Zbl 1222.34035; reference:[15] Rachůnková, I., Tomeček, J.: Bubble-type solutions of nonlinear singular problems. Math. Comput. Modelling 51 (2010), 658–669. Zbl 1190.34029, 10.1016/j.mcm.2009.10.042; reference:[16] Rachůnková, I., Tomeček, J.: Homoclinic solutions of singular nonautonomous second order differential equations. Bound. Value Probl. 2009, Article ID 959636, 1–21. Zbl 1190.34028, MR 2552066; reference:[17] Rachůnková, I., Tomeček, J.: Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics. Nonlinear Anal. 72 (2010), 2114–2118. Zbl 1186.34014, MR 2577608, 10.1016/j.na.2009.10.011; reference:[18] Rachůnková, I., Tomeček, J., Stryja, J.:: Oscillatory solutions of singular equations arising in hydrodynamics. Adv. Difference Equ. Recent Trends in Differential and Difference Equations 2010, Article ID 872160, 1–13. Zbl 1203.34058, MR 2652448; reference:[19] Wong, J. S. W.: Second-order nonlinear oscillations: a case history. In: Differential & Difference Equations and Applications, Hindawi Publishing Corporation, New York, 2006, 1131–1138. Zbl 1147.34024, MR 2309447; reference:[20] Wong, J. S. W., Agarwal, R. P.: Oscillatory behavior of solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 198 (1996), 337–354. Zbl 0855.34039, MR 1376268, 10.1006/jmaa.1996.0086
-
17Academic Journal
المؤلفون: Došlá, Zuzana, Marini, Mauro, Matucci, Serena
مصطلحات موضوعية: keyword:boundary value problem, keyword:$p$-Laplacian, keyword:half-linear equation, keyword:positive solution, keyword:uniqueness, keyword:decaying solution, keyword:principal solution, msc:34B18, msc:34B40, msc:34C10, msc:34D05
وصف الملف: application/pdf
Relation: mr:MR2978257; zbl:Zbl 1265.34113; reference:[1] Agarwal, R. P, Grace, S. R., O'Regan, D.: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations.Kluwer Acad., Dordrecht (2003). MR 2091751; reference:[2] Cecchi, M., Došlá, Z., Kiguradze, I., Marini, M.: On nonnegative solutions of singular boundary value problems for Emden-Fowler type differential systems.Differ. Integral Equ. 20 (2007), 1081-1106. Zbl 1212.34044, MR 2365203; reference:[3] Cecchi, M., Došlá, Z., Marini, M.: On the dynamics of the generalized Emden-Fowler equations.Georgian Math. J. 7 (2000), 269-282. MR 1779551, 10.1515/GMJ.2000.269; reference:[4] Cecchi, M., Došlá, Z., Marini, M.: On nonoscillatory solutions of differential equations with $p$-Laplacian.Adv. Math. Sci. Appl. 11 (2001), 419-436. Zbl 0996.34039, MR 1842385; reference:[5] Cecchi, M., Došlá, Z., Marini, M.: Principal solutions and minimal sets of quasilinear differential equations.Dynam. Systems Appl. 13 (2004), 221-232. Zbl 1123.34026, MR 2140874; reference:[6] Cecchi, M., Došlá, Z., Marini, M., Vrkoč, I.: Integral conditions for nonoscillation of second order nonlinear differential equations.Nonlinear Anal., Theory Methods Appl. 64 (2006), 1278-1289. Zbl 1114.34031, MR 2200492, 10.1016/j.na.2005.06.035; reference:[7] Cecchi, M., Furi, M., Marini, M.: On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals.Nonlinear Anal., Theory Methods Appl. 9 (1985), 171-180. Zbl 0563.34018, MR 0777986, 10.1016/0362-546X(85)90070-7; reference:[8] Chanturia, T. A.: On singular solutions of nonlinear systems of ordinary differential equations.Colloq. Math. Soc. Janos Bolyai 15 (1975), 107-119. MR 0591720; reference:[9] Chanturia, T. A.: On monotonic solutions of systems of nonlinear differential equations.Russian Ann. Polon. Math. 37 (1980), 59-70.; reference:[10] Došlá, Z., Marini, M., Matucci, S.: A boundary value problem on a half-line for differential equations with indefinite weight.(to appear) in Commun. Appl. Anal. MR 2867356; reference:[11] Došlý, O., Řehák, P.: Half-Linear Differential Equations.North-Holland Mathematics Studies 202, Elsevier, Amsterdam (2005). Zbl 1090.34001, MR 2158903; reference:[12] Garcia, H. M., Manasevich, R., Yarur, C.: On the structure of positive radial solutions to an equation containing a $p$-Laplacian with weight.J. Differ. Equations 223 (2006), 51-95. Zbl 1170.35404, MR 2210139, 10.1016/j.jde.2005.04.012; reference:[13] Lian, H., Pang, H., Ge, W.: Triple positive solutions for boundary value problems on infinite intervals.Nonlinear Anal., Theory Methods Appl. 67 (2007), 2199-2207. Zbl 1128.34011, MR 2331870, 10.1016/j.na.2006.09.016; reference:[14] Mirzov, J. D.: Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations.Folia Fac. Sci. Nat. Univ. Masaryk. Brun. Math. 14 (2004). Zbl 1154.34300, MR 2144761
-
18Academic Journal
المؤلفون: Bartušek, Miroslav, Cecchi, Mariella, Došlá, Zuzana, Marini, Mauro
مصطلحات موضوعية: keyword:third order differential equation, keyword:damping term, keyword:second order oscillatory equation, keyword:positive solution, keyword:asymptotic properties, msc:34C10, msc:34D05, msc:34K11, msc:34K25
وصف الملف: application/pdf
Relation: mr:MR2856137; zbl:Zbl 1224.34152; reference:[1] Agarwal, R., Aktas, M. F., Tiryaki, A.: On oscillation criteria for third order nonlinear delay differential equations.Arch. Math. (Brno) 45 (2009), 1-18. Zbl 1212.34189, MR 2591657; reference:[2] Baculikova, B., Elabbasy, E. M., Saker, S. H., Dzurina, J.: Oscillation criteria for third-order nonlinear differential equations.Math. Slovaca 58 (2008), 201-202. Zbl 1174.34052, MR 2391214, 10.2478/s12175-008-0068-1; reference:[3] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: On nonoscillatory solutions of third order nonlinear differential equations.Dynam. Systems Appl. 9 (2000), 483-500. MR 1843694; reference:[4] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: Oscillation for third order nonlinear differential equations with deviating argument.Abstr. Appl. Anal. 2010, Article ID 278962, 19 p. (2010). Zbl 1192.34073, MR 2587610; reference:[5] Bartušek, M., Cecchi, M., Marini, M.: On Kneser solutions of nonlinear third order differential equations.J. Math. Anal. Appl. 261 (2001), 72-84. Zbl 0995.34025, MR 1850957, 10.1006/jmaa.2000.7473; reference:[6] Cecchi, M., Došlá, Z., Marini, M.: On third order differential equations with property A and B.J. Math. Anal. Appl. 231 (1999), 509-525. MR 1669163, 10.1006/jmaa.1998.6247; reference:[7] Cecchi, M., Došlá, Z., Marini, M.: On nonlinear oscillations for equations associated to disconjugate operators.Nonlinear Anal., Theory Methods Appl. 30 (1997), 1583-1594. MR 1490081, 10.1016/S0362-546X(97)00028-X; reference:[8] Coles, W. J.: Boundedness of solutions of two-dimensional first order differential systems.Boll. Un. Mat. Ital. 4 (1971), 225-231. Zbl 0229.34027, MR 0293162; reference:[9] Jaroš, J., Kusano, T., Marić, V.: Existence of regularly and rapidly varying solutions for a class of third order nonlinear ordinary differential equations.Publ. Inst. Math. Beograd 79 (2006), 51-64. MR 2275338, 10.2298/PIM0693051J; reference:[10] Kiguradze, I.: An oscillation criterion for a class of ordinary differential equations.Diff. Urav. 28 (1992), 201-214. Zbl 0768.34018, MR 1184921; reference:[11] Marini, M.: Criteri di limitatezza per le soluzioni dell'equazione lineare del secondo ordine.Boll. Un. Mat. Ital. 11 (1975), 154-165. Zbl 0332.34027, MR 0372326; reference:[12] Mojsej, I.: Asymptotic properties of solutions of third-order nonlinear differential equations with deviating argument.Nonlinear Analysis 68 (2008), 3581-3591. Zbl 1151.34053, MR 2401369, 10.1016/j.na.2007.04.001; reference:[13] Mojsej, I., Ohriska, J.: Comparison theorems for noncanonical third order nonlinear differential equations.Central Eur. J. Math. 5 (2007), 154-16. Zbl 1128.34021, MR 2287717, 10.2478/s11533-006-0044-3; reference:[14] Saker, S. H.: Oscillation criteria of Hille and Nehari types for third order delay differential equations.Commun. Appl. Anal. 11 (2007), 451-468. Zbl 1139.34049, MR 2368196; reference:[15] Tiryaki, A., Aktas, M. F.: Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping.J. Math. Anal. Appl. 325 (2007), 54-68. Zbl 1110.34048, MR 2273028, 10.1016/j.jmaa.2006.01.001; reference:[16] Tunc, C.: On the non-oscillation of solutions of some nonlinear differential equations of third order.Nonlinear Dyn. Syst. Theory 7 (2007), 419-430. Zbl 1140.34415, MR 2367678
-
19Academic Journal
المؤلفون: Kamo, Ken-ichi, Usami, Hiroyuki
مصطلحات موضوعية: keyword:quasilinear ordinary differential equation, keyword:asymptotic form, keyword:unbounded solution, msc:34C11, msc:34D05, msc:35B40, msc:35D05, msc:35D30, msc:35J62
وصف الملف: application/pdf
Relation: mr:MR2471173; zbl:Zbl 1174.34433; reference:[1] Bellman, R.: Stability Theory of Differential Equations.McGraw-Hill New York (1953) (Reprint: Dover, 1969). Zbl 0053.24705, MR 0061235; reference:[2] Berkovich, L. M.: The generalized Emden-Fowler equation.In: Symmetry in Nonlinear Physics. Proc. 2nd International Conference, Kyiv, Ukraine, July 7-13, 1997 Institute of Mathematics of the National Academy of Sciences of Ukraine Kyiv (1997), 155-163. Zbl 0952.34030, MR 1600976; reference:[3] Kamo, K.: Asymptotic equivalence for positive decaying solutions of quasilinear ordinary differential equations and its application to elliptic problems.Arch. Math., Brno 40 (2004), 209-217. MR 2068692; reference:[4] Kamo, K., Usami, H.: Asymptotic forms of positive solutions of second-order quasilinear ordinary differential equation.Adv. Math. Sci. Appl. 10 (2000), 673-688. MR 1807447; reference:[5] Kamo, K., Usami, H.: Asymptotic forms of positive solutions of second-order quasilinear ordinary differential equations with sub-homogeneity.Hiroshima Math. J. 31 (2001), 35-49. Zbl 0997.34038, MR 1820693, 10.32917/hmj/1151511146; reference:[6] Kiguradze, I. T., Chanturiya, T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.Kluwer Dordrecht (1992).; reference:[7] Kura, T.: The weak supersolution-subsolution method for second order quasilinear elliptic equations.Hiroshima Math. J. 19 (1989), 1-36. Zbl 0735.35056, MR 1009660, 10.32917/hmj/1206129479; reference:[8] Lima, P. M.: Numerical methods and asymptotic error expansions for the Emden-Fowler equations.J. Comput. Appl. Math. 70 (1996), 245-266. Zbl 0854.65067, MR 1399872, 10.1016/0377-0427(95)00203-0; reference:[9] Luning, C. D., Perry, W. L.: Positive solutions of negative exponent generalized Emden-Fowler boundary value problems.SIAM J. Math. Anal. 12 (1981), 874-879. Zbl 0478.34021, MR 0635240, 10.1137/0512073; reference:[10] Mizukami, M., Naito, M., Usami, H.: Asymptotic behavior of solutions of a class of second order quasilinear ordinary differential equations.Hiroshima Math. J. 32 (2002), 51-78. Zbl 1017.34053, MR 1892669, 10.32917/hmj/1151007642; reference:[11] Tanigawa, T.: Existence and asymptotic behavior of positive solutions of second order quasilinear differential equations.Adv. Math. Sci. Appl. 9 (1999), 907-938. Zbl 1025.34043, MR 1725693
-
20Academic Journal
المؤلفون: Sugie, Jitsuro, Onitsuka, Masakazu
مصطلحات موضوعية: keyword:global asymptotic stability, keyword:half-linear differential systems, keyword:growth conditions, keyword:eigenvalue, msc:34D05, msc:34D23, msc:37B25, msc:37B55
وصف الملف: application/pdf
Relation: mr:MR2493428; zbl:Zbl 1212.34156; reference:[1] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations.Kluwer Academic Publishers, Dordrecht-Boston-London, 2002. Zbl 1073.34002, MR 2091751; reference:[2] Bihari, I.: On the second order half-linear differential equation.Studia Sci. Math. Hungar. 3 (1968), 411–437. Zbl 0167.37403, MR 0267190; reference:[3] Coppel, W. A.: Stability and Asymptotic Behavior of Differential Equations.Heath, Boston, 1965. Zbl 0154.09301, MR 0190463; reference:[4] Desoer, C. A.: Slowly varying system $\dot{x}=A(t)x$.IEEE Trans. Automat. Control AC-14 (1969), 780–781. MR 0276562, 10.1109/TAC.1969.1099336; reference:[5] Dickerson, J. R.: Stability of linear systems with parametric excitation.Trans. ASME Ser. E J. Appl. Mech. 37 (1970), 228–230. Zbl 0215.44602, MR 0274876, 10.1115/1.3408450; reference:[6] Došlý, O., Řehák, P.: Half-linear Differential Equations.North-Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. MR 2158903; reference:[7] Elbert, Á.: Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations.Ordinary and Partial Differential Equations (Dundee, 1982), Lecture Notes in Math. 964, Springer-Verlag, Berlin-Heidelberg-New York. Zbl 0528.34034, MR 0693113; reference:[8] Elbert, Á.: A half-linear second order differential equation.Qualitative Theory of Differential Equations, Vol I, II (Szeged, 1979) (Farkas, M., ed.), Colloq. Math. Soc. János Bolyai 30, North-Holland, Amsterdam-New York, 1981, pp. 153–180. Zbl 0511.34006, MR 0680591; reference:[9] Elbert, Á.: Asymptotic behaviour of autonomous half-linear differential systems on the plane.Studia Sci. Math. Hungar. 19 (1984), 447–464. Zbl 0629.34066, MR 0874513; reference:[10] Hatvani, L.: On the asymptotic stability for a two-dimensional linear nonautonomous differential system.Nonlinear Anal. 25 (1995), 991–1002. Zbl 0844.34050, MR 1350721, 10.1016/0362-546X(95)00093-B; reference:[11] Hatvani, L.: Integral conditions on the asymptotic stability for the damped linear oscillator with small damping.Proc. Amer. Math. Soc. 124 (1996), 415–422. Zbl 0844.34051, MR 1317039, 10.1090/S0002-9939-96-03266-2; reference:[12] Hatvani, L., Krisztin, T., Totik, V.: A necessary and sufficient condition for the asymptotic stability of the damped oscillator.J. Differential Equations 119 (1995), 209–223. Zbl 0831.34052, MR 1334491, 10.1006/jdeq.1995.1087; reference:[13] Hatvani, L., Totik, V.: Asymptotic stability for the equilibrium of the damped oscillator.Differential Integral Equations 6 (1993), 835–848. MR 1222304; reference:[14] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation.Results Math. 43 (2003), 129–149. Zbl 1047.34034, MR 1962855, 10.1007/BF03322729; reference:[15] LaSalle, J. P., Lefschetz, S.: Stability by Liapunov’s Direct Method, with Applications.Mathematics in Science and Engineering 4, Academic Press, New-York-London, 1961. MR 0132876; reference:[16] Li, H.-J., Yeh, C.-C.: Sturmian comparison theorem for half-linear second-order differential equations.Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1193–1204. Zbl 0873.34020, MR 1362999; reference:[17] Markus, L., Yamabe, H.: Global stability criteria for differential systems.Osaka Math. J. 12 (1960), 305–317. Zbl 0096.28802, MR 0126019; reference:[18] Mirzov, J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems.J. Math. Anal. Appl. 53 (1976), 418–425. Zbl 0327.34027, MR 0402184, 10.1016/0022-247X(76)90120-7; reference:[19] Pucci, P., Serrin, J.: Asymptotic stability for intermittently controlled nonlinear oscillators.SIAM J. Math. Anal. 25 (1994), 815–835. Zbl 0809.34067, MR 1271312, 10.1137/S0036141092240679; reference:[20] Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method.Applied Mathematical Sciences 22, Springer-Verlag, New York-Heidelberg-Berlin, 1977. Zbl 0364.34022, MR 0450715; reference:[21] Sugie, J., Onitsuka, M., Yamaguchi, A.: Asymptotic behavior of solutions of nonautonomous half-linear differential systems.Studia Sci. Math. Hungar. 44 (2007), 159–189. Zbl 1174.34042, MR 2325518; reference:[22] Sugie, J., Yamaoka, N.: Comparison theorems for oscillation of second-order half-linear differential equations.Acta Math. Hungar. 111 (2006), 165–179. Zbl 1116.34030, MR 2188979, 10.1007/s10474-006-0029-5; reference:[23] Vinograd, R. E.: On a criterion of instability in the sense of Lyapunov of the solutions of a linear system of ordinary differential equations.Dokl. Akad. Nauk 84 (1952), 201–204. MR 0050749; reference:[24] Yoshizawa, T.: Stability Theory by Liapunov’s Second Method.Math. Society Japan, Tokyo (1966). MR 0208086; reference:[25] Zubov, V. I.: Mathematical Methods for the Study of Automatic Control Systems.Pergamon Press, New-York-Oxford-London-Paris, 1962. Zbl 0103.06001, MR 0151695