-
1Conference
المؤلفون: Cabada, Alberto, Cid, José Angel, Pouso, Rodrigo L.
وصف الملف: application/pdf
-
2Academic Journal
المؤلفون: Heikkilä, Seppo, Ye, Guoju
مصطلحات موضوعية: keyword:integrability, keyword:Henstock-Kurzweil integral, keyword:ordered Banach space, keyword:order cone, keyword:chain, keyword:fixed point, keyword:functional integral equation, keyword:Volterra, keyword:Cauchy problem, msc:26A39, msc:28B15, msc:34A36, msc:34A37, msc:45N05, msc:46B40, msc:47H07, msc:47H10
وصف الملف: application/pdf
Relation: mr:MR3010237; zbl:Zbl 1274.45017; reference:[1] Carl, S., Heikkilä, S.: On discontinuous implicit and explicit abstract impulsive boundary value problems.Nonlinear Anal., Theory Methods Appl. 41 (2000), 701-723. MR 1780640, 10.1016/S0362-546X(98)00305-8; reference:[2] Federson, M., Bianconi, M.: Linear Fredholm integral equations and the integral of Kurzweil.J. Appl. Anal. 8 (2002), 83-110. Zbl 1043.45010, MR 1921473, 10.1515/JAA.2002.83; reference:[3] Federson, M., Schwabik, Š.: Generalized ordinary differential equations approach to impulsive retarded functional differential equations.Differ. Integral Equ. 19 (2006), 1201-1234. MR 2278005; reference:[4] Federson, M., Táboas, P.: Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals.Nonlinear Anal., Theory Methods Appl. 50 (2002), 389-407. Zbl 1011.34070, MR 1906469, 10.1016/S0362-546X(01)00769-6; reference:[5] Guo, D., Cho, Y. J., Zhu, J.: Partial Ordering Methods in Nonlinear Problems.Nova Science Publishers, Inc. New York (2004). Zbl 1116.45007, MR 2084490; reference:[6] Heikkilä, S., Kumpulainen, S., Kumpulainen, M.: On improper integrals and differential equations in ordered Banach spaces.J. Math. Anal. Appl. 319 (2006), 579-603. Zbl 1105.34037, MR 2227925, 10.1016/j.jmaa.2005.06.051; reference:[7] Heikkilä, S., Lakshmikantham, V.: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations.Marcel Dekker, Inc. New York (1994). Zbl 0804.34001, MR 1280028; reference:[8] Heikkilä, S., Seikkala, S.: On non-absolute functional Volterra integral equations and impulsive differential equations in ordered Banach spaces.Electron. J. Differ. Equ., paper No. 103 (2008), 1-11. Zbl 1168.45011, MR 2430900; reference:[9] Heikkilä, S., Ye, G.: Convergence and comparison results for Henstock-Kurzweil and McShane integrable vector-valued functions.Southeast Asian Bull. Math. 35 (2011), 407-418. Zbl 1240.26025, MR 2856387; reference:[10] Lu, J., Lee, P.-Y.: On singularity of Henstock integrable functions.Real Anal. Exch. 25 (2000), 795-797. Zbl 1015.26016, MR 1778532, 10.2307/44154035; reference:[11] Satco, B.-R.: Nonlinear Volterra integral equations in Henstock integrability setting.Electron. J. Differ. Equ., paper No. 39 (2008), 1-9. Zbl 1169.45300, MR 2392943; reference:[12] Schwabik, Š., Ye, G.: Topics in Banach Space Integration.World Scientific Hackensack (2005). Zbl 1088.28008, MR 2167754; reference:[13] Sikorska-Nowak, A.: On the existence of solutions of nonlinear integral equations in Banach spaces and Henstock-Kurzweil integrals.Ann. Pol. Math. 83 (2004), 257-267. Zbl 1101.45006, MR 2111712, 10.4064/ap83-3-7; reference:[14] Sikorska-Nowak, A.: Existence theory for integrodifferential equations and Henstock-Kurzweil integral on Banach spaces.J. Appl. Math., Article ID31572 (2007), 1-12. MR 2317885, 10.1155/2007/31572; reference:[15] Sikorska-Nowak, A.: Existence of solutions of nonlinear integral equations in Banach spaces and Henstock-Kurzweil integrals.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 227-238. MR 2377959; reference:[16] Sikorska-Nowak, A.: Nonlinear integrodifferential equations of mixed type in Banach spaces.Int. J. Math. Math. Sci., Article ID65947 (2007), 1-14. Zbl 1147.45009, MR 2336140, 10.1155/2007/65947; reference:[17] Sikorska-Nowak, A.: Nonlinear integral equations in Banach spaces and Henstock-Kurzweil-Pettis integrals.Dyn. Syst. Appl. 17 (2008), 97-107. Zbl 1154.45011, MR 2433893
-
3Academic Journal
المؤلفون: Răsvan, Vladimir
مصطلحات موضوعية: keyword:time lag, keyword:extended nonlinearity, keyword:absolute stability, msc:34A36, msc:34D20, msc:34K20, msc:93C23, msc:93D10
وصف الملف: application/pdf
Relation: mr:MR2856132; zbl:Zbl 1224.34246; reference:[1] Anosov, D. V.: About the stability of equilibria of the relay systems.Russian Avtomat. i Telemekhanika 20 (1959), 135-149. MR 0104530; reference:[2] Gelig, A. Kh.: Stability analysis of nonlinear discontinuous control systems with non-unique equilibrium state.Russian Avtomat. i Telemekhanika 25 (1964), 153-160. MR 0182485; reference:[3] Gelig, A. Kh.: Stability of controlled systems with bounded nonlinearities.Russian Avtomat. i Telemekhanika 29 (1969), 15-22. Zbl 0209.16101, MR 0453038; reference:[4] Gelig, A. Kh., Leonov, G. A., Yakubovich, V. A.: Stability of Nonlinear Systems with Non-unique Equilibrium State.Nauka, Moskva, 1978 Russian; World Scientific, Singapore, 2004. English.; reference:[5] Halanay, A.: Differential Equations. Stability. Oscillations.Time Lags. Academic Press, New York (1966). Zbl 0144.08701, MR 0216103; reference:[6] Halanay, A.: On the controllability of linear difference-differential systems.Math. Systems Theory Econom. 2 (1969), 329-336 (1969). Zbl 0185.23601, MR 0321566, 10.1007/978-3-642-46196-5_16; reference:[7] Popov, V. M.: Hyperstability of Control Systems.Editura Academiei, Bucharest & Springer, Berlin (1973). Zbl 0276.93033, MR 0387749; reference:[8] Răsvan, Vl.: Absolute Stability of Time Lag Control Systems.Romanian Editura Academiei, Bucharest, 1975 improved Russian version by Nauka, Moskva, 1983. MR 0453048; reference:[9] Răsvan, Vl., Danciu, D., Popescu, D.: Nonlinear and time delay systems for flight control.Math. Repts. 11 (2009), 359-367. Zbl 1212.34247, MR 2656171; reference:[10] Richard, J. P., Gouaisbaut, F., Perruquetti, W.: Sliding mode control in the presence of delay.Kybernetika 37 (2001), 277-294. Zbl 1265.93046, MR 1859086
-
4Academic Journal
المؤلفون: Papageorgiou, Nikolaos S., Papalini, Francesca
مصطلحات موضوعية: keyword:one dimensional $p$-Laplacian, keyword:maximal monotone operator, keyword:pseudomonotone operator, keyword:generalized pseudomonotonicity, keyword:coercive operator, keyword:first nonzero eigenvalue, keyword:upper solution, keyword:lower solution, keyword:truncation map, keyword:penalty function, keyword:multiplicity result, msc:34A36, msc:34B15, msc:34C25
وصف الملف: application/pdf
Relation: mr:MR1942658; zbl:Zbl 1090.34013; reference:[1] Ahmad S., Lazer A.: Critical point theory and a theorem of Amaral and Pera.Bollettino U.M.I. 6 (1984), 583–598. Zbl 0603.34036, MR 0774464; reference:[2] Boccardo L., Drábek P., Giacchetti D., Kučera M.: Generalization of Fredholm alternative for some nonlinear boundary value problem.Nonlinear Anal. T.M.A. 10 (1986), 1083–1103. MR 0857742; reference:[3] Dang H., Oppenheimer S. F.: Existence and uniqueness results for some nonlinear boundary value problems.J. Math. Anal. Appl. 198 (1996), 35–48. MR 1373525; reference:[4] Del Pino M., Elgueta M., Manasevich R.: A homotopic deformation along p of a Leray Schauder degree result and existence for $(%7C u^{\prime } %7C^{p-2}u^{\prime })^{\prime }+ f(t,u)=0, u(0)=u(T)=0, p>1^*$.J. Differential Equations 80 (1989), 1–13. Zbl 0708.34019, MR 1003248; reference:[5] Del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e.Nonlinear Anal. T.M.A. 18 (1992), 79–92. Zbl 0761.34032, MR 1138643; reference:[6] Drábek P.: Solvability of boundary value problems with homogeneous ordinary differential operator.Rend. Istit. Mat. Univ. Trieste 8 (1986), 105–124. MR 0928322; reference:[7] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and asymmetric nonlinearities.Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. Zbl 0824.34026, MR 1310080; reference:[8] Fabry C., Mawhin J., Nkashama M. N.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations.Bull. London Math. Soc. 18 (1986), 173–180. Zbl 0586.34038, MR 0818822; reference:[9] Fonda A., Lupo D.: Periodic solutions of second order ordinary differential differential equations.Bollettino U.M.I. 7 (1989), 291–299. MR 1026756; reference:[10] Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, New York (1977). Zbl 0361.35003, MR 0473443; reference:[11] Gossez J.-P., Omari P.: A note on periodic solutions for second order ordinary differential equation.Bollettino U.M.I. 7 (1991), 223–231.; reference:[12] Guo Z.: Boundary value problems of a class of quasilinear differential equations.Diff. Integral Equations 6 (1993), 705–719. MR 1202567; reference:[13] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume I: Theory.Kluwer, Dordrecht, The Netherlands (1997). Zbl 0887.47001, MR 1485775; reference:[14] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume II: Applications.Kluwer, Dordrecht, The Netherlands (2000). Zbl 0943.47037, MR 1741926; reference:[15] Kesavan S.: Topics in Functional Analysis and Applications.Wiley, New York (1989). Zbl 0666.46001, MR 0990018; reference:[16] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian like operators.J. Differential Equations 145 (1998), 367–393. MR 1621038; reference:[17] Mawhin J., Willem M.: Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations.J. Differential Equations 2 (1984), 264–287. Zbl 0557.34036, MR 0741271; reference:[18] Zeidler E.: Nonlinear Functional Analysis and its Applications II.Springer-Verlag, New York (1985). MR 0768749
-
5Academic Journal
المؤلفون: Papageorgiou, Nikolaos S., Yannakakis, Nikolaos
مصطلحات موضوعية: keyword:multiple solutions, keyword:periodic problem, keyword:one-dimensional $p$-Laplacian, keyword:discontinuous vector field, keyword:nonsmooth Palais-Smale condition, keyword:locally Lipschitz function, keyword:generalized subdifferential, keyword:critical point, keyword:Saddle Point Theorem, keyword:Ekeland variational principle, msc:34A36, msc:34B15, msc:34C25, msc:47J30
وصف الملف: application/pdf
Relation: mr:MR1921589; zbl:Zbl 1090.34035; reference:[1] Boccardo L., Drábek P., Giachetti D., Kučera M.: Generalization of Fredholm alternative for nonlinear differential operators.Nonlinear Anal. 10 (1986), 1083–1103. MR 0857742; reference:[2] Chang K. C.: Variational methods for non-differentiable functionals and their applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102–129. Zbl 0487.49027, MR 0614246; reference:[3] Clarke F. H.: Optimization and Nonsmooth Analysis.Wiley, New York 1983. Zbl 0582.49001, MR 0709590; reference:[4] Dang H., Oppenheimer S. F.: Existence and uniqueness results for some nonlinear boundary value problems.J. Math. Anal. Appl. 198 (1996), 35–48. MR 1373525; reference:[5] De Coster C.: On pairs of positive solutions for the one dimensional $p$-Laplacian.Nonlinear Anal. 23 (1994), 669–681. MR 1297285; reference:[6] Del Pino M., Elgueta M., Manasevich R.: A homotopic deformation along p of a Leray-Schauder degree result and existence for $(%7Cu^{\prime }%7C^{p-2}u^{\prime })^{\prime }+f(t,u)=0,\;u(0)=u(T)=0$.J. Differential Equations 80 (1989), 1–13. Zbl 0708.34019, MR 1003248; reference:[7] Del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ode.Nonlinear Anal. 18 (1992), 79–92. MR 1138643; reference:[8] Drábek P., Invernizzi S.: On the periodic bvp for the forced Duffing equation with jumping nonlinearity.Nonlinear Anal. 10 (1986), 643–650. Zbl 0616.34010, MR 0849954; reference:[9] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and assymetric nonlinearities.Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. MR 1310080; reference:[10] Fabry C., Mawhin J., Nkashama M.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations.Bull. London Math. Soc. 18 (1986), 173–180. Zbl 0586.34038, MR 0818822; reference:[11] Guo Z.: Boundary value problems of a class of quasilinear ordinary differential equations.Differential Integral Equations 6 (1993), 705–719. Zbl 0784.34018, MR 1202567; reference:[12] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Vol I: Theory.Kluwer, The Netherlands, 1997. MR 1485775; reference:[13] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Vol II: Applications.Kluwer, The Netherlands, 2000. MR 1741926; reference:[14] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian-like operators.J. Differential Equations 145 (1998), 367–393. MR 1621038; reference:[15] Papageorgiou N. S., Yannakakis N.: Nonlinear boundary value problems.Proc. Indian Acad. Sci. Math. Sci. 109 (1999), 211–230. Zbl 0952.34035, MR 1687731; reference:[16] Szulkin A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems.Ann. Inst. H. Poincarè Non Linèaire 3 (1986), 77–109. Zbl 0612.58011, MR 0837231; reference:[17] Tang C.-L.: Existence and multiplicity of periodic solutions for nonautonomous second order systems.Nonlinear Anal. 32 (1998), 299–304. Zbl 0949.34032, MR 1610641; reference:[18] Zhang M.: Nonuniform nonresonance at the first eigenvalue of the $p$-Laplacian.Nonlinear Anal. 29 (1997), 41–51. Zbl 0876.35039, MR 1447568; reference:[19] Mawhin J. M., Willem M.: Critical Point Theory and Hamiltonian Systems.Springer, Berlin (1989). Zbl 0676.58017, MR 0982267
-
6Academic Journal
المؤلفون: Schwabik, Štefan
وصف الملف: application/pdf
Relation: mr:MR1822806; zbl:Zbl 1090.34514; reference:1. Halanay A., Wexler D.: Qualitative Theory of Systems with Impulses.Editura Acad. Rep. Soc. Romania, Bucuresti, 1968 (Romanian). MR 0233016; reference:2. Kurzweil J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czechoslovak Math. J., 7 (82), 1957, 418–449. Zbl 0090.30002, MR 0111875; reference:3. Schwabik Š.: Generalized Ordinary Differential Equations.World Scientific, Singapore 1992. Zbl 0781.34003, MR 1200241