-
1Academic Journal
المؤلفون: Abathun, Addisalem, Bøgvad, Rikard
مصطلحات موضوعية: keyword:asymptotic zero-distribution, keyword:hypergeometric polynomial, keyword:saddle point method, msc:30C15, msc:33C05
وصف الملف: application/pdf
Relation: mr:MR3881893; zbl:Zbl 07031694; reference:[1] Abathun, A., Bøgvad, R.: Asymptotic distribution of zeros of a certain class of hypergeometric polynomials.Comput. Methods Funct. Theory 16 (2016), 167-185. Zbl 1339.33009, MR 3503349, 10.1007/s40315-015-0131-1; reference:[2] Andrews, G. E., Askey, R., Roy, R.: Special Functions.Encyclopedia of Mathematics and Its Applications 71, Cambridge University Press, Cambridge (1999). Zbl 0920.33001, MR 1688958, 10.1017/CBO9781107325937; reference:[3] Bleistein, N.: Mathematical Methods for Wave Phenomena.Computer Science and Applied Mathematics, Academic Press, Orlando (1984). Zbl 0554.35002, MR 0755514, 10.1016/B978-0-08-091695-8.50001-7; reference:[4] Boggs, K., Duren, P.: Zeros of hypergeometric functions.Comput. Methods Funct. Theory 1 (2001), 275-287. Zbl 1009.33004, MR 1931616, 10.1007/BF03320990; reference:[5] Borcea, J., Bøgvad, R., Shapiro, B.: Homogenized spectral problems for exactly solvable operators: asymptotics of polynomial eigenfunctions.Publ. Res. Inst. Math. Sci. 45 (2009), 525-568 corrigendum ibid. 48 2012 229-233. Zbl 1182.30008, MR 2510511, 10.2977/prims/1241553129; reference:[6] Bruijn, N. G. de: Asymptotic Methods in Analysis.Bibliotheca Mathematica 4, North-Holland Publishing, Amsterdam (1961). Zbl 0109.03502, MR 0177247; reference:[7] Driver, K., Duren, P.: Asymptotic zero distribution of hypergeometric polynomials.Numer. Algorithms 21 (1999), 147-156. Zbl 0935.33004, MR 1725722, doi.org/10.1023/A:1019197027156; reference:[8] Duren, P. L., Guillou, B. J.: Asymptotic properties of zeros of hypergeometric polynomials.J. Approximation Theory 111 (2001), 329-343. Zbl 0983.33008, MR 1849553, 10.1006/jath.2001.3580
-
2Academic Journal
المؤلفون: Murugusundaramoorthy, G., Vijaya, K., Raina, R. K.
مصطلحات موضوعية: keyword:harmonic univalent starlike functions, keyword:Dziok-Srivastava operator, keyword:distortion bounds, keyword:extreme points, keyword:uniformly convex functions, msc:30C45, msc:30C50, msc:33C05, msc:33C20
وصف الملف: application/pdf
Relation: mr:MR2591659; zbl:Zbl 1212.30052; reference:[1] Avici, Y., Zlotkiewicz, E.: On harmonic univalent mappings.Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1990), 1–7. MR 1157872; reference:[2] Carlson, B. C., Shaffer, B.: Starlike and prestarlike hypergeometric functions.SIAM J. Math. Anal. 15 (2002), 737 – 745. MR 0747433, 10.1137/0515057; reference:[3] Clunie, J., Sheil-Small, T.: Harmonic univalent functions.Ann. Acad. Sci. Fenn. Math. 9 (1984), 3–25. Zbl 0506.30007, MR 0752388; reference:[4] Dziok, J., Srivastava, H. M.: Certain subclasses of analytic functions associated with the generalized hypergeometric function.Integral Transform. Spec. Funct. 14 (2003), 7–18. Zbl 1040.30003, MR 1949212, 10.1080/10652460304543; reference:[5] Goodman, A. W.: On uniformly convex functions.Ann. Polon. Math. 1991 (56), 87–92. MR 1145573; reference:[6] Jahangiri, J. M., Silverman, H.: Harmonic univalent functions with varying rrguments.Int. J. Appl. Math. 8 (3) (2002), 267–275. MR 1898507; reference:[7] Murugusundaramoorthy, G.: A class of Ruscheweyh-Type harmonic univalent functions with varying arguments.Southwest J. Pure Appl. Math. 2 (2003), 90–95. Zbl 1050.30010, MR 2052983; reference:[8] Rønning, F.: Uniformly convex functions and a corresponding class of starlike functions.Proc. Amer. Math. Soc. 118 (1993), 189–196. MR 1128729; reference:[9] Rosy, T., Stephen, B. A., Subramanian, K. G., Jahangiri, J. M.: Goodman-Ronning type harmonic univalent functions.Kyungpook Math. J. 41 (2001), 45–54. Zbl 0988.30012, MR 1847436; reference:[10] Ruscheweyh, S.: New criteria for univalent functions.Proc. Amer. Math. Soc. 49 (1975), 109–115. Zbl 0303.30006, MR 0367176, 10.1090/S0002-9939-1975-0367176-1; reference:[11] Ruscheweyh, S.: Neighborhoods of univalent functions.Proc. Amer. Math. Soc. 81 (1981), 521–528. Zbl 0458.30008, MR 0601721, 10.1090/S0002-9939-1981-0601721-6; reference:[12] Srivastava, H. M., Owa, S.: Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses of analytic functions.Nagoya Math. J. 106 (1998), 1–28. MR 0894409; reference:[13] Vijaya, K.: Studies on certain subclasses of harmonic functions.Ph.D. thesis, VIT University, 2006.
-
3Academic Journal
المؤلفون: Metwally, M. S., Mohamed, M. T., Shehata, A.
مصطلحات موضوعية: keyword:matrix functions, keyword:Hermite matrix polynomials, keyword:recurrence relation, keyword:Hermite matrix differential equation, keyword:Rodrigues's formula, msc:15A16, msc:15A54, msc:15A60, msc:33C05, msc:33C45
وصف الملف: application/pdf
Relation: mr:MR2472489; zbl:Zbl 1199.15079; reference:[1] Batahan, R. S.: A new extension of Hermite matrix polynomials and its applications.Linear Algebra Appl. 419 (2006), 82-92. Zbl 1106.15016, MR 2263112; reference:[2] Defez, E., Jódar, L.: Some applications of Hermite matrix polynomials series expansions.J. Comput. Appl. Math. 99 (1998), 105-117. MR 1662687, 10.1016/S0377-0427(98)00149-6; reference:[3] Defez, E., Hervás, A., Jódar, L., Law, A.: Bounding Hermite matrix polynomials.Math. Computer Modelling 40 (2004), 117-125. Zbl 1061.33007, MR 2091530, 10.1016/j.mcm.2003.11.004; reference:[4] Jódar, L., Company, R.: Hermite matrix polynomials and second order matrix differential equations.J. Approx. Theory Appl. 12 (1996), 20-30. MR 1465570; reference:[5] Jódar, L., Defez, E.: Some new matrix formulas related to Hermite matrix polynomials theory.Proceedings International Workshop on Orthogonal Polynomials in Mathematical Physics, Leganés, 1996 M. Alfaro Universidad Carlos III. de Madrid, Servicio de Publicaciones, 1997 93-101. MR 1466771; reference:[6] Jódar, L., Defez, E.: A connection between Laguerre's and Hermite's matrix polynomials.Appl. Math. Lett. 11 (1998), 13-17. Zbl 1074.33011, MR 1490373, 10.1016/S0893-9659(97)00125-0; reference:[7] Jódar, L., Defez, E.: On Hermite matrix polynomials and Hermite matrix functions.J. Approx. Theory Appl. 14 (1998), 36-48. MR 1651470; reference:[8] Lebedev, N. N.: Special Functions and Their Applications.Dover, New York (1972). Zbl 0271.33001, MR 0350075; reference:[9] Rainville, E. D.: Special Functions.Macmillan, New York (1962). MR 0107725; reference:[10] Sayyed, K. A. M., Metwally, M. S., Batahan, R. S.: On generalized Hermite matrix polynomials.Electron. J. Linear Algebra 10 (2003), 272-279. Zbl 1038.33005, MR 2025009; reference:[11] Sayyed, K. A. M., Metwally, M. S., Batahan, R. S.: Gegenbauer matrix polynomials and second order matrix differential equations.Divulg. Mat. 12 (2004), 101-115. Zbl 1102.33010, MR 2123993; reference:[12] Srivastava, H. M., Manocha, H. L.: A Treatise on Generating Functions.Ellis Horwood, New York (1984). Zbl 0535.33001, MR 0750112
-
4Academic Journal
المؤلفون: Mouayn, Zouhaïr
مصطلحات موضوعية: keyword:Flensted-Jensen’s functions, keyword:universal covering group, keyword:Landau Hamiltonian, keyword:hyperbolic disc, msc:33C05, msc:35J10, msc:35Q40, msc:43A90, msc:57M10, msc:58C40
وصف الملف: application/pdf
Relation: mr:MR2305867; zbl:Zbl 1164.33301; reference:[1] L. Landau, E. Lifschitz: Quantum Mechanics: Non-relativistic Theory.Pergamon Press, New York, 1965.; reference:[2] E. V. Ferapontov, A. P. Veselov: Integrable Schrödinger operators with magnetic fields: Factorization method on curved surfaces.J. Math. Phys. 42 (2001), 590–607. MR 1808441, 10.1063/1.1334903; reference:[3] A. Comtet: On the Landau levels on the hyperbolic plane.Ann. Phys. 173 (1986), 185–209. Zbl 0635.58034, MR 0870891; reference:[4] J. Negro, M. A. del Olmo, and A. Rodriguez-Marco: Landau quantum systems: an approach based on symmetry.J. Phys. A, Math. Gen. 35 (2002), 2283–2307. MR 1908725, 10.1088/0305-4470/35/9/317; reference:[5] M. Flensted-Jensen: Spherical functions on a simply connected semisimple Lie group.Am. J. Math. 99 (1977), 341–361. Zbl 0372.43005, MR 0458063, 10.2307/2373823; reference:[6] Z. Mouayn: Characterization of hyperbolic Landau states by coherent state transforms.J. Phys. A, Math. Gen. 36 (2003), 8071–8076. Zbl 1058.81037, MR 2007510, 10.1088/0305-4470/36/29/311; reference:[7] S. A. Albeverio, P. Exner, and V. A. Geyler: Geometric phase related to point-interaction transport on a magnetic Lobachevsky plane.Lett. Math. Phys. 55 (2001), 9–16. MR 1845795, 10.1023/A:1010943228970; reference:[8] I. S. Gradshteyn, I. M. Ryzhik: Table of Integrals, Series and Products.Academic Press, New York-London-Toronto, 1980. MR 0582453; reference:[9] : Analyse Harmonique (Ecole d’été, d’analyse harmonique, Université de Nancy I, Septembre 15 au Octobre 3, 1980). Les Cours du C.I.M.P.A.P. Eymard, J. L. Clerc, J. Faraut, M. Raïs, and R. Takahashi (eds.), Centre International de Mathématiques Pures et Appliquées, C.I.M.P.A, 1980. (French)
-
5Dissertation/ Thesis
المؤلفون: Njionou Sadjang, Patrick
المساهمون: Kassel, Universität, FB 10, Mathematik und Naturwissenschaften, Institut für Mathematik, Koepf, Wolfram (Prof. Dr.), Foupouagnigni, Mama (Prof. Dr.)
مصطلحات موضوعية: Orthogonal polynomials, Moments, ddc:510, msc:33C05, msc:33C45, msc:33D05, msc:33D45, swd:Orthogonale Polynome
Relation: http://nbn-resolving.org/urn:nbn:de:hebis:34-2013102244291; urn:nbn:de:hebis:34-2013102244291
-
6
-
7Academic Journal
المؤلفون: Gustavsson, Jan
مصطلحات موضوعية: keyword:Legendre polynomials, keyword:Jacobi polynomials, keyword:polylogarithms, msc:33C05, msc:33C45, msc:33E30, msc:34B27, msc:35C05
وصف الملف: application/pdf
Relation: mr:MR1826477; zbl:Zbl 0980.33006; reference:[1] M. Engliš, J. Peetre: Green’s functions for powers of the invariant Laplacian.Canad J. Math. 50 (1998), 40–73. MR 1618718, 10.4153/CJM-1998-004-8; reference:[2] L. Lewin: Structural Properties of Polylogarithms.Math. Surveys Monographs 37, American Mathematical Society, Providence, RI, 1991. Zbl 0745.33009, MR 1148371; reference:[3] Y. L. Luke: The Special Functions and Their Approximation. Volume I.Academic Press, New York, London, 1969. MR 0241700
-
8
المؤلفون: Amares Chattopadhyay, Volker Michel
مصطلحات موضوعية: Cylindrical harmonics, Wave propagation, Mechanical Engineering, Mathematical analysis, Spherical harmonics, msc:86A15, Legendre function, msc:35L05, Bessel functions, Associated Legendre polynomials, symbols.namesake, msc:33C10, Struve function, elasticity problem, Euler's equation of motion, associated Legendre functions, symbols, msc:33C05, msc:74B99, Astrophysics::Earth and Planetary Astrophysics, ddc:510, Legendre polynomials, Bessel function, Mathematics, hypergeometric functions
وصف الملف: application/postscript
-
9Academic Journal
المؤلفون: Shah, Manilal
وصف الملف: application/pdf
Relation: mr:MR0393594; zbl:Zbl 0302.33001; reference:[1] APPELL P., KAMPÉ de FÉRIET J.: Functions Hypergéométriques et Hypersphériques;.Polynomes ďHermites. Paris, Gauthier-Villars, 1926.; reference:[2] BHATT R. C: A summation formula for Appelľs function F2.Isr. J. Math. 3, 1965, 87-88. MR 0188490; reference:[3] ERDÉLYI A.: Higher Transcendental Functions II.McGraw-Hill, New York, 1953.; reference:[4] SRIVASTAVA G. P., SARAN S.: A theorem on Kampé de Fériet function.Proc. Cambridge Philos. Soc. 64, 1968, 435-437. Zbl 0159.35903, MR 0222352; reference:[5] SHAH M.: Some гesults involving generalized function of two variables.J. natur. Sci. Math., 10, 1970, 109-124. MR 0322228
-
10Academic Journal
المؤلفون: Zdráhal, Alois
وصف الملف: application/pdf
Relation: zbl:JFM 14.0190.02; jfm:JFM 14.0190.02