يعرض 1 - 17 نتائج من 17 نتيجة بحث عن '"msc:15A45"', وقت الاستعلام: 0.74s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Friedland, Shmuel

    وصف الملف: application/pdf

    Relation: mr:MR4160782; zbl:07285946; reference:[1] Avin, C., Borokhovich, M., Haddad, Y., Kantor, E., Lotker, Z., Parter, M., Peleg, D.: Generalized Perron-Frobenius theorem for multiple choice matrices, and applications.Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013 SIAM, Philadelphia (2013), 478-497. Zbl 1422.90013, MR 3186769, 10.1137/1.9781611973105.35; reference:[2] Avin, C., Borokhovich, M., Haddad, Y., Kantor, E., Lotker, Z., Parter, M., Peleg, D.: Generalized Perron-Frobenius theorem for nonsquare matrices.Available at https://arxiv.org/abs/1308.5915 (2013), 55 pages. MR 3186769; reference:[3] Berman, A., Plemmons, R. J.: Nonnegative Matrices in Mathematical Sciences.Computer Science and Applied Mathematics. Academic Press, New York (1979). Zbl 0484.15016, MR 0544666, 10.1137/1.9781611971262; reference:[4] Boutry, G., Elad, M., Golub, G. H., Milanfar, P.: The generalized eigenvalue problem for nonsquare pencils using a minimal perturbation approach.SIAM J. Matrix Anal. Appl. 27 (2005), 582-601. Zbl 1100.65035, MR 2179690, 10.1137/S0895479803428795; reference:[5] Boyd, S., Vandenberghe, L.: Convex Optimization.Cambridge University Press, New York (2004). Zbl 1058.90049, MR 2061575, 10.1017/CBO9780511804441; reference:[6] Choi, M.-D.: Completely positive linear maps on complex matrices.Linear Algebra Appl. 10 (1975), 285-290. Zbl 0327.15018, MR 0376726, 10.1016/0024-3795(75)90075-0; reference:[7] Chu, D., Golub, G. H.: On a generalized eigenvalue problem for nonsquare pencils.SIAM J. Matrix Anal. Appl. 28 (2006), 770-787. Zbl 1128.15004, MR 2262980, 10.1137/050628258; reference:[8] Collatz, L.: Einschliessungssatz für die charakteristischen Zahlen von Matrizen.Math. Z. 48 (1942), 221-226 German. Zbl 0027.00604, MR 0008590, 10.1007/BF01180013; reference:[9] Erdelyi, I.: On the matrix equation $Ax=\lambda Bx$.J. Math. Anal. Appl. 17 (1967), 119-132. Zbl 0153.04902, MR 0202734, 10.1016/0022-247X(67)90169-2; reference:[10] Friedland, S.: Characterizations of the spectral radius of positive operators.Linear Algebra Appl. 134 (1990), 93-105. Zbl 0707.15005, MR 1060012, 10.1016/0024-3795(90)90008-Z; reference:[11] Friedland, S.: Characterizations of spectral radius of positive operators on $C^*$ algebras.J. Funct. Anal. 97 (1991), 64-70. Zbl 0745.47024, MR 1105655, 10.1016/0022-1236(91)90016-X; reference:[12] Friedland, S.: Matrices: Algebra, Analysis and Applications.World Scientific, Hackensack (2016). Zbl 1337.15002, MR 3467205, 10.1142/9567; reference:[13] Friedland, S., Loewy, R.: On the extreme points of quantum channels.Linear Algebra Appl. 498 (2016), 553-573. Zbl 1334.15086, MR 3478578, 10.1016/j.laa.2016.02.001; reference:[14] Frobenius, G. F.: Über Matrizen aus positiven Elementen.Berl. Ber. 1908 (1908), 471-476 German \99999JFM99999 39.0213.03.; reference:[15] Frobenius, G. F.: Über Matrizen aus positiven Elementen II.Berl. Ber. 1909 (1909), 514-518 German \99999JFM99999 40.0202.02.; reference:[16] Frobenius, G. F.: Über Matrizen aus nicht negativen Elementen.Berl. Ber. 1912 (1912), 456-477 German \99999JFM99999 43.0204.09.; reference:[17] Gantmacher, F. R.: The Theory of Matrices. Vol. 1.Chelsea Publishing, New York (1959). Zbl 0927.15001, MR 0107649; reference:[18] Gantmacher, F. R.: The Theory of Matrices. Vol. 2.Chelsea Publishing, New York (1959). Zbl 0927.15002, MR 0107649; reference:[19] Golub, G. H., Loan, C. F. Van: Matrix Computations.Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013). Zbl 1268.65037, MR 3024913; reference:[20] Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.Algorithms and Combinatorics 2. Springer, Berlin (1988). Zbl 0634.05001, MR 0936633, 10.1007/978-3-642-97881-4; reference:[21] Hastings, M. B.: Superadditivity of communication capacity using entangled inputs.Nature Phys. 5 (2009), 255-257. 10.1038/nphys1224; reference:[22] Holevo, A. S.: The additivity problem in quantum information theory.Proceedings of the International Congress of Mathematicians (ICM). Vol. III European Mathematical Society, Zürich (2006), 999-1018. Zbl 1100.94007, MR 2275716, 10.4171/022-3/49; reference:[23] Holevo, A. S.: Quantum Systems, Channels, Information: A Mathematical Introduction.De Gruyter Studies in Mathematical Physics 16. De Gruyter, Berlin (2012). Zbl 1332.81003, MR 2986302, 10.1515/9783110273403; reference:[24] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (2013). Zbl 1267.15001, MR 2978290, 10.1017/9781139020411; reference:[25] Karlin, S.: Positive operators.J. Math. Mech. 8 (1959), 905-937. Zbl 0087.11002, MR 0114138, 10.1512/iumj.1959.8.58058; reference:[26] Kreĭn, M. G., Rutman, M. A.: Linear operators leaving invariant cone in a Banach space.Usp. Mat. Nauk 3 (1948), 3-95 Russian. Zbl 0030.12902, MR 0027128; reference:[27] Lovász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity.CBMS-NSF Regional Conference Series in Applied Mathematics 50. SIAM, Philadelphia (1986). Zbl 0606.68039, MR 0861822, 10.1137/1.9781611970203; reference:[28] Mangasarian, O. L.: Perron-Frobenius properties of $Ax-\lambda Bx$.J. Math. Anal. Appl. 36 (1971), 86-102. Zbl 0224.15010, MR 0285555, 10.1016/0022-247X(71)90020-5; reference:[29] Mendl, C. B., Wolf, M. M.: Unital quantum channels - convex structure and revivals of Birkhoff’s theorem.Commun. Math. Phys. 289 (2009), 1057-1086. Zbl 1167.81011, MR 2511660, 10.1007/s00220-009-0824-2; reference:[30] Meyer, C. D.: Matrix Analysis and Applied Linear Algebra.SIAM, Philadelphia (2000). Zbl 0962.15001, MR 1777382, 10.1137/1.9780898719512; reference:[31] Minc, H.: Nonnegative Matrices.Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1988). Zbl 0638.15008, MR 0932967; reference:[32] Perron, O.: Zur Theorie der Matrices.Math. Ann. 64 (1907), 248-263 German \99999JFM99999 38.0202.01. MR 1511438, 10.1007/BF01449896; reference:[33] Petz, D.: Quantum Information Theory and Quantum Statistics.Theoretical and Mathematical Physics. Springer, Berlin (2008). Zbl 1145.81002, MR 2363070, 10.1007/978-3-540-74636-2; reference:[34] Pillai, S. U., Suel, T., Cha, S.: The Perron-Frobenius theorem: Some of its applications.IEEE Signal Process. Magazine 22 (2005), 62-75. 10.1109/MSP.2005.1406483; reference:[35] Schaeffer, H. H.: Banach Lattices and Positive Operators.Die Grundlehren der mathematischen Wissenschaften 215. Springer, Berlin (1974). Zbl 0296.47023, MR 0423039, 10.1007/978-3-642-65970-6; reference:[36] Seneta, E.: Non-Negative Matrices and Markov Chains.Springer Series in Statistics. Springer, New York (1981). Zbl 0471.60001, MR 0719544, 10.1007/0-387-32792-4; reference:[37] Shirokov, M. E.: On the structure of optimal sets for a quantum channel.Probl. Inf. Transm. 42 (2006), 282-297 Translation from Probl. Peredachi Inf. 42 2006 23-40. Zbl 1237.94039, MR 2278809, 10.1134/S0032946006040028; reference:[38] Shor, P. W.: Additivity of the classical capacity of entanglement-breaking quantum channels.J. Math. Phys. 43 (2002), 4334-4340. Zbl 1060.94004, MR 1924442, 10.1063/1.1498000; reference:[39] Srikant, R.: The Mathematics of Internet Congestion Control.Systems and Control: Foundations and Applications. Birkhäuser, Boston (2004). Zbl 1086.68018, MR 2018967, 10.1007/978-0-8176-8216-3; reference:[40] Wielandt, H.: Unzerlegbare, nicht-negative Matrizen.Math. Z. 52 (1950), 642-648 German. Zbl 0035.29101, MR 0035265, 10.1007/BF02230720

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3763982; zbl:Zbl 06861542; reference:[1] Arnold, B. C.: Majorization: Here, there and everywhere.Stat. Sci. 22 (2007), 407-413. Zbl 1246.01010, MR 2416816, 10.1214/0883423060000000097; reference:[2] Balakrishnan, N., Haidari, A., Masoumifard, K.: Stochastic comparisons of series and parallel systems with generalized exponential components.IEEE Trans. Reliab. 64 (2015), 333-348. 10.1109/tr.2014.2354192; reference:[3] Balakrishnan, N., (eds.), C. R. Rao: Order Statistics: Applications.Handbook of Statistics 17, North-Holland, Amsterdam (1998). Zbl 0897.00016, MR 1672283, 10.1016/S0169-7161(98)17001-3; reference:[4] Balakrishnan, N., Zhao, P.: Hazard rate comparison of parallel systems with heterogeneous gamma components.J. Multivariate Anal. 113 (2013), 153-160. Zbl 1253.60022, MR 2984362, 10.1016/j.jmva.2011.05.001; reference:[5] Barmalzan, G., Najafabadi, A. T. Payandeh, Balakrishnan, N.: Likelihood ratio and dispersive orders for smallest order statistics and smallest claim amounts from heterogeneous Weibull sample.Stat. Probab. Lett. 110 (2016), 1-7. Zbl 06572266, MR 3474731, 10.1016/j.spl.2015.11.009; reference:[6] Bourguignon, M., Saulo, H., Fernandez, R. Nobre: A new Pareto-type distribution with applications in reliability and income data.Physica A: Statistical Mechanics and its Applications 457 (2016), 166-175. MR 3493327, 10.1016/j.physa.2016.03.043; reference:[7] David, H. A., Nagaraja, H. N.: Order Statistics.Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester (2003). Zbl 1053.62060, MR 1994955, 10.1002/0471722162; reference:[8] Dykstra, R., Kochar, S., Rojo, J.: Stochastic comparisons of parallel systems of heterogeneous exponential components.J. Stat. Plann. Inference 65 (1997), 203-211. Zbl 0915.62044, MR 1622774, 10.1016/S0378-3758(97)00058-X; reference:[9] Fang, L., Balakrishnan, N.: Likelihood ratio order of parallel systems with heterogeneous Weibull components.Metrika 79 (2016), 693-703. Zbl 1373.62494, MR 3518582, 10.1007/s00184-015-0573-5; reference:[10] Fang, L., Balakrishnan, N.: Ordering results for the smallest and largest order statistics from independent heterogeneous exponential-Weibull random variables.Statistics 50 (2016), 1195-1205. Zbl 06673721, MR 3552988, 10.1080/02331888.2016.1142545; reference:[11] Fang, L., Wang, Y.: Comparing lifetimes of series and parallel systems with heterogeneous Fréchet components.Symmetry 9 (2017), Paper No. 10, 9 pages. MR 3618925, 10.3390/sym9010010; reference:[12] Fang, L., Zhang, X.: New results on stochastic comparison of order statistics from heterogeneous Weibull populations.J. Korean Stat. Soc. 41 13-16 (2012). Zbl 1296.62106, MR 2933211, 10.1016/j.jkss.2011.05.004; reference:[13] Fang, L., Zhang, X.: Stochastic comparisons of parallel systems with exponentiated Weibull components.Stat. Probab. Lett. 97 (2015), 25-31. Zbl 1314.60063, MR 3299747, 10.1016/j.spl.2014.10.017; reference:[14] Fang, L., Zhu, X., Balakrishnan, N.: Stochastic comparisons of parallel and series systems with heterogeneous Birnbaum-Saunders components.Stat. Probab. Lett. 112 131-136 (2016). Zbl 1338.60051, MR 3475497, 10.1016/j.spl.2016.01.021; reference:[15] Gupta, N., Patra, L. K., Kumar, S.: Stochastic comparisons in systems with Frèchet distributed components.Oper. Res. Lett. 43 612-615 (2015). MR 3423556, 10.1016/j.orl.2015.09.009; reference:[16] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities.University Press, Cambridge (1934). Zbl 0010.10703, MR 0944909; reference:[17] Khaledi, B.-E., Farsinezhad, S., Kochar, S. C.: Stochastic comparisons of order statistics in the scale model.J. Stat. Plann. Inference 141 (2011), 276-286. Zbl 1207.62108, MR 2719493, 10.1016/j.jspi.2010.06.006; reference:[18] Khaledi, B.-E., Kochar, S.: Stochastic orderings of order statistics of independent random variables with different scale parameters.Commun. Stat., Theory Methods 36 (2007), 1441-1449. Zbl 1119.60013, MR 2405269, 10.1080/03610920601077212; reference:[19] Marshall, A. W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications.Mathematics in Science and Engineering 143, Academic Press, New York (1979). Zbl 0437.26007, MR 0552278, 10.1016/c2009-0-22048-4; reference:[20] Nadarajah, S., Jiang, X., Chu, J.: Comparisons of smallest order statistics from Pareto distributions with different scale and shape parameters.Ann. Oper. Res. 254 191-209 (2017). Zbl 06764423, MR 3665743, 10.1007/s10479-017-2444-0; reference:[21] Pečarić, J. E., Proschan, F., Tong, Y. L.: Convex Functions, Partial Orderings, and Statistical Applications.Mathematics in Science and Engineering 187, Academic Press, Boston (1992). Zbl 0749.26004, MR 1162312, 10.1016/s0076-5392(08)x6162-4; reference:[22] Shaked, M., Shanthikumar, J. G.: Stochastic Orders.Springer Series in Statistics, New York (2007). Zbl 1111.62016, MR 2265633, 10.1007/978-0-387-34675-5; reference:[23] Zhao, P., Balakrishnan, N.: Dispersive ordering of fail-safe systems with heterogeneous exponential components.Metrika 74 203-210 (2011). Zbl 05963332, MR 2822156, 10.1007/s00184-010-0297-5

  3. 3
    Academic Journal

    المؤلفون: Lin, Minghua

    وصف الملف: application/pdf

    Relation: mr:MR3556864; zbl:Zbl 06644030; reference:[1] Bhatia, R.: Positive Definite Matrices.Texts and Readings in Mathematics 44. New Delhi: Hindustan Book Agency, Princeton Series in Applied Mathematics Princeton University Press, Princeton (2007). Zbl 1125.15300, MR 2284176; reference:[2] Bourin, J.-C., Lee, E.-Y., Lin, M.: Positive matrices partitioned into a small number of Hermitian blocks.Linear Algebra Appl. 438 (2013), 2591-2598. Zbl 1262.15037, MR 3005316; reference:[3] Pillis, J. de: Transformations on partitioned matrices.Duke Math. J. 36 (1969), 511-515. Zbl 0186.33703, MR 0325649, 10.1215/S0012-7094-69-03661-8; reference:[4] Fiedler, M., Markham, T. L.: On a theorem of Everitt, Thompson, and de Pillis.Math. Slovaca 44 (1994), 441-444. Zbl 0828.15023, MR 1301952; reference:[5] Hiroshima, T.: Majorization criterion for distillability of a bipartite quantum state.Phys. Rev. Lett. 91 (2003), no. 057902, 4 pages. http://dx.doi.org/10.1103/PhysRevLett.91.057902. 10.1103/PhysRevLett.91.057902; reference:[6] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (2013). Zbl 1267.15001, MR 2978290; reference:[7] Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions.Phys. Lett. A 223 (1996), 1-8. Zbl 1037.81501, MR 1421501, 10.1016/S0375-9601(96)00706-2; reference:[8] Jenčová, A., Ruskai, M. B.: A unified treatment of convexity of relative entropy and related trace functions, with conditions for equality.Rev. Math. Phys. 22 (2010), 1099-1121. Zbl 1218.81025, MR 2733251, 10.1142/S0129055X10004144; reference:[9] Lin, M.: Some applications of a majorization inequality due to Bapat and Sunder.Linear Algebra Appl. 469 (2015), 510-517. Zbl 1310.15033, MR 3299075; reference:[10] Petz, D.: Quantum Information Theory and Quantum Statistics.Theoretical and Mathematical Physics Springer, Berlin (2008). Zbl 1145.81002, MR 2363070; reference:[11] Rastegin, A. E.: Relations for symmetric norms and anti-norms before and after partial trace.J. Stat. Phys. 148 (2012), 1040-1053. MR 2975521, 10.1007/s10955-012-0569-8

  4. 4
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3556868; zbl:Zbl 06644034; reference:[1] Johnson, C. R., Marijuán, C., Pisonero, M.: Inequalities for linear combinations of monomials in p-Newton sequences.Linear Algebra Appl. 439 (2013), 2038-2056. Zbl 1305.15022, MR 3090453; reference:[2] Johnson, C. R., Marijuán, C., Pisonero, M.: Matrices and spectra satisfying the Newton inequalities.Linear Algebra Appl. 430 (2009), 3030-3046. Zbl 1189.15009, MR 2517856; reference:[3] Johnson, C. R., Marijuán, C., Pisonero, M., Walch, O.: Monomials inequalities for Newton coefficients and determinantal inequalities for p-Newton matrices.Trends in Mathematics, Notions of Positivity and the Geometry of Polynomials Springer, Basel Brändén, Petter et al. (2011), 275-282. MR 3051171; reference:[4] Newton, I.: Arithmetica Universalis: Sive de Compositione et Resolutione Arithmetica Liber.William Whiston London (1707).; reference:[5] Wang, X.: A simple proof of Descartes's rule of signs.Am. Math. Mon. 111 (2004), 525-526. 10.2307/4145072

  5. 5
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3556867; zbl:Zbl 06644033; reference:[1] Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products.Linear Algebra Appl. 26 (1979), 203-241. Zbl 0495.15018, MR 0535686, 10.1016/0024-3795(79)90179-4; reference:[2] Ando, T., Hiai, F.: Log majorization and complementary Golden-Thompson type inequalities.Linear Algebra Appl. 197/198 (1994), 113-131. Zbl 0793.15011, MR 1275611; reference:[3] Araki, H.: On an inequality of Lieb and Thirring.Lett. Math. Phys. 19 (1990), 167-170. Zbl 0705.47020, MR 1039525, 10.1007/BF01045887; reference:[4] Audenaert, K. M. R.: A norm inequality for pairs of commuting positive semidefinite matrices.Electron. J. Linear Algebra (electronic only) 30 (2015), 80-84. Zbl 1326.15030, MR 3318430; reference:[5] Bhatia, R.: The Riemannian mean of positive matrices.Matrix Information Geometry Springer, Berlin F. Nielsen et al. (2013), 35-51. Zbl 1271.15019, MR 2964446, 10.1007/978-3-642-30232-9_2; reference:[6] Bhatia, R.: Postitive Definite Matrices.Princeton Series in Applied Mathematics Princeton University Press, Princeton (2007). MR 3443454; reference:[7] Bhatia, R.: Matrix Analysis.Graduate Texts in Mathematics 169 Springer, New York (1997). MR 1477662; reference:[8] Bhatia, R., Grover, P.: Norm inequalities related to the matrix geometric mean.Linear Algebra Appl. 437 (2012), 726-733. Zbl 1252.15023, MR 2921731; reference:[9] Bourin, J.-C.: Matrix subadditivity inequalities and block-matrices.Int. J. Math. 20 (2009), 679-691. Zbl 1181.15030, MR 2541930, 10.1142/S0129167X09005509; reference:[10] Bourin, J.-C., Uchiyama, M.: A matrix subadditivity inequality for {$f(A+B)$} and {$f(A)+f(B)$}.Linear Algebra Appl. 423 (2007), 512-518. Zbl 1123.15013, MR 2312422; reference:[11] Fiedler, M., Pták, V.: A new positive definite geometric mean of two positive definite matrices.Linear Algebra Appl. 251 (1997), 1-20. Zbl 0872.15014, MR 1421263; reference:[12] Hayajneh, S., Kittaneh, F.: Trace inequalities and a question of Bourin.Bull. Aust. Math. Soc. 88 (2013), 384-389. Zbl 1287.47011, MR 3189289, 10.1017/S0004972712001104; reference:[13] Lin, M.: Remarks on two recent results of Audenaert.Linear Algebra Appl. 489 (2016), 24-29. Zbl 1326.15033, MR 3421835; reference:[14] Lin, M.: Inequalities related to {$2\times2$} block PPT matrices.Oper. Matrices 9 (2015), 917-924. MR 3447594, 10.7153/oam-09-54; reference:[15] Marshall, A. W., Olkin, I., Arnold, B. C.: Inequalities: Theory of Majorization and Its Applications.Springer Series in Statistics Springer, New York (2011). Zbl 1219.26003, MR 2759813; reference:[16] Papadopoulos, A.: Metric Spaces, Convexity and Nonpositive Curvature.IRMA Lectures in Mathematics and Theoretical Physics 6 European Mathematical Society, Zürich (2005). Zbl 1115.53002, MR 2132506; reference:[17] Pusz, W., Woronowicz, S. L.: Functional calculus for sesquilinear forms and the purification map.Rep. Math. Phys. 8 (1975), 159-170. Zbl 0327.46032, MR 0420302, 10.1016/0034-4877(75)90061-0; reference:[18] Thompson, R. C.: Singular values, diagonal elements, and convexity.SIAM J. Appl. Math. 32 (1977), 39-63. Zbl 0361.15009, MR 0424847, 10.1137/0132003; reference:[19] Zhan, X.: Matrix Inequalities.Lecture Notes in Mathematics 1790 Springer, Berlin (2002). Zbl 1018.15016, MR 1927396, 10.1007/b83956

  6. 6
    Academic Journal

    المؤلفون: Zhang, Xiao-Dong, Ding, Chang-Xing

    وصف الملف: application/pdf

    Relation: mr:MR2486625; zbl:Zbl 1224.15042; reference:[1] Bapat, R. B., Ragharan, T. E. S.: Nonnegative Matrices and Applications.Cambridge University Press (1997). MR 1449393; reference:[2] Bapat, R. B., Sunder, V. S.: On majorization and Schur products.Linear Algebra and its Applications 72 (1985), 107-117. Zbl 0577.15016, MR 0815257; reference:[3] Fallat, S. M., Johnson, C. R.: Determinantal inequalities: ancient history and recent advances, Algebra and its Applications (Athens, OH, 1999), 199-212.Contemporary Math. 259, Amer. Math. Soc., Providence, RI (2000). MR 1778502; reference:[4] Horn, R. A., Johnson, C. R.: Topics in Matrix Analysis.Cambridge University Press (1991). Zbl 0729.15001, MR 1091716; reference:[5] Marshall, A. W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications.Academic Press (1979). Zbl 0437.26007, MR 0552278; reference:[6] Mirsky, L.: An introduction to linear algebra.Oxford University, Oxford (1955). Zbl 0066.26305, MR 0074364; reference:[7] Oppenheim, A.: Inequalities connected with definite Hermitian forms.J. London Math. Soc. 5 (1930), 114-119. MR 1574213, 10.1112/jlms/s1-5.2.114

  7. 7
    Academic Journal

    المؤلفون: Song, Seok-Zun, Park, Kwon-Ryong

    وصف الملف: application/pdf

    Relation: mr:MR2455931; zbl:Zbl 1174.15001; reference:[1] Beasley, L. B., Guterman, A. E.: Rank inequalities over semirings.J. Korean Math. Soc. 42 (2005), 223-241. Zbl 1127.15001, MR 2121497, 10.4134/JKMS.2005.42.2.223; reference:[2] Beasley, L. B., Guterman, A. E.: Linear preservers of extremes of rank inequalities over semirings: Factor rank.J. Math. Sci., New York 131 (2005), 5919-5938. MR 2153693, 10.1007/s10958-005-0451-1; reference:[3] Beasley, L. B., Guterman, A. E., Neal, C. L.: Linear preservers for Sylvester and Frobenius bounds on matrix rank.Rocky Mt. J. Math. 36 (2006), 67-80. Zbl 1134.15003, MR 2228184, 10.1216/rmjm/1181069488; reference:[4] Beasley, L. B., Lee, S.-G., Song, S.-Z.: Linear operators that preserve pairs of matrices which satisfy extreme rank properties.Linear Algebra Appl. 350 (2002), 263-272. Zbl 1004.15025, MR 1906757; reference:[5] Beasley, L. B., Pullman, N. J.: Semiring rank versus column rank.Linear Algebra Appl. 101 (1988), 33-48. Zbl 0642.15002, MR 0941294; reference:[6] Guterman, A. E.: Linear preservers for matrix inequalities and partial orderings.Linear Algebra Appl. 331 (2001), 75-87. Zbl 0985.15018, MR 1832488; reference:[7] Marsaglia, G., Styan, P.: When does $\operatorname{rank}(A+B)=\operatorname{rank}(A)+\operatorname{rank}(B)$?.Canad. Math. Bull. 15 (1972), 451-452. MR 0311674, 10.4153/CMB-1972-082-8; reference:[8] al., P. Pierce at: A survey of linear preserver problems.Linear Multilinear Algebra 33 (1992), 1-119. 10.1080/03081089208818176; reference:[9] Song, S.-Z.: Linear operators that preserve maximal column ranks of nonnegative integer matrices.Proc. Am. Math. Soc. 126 (1998), 2205-2211. Zbl 0896.15009, MR 1443409, 10.1090/S0002-9939-98-04308-1

  8. 8
    Academic Journal

    المؤلفون: Lashkaripour, R., Foroutannia, D.

    وصف الملف: application/pdf

    Relation: mr:MR2337614; zbl:Zbl 1174.15017; reference:[1] G. Bennett: Factorizing the classical inequalities.Mem. Amer. Math. Soc. 576 (1996), 1–130. Zbl 0857.26009, MR 1317938; reference:[2] G. Bennett: Inequalities complimentary to Hardy.Quart. J. Math. Oxford (2) 49 (1998), 395–432. Zbl 0929.26013, MR 1652236; reference:[3] D. Borwein and F. P. Cass: Nörlund matrices as bounded operators on $l_p$.Arch. Math. 42 (1984), 464–469. MR 0756700, 10.1007/BF01190697; reference:[4] D. Borwein: Nörlund operators on $l_p$.Canada. Math. Bull. 36 (1993), 8–14. MR 1205888, 10.4153/CMB-1993-002-x; reference:[5] G. H. Hardy: An inequality for Hausdorff means.J. London Math. Soc. 18 (1943), 46–50. Zbl 0061.12704, MR 0008854; reference:[6] G. H. Hardy: Divergent Series.2nd edition, American Mathematical Society, 2000.; reference:[7] G. H. Hardy and J. E. Littlewood: A maximal theorem with function-theoretic.Acta Math. 54 (1930), 81–116. MR 1555303, 10.1007/BF02547518; reference:[8] G. H. Hardy, J. E. Littlewood and G. Polya: Inequalities.2nd edition, Cambridge University press, Cambridge, 2001. MR 0944909; reference:[9] G. J. O. Jameson and R. Lashkaripour: Lower bounds of operators on weighted $l_p$ spaces and Lorentz sequence spaces.Glasgow Math. J. 42 (2000), 211–223. MR 1763740, 10.1017/S0017089500020061; reference:[10] G. J. O. Jameson and R. Lashkaripour: Norms of certain operators on weighted $l_p$ spaces and Lorentz sequence spaces.J. Inequalities in Pure and Applied Mathematics, 3, Issue 1, Article 6 (2002). MR 1888921; reference:[11] R. Lashkaripour: Lower bounds and norms of operators on Lorentz sequence spaces.Doctoral dissertation (Lancaster, 1997).; reference:[12] R. Lashkaripour: Transpose of the Weighted Mean operators on Weighted Sequence Spaces.WSEAS Transaction on Mathematics, Issue 4, 4 (2005), 380–385. MR 2119309; reference:[13] R. Lashkaripour and D. Foroutannia: Lower Bounds for Matrices on Weighted Sequence Spaces.Journal of Sciences Islamic Republic of IRAN, 18 (2007), 49–56. MR 2499829; reference:[14] J. Pecaric, I. Peric and R. Roki: On bounds for weighted norms for matrices and integral operators.Linear Algebra and Appl. 326 (2001), 121–135. MR 1815954

  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1942656; zbl:Zbl 1090.15015; reference:[1] Amemiya: Advanced econometrics.University Press, Cambridge, USA, 1985.; reference:[2] Bo-Ying Wang, Fuzhen Zhang: Schur complements and matrix inequalities of Hadamard products.Linear and Multilinear Algebra 43 (1997), 315–326. MR 1613081; reference:[3] Horn R. A., Johnson C. R.: Matrix analysis.Cambridge University Press, New York, 1985. Zbl 0576.15001, MR 0832183; reference:[4] Marcus M., Khan N. A.: A note on the Hadamard product.Canad. Math. Bull. 2 (1959), 81–83. Zbl 0092.01602, MR 0105424; reference:[5] Mond B., Pecaric J. E.: Inequalities for the Hadamard product of matrix.SIAM J. Matrix Anal. Appl., 19 (1) (1998), 66–70. MR 1610004; reference:[6] Shuangzhe Liu: Matrix results on the Khatri-Rao and Tracy-Singh products.Linear Algebra Appl. 289 (1999), 266–277. MR 1670989; reference:[7] Shuangzhe Liu: Inequalities involving Hadamard products of positive semidefinite matrices.J. Math. Anal. Appl. 243 (2000), 458–463. MR 1741535; reference:[8] Zhan Xingzhi: Inequalities involving Hadamard products and unitarily invariant norms.Adv. Math. 27 (5) (1998), 416–422. Zbl 1054.15503, MR 1711666

  10. 10
    Academic Journal

    مصطلحات موضوعية: msc:05C40, msc:05C50, msc:15A09, msc:15A42, msc:15A45, msc:15A51, msc:60J10

    وصف الملف: application/pdf

    Relation: mr:MR1614076; zbl:Zbl 0931.15013; reference:[1] F.L. Bauer, Eckart Deutsch, and J. Stoer: Abschätzungen für die Eigenwerte positive linearer Operatoren.Lin. Alg. Appl. 2 (1969), 275–301. MR 0245587, 10.1016/0024-3795(69)90031-7; reference:[2] A. Ben-Israel and T.N. Greville: Generalized Inverses: Theory and Applications.Academic Press, New-York, 1973.; reference:[3] A. Berman and R.J. Plemmons: Nonnegative Matrices in the Mathematical Sciences.SIAM Publications, Philadelphia, 1994. MR 1298430; reference:[4] S.L. Campbell and C.D. Meyer, Jr.: Generalized Inverses of Linear Transformations.Dover Publications, New York, 1991. MR 1105324; reference:[5] Eckart Deutsch and C. Zenger: Inclusion domains for eigenvalues of stochastic matrices.Numer. Math. 18 (1971), 182–192. MR 0301908, 10.1007/BF01436327; reference:[6] M. Fiedler: Algebraic connectivity of graphs.Czechoslovak Math. J. 23 (1973), 298–305. Zbl 0265.05119, MR 0318007; reference:[7] M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory.Czechoslovak Math. J. 25 (1975), 619–633. MR 0387321; reference:[8] S.J. Kirkland, M. Neumann, and B. Shader: Bounds on the subdominant eigenvalue involving group inverses with applications to graphs.Czechoslovak Math. J. 48(123) (1998), 1–20. MR 1614056, 10.1023/A:1022455208972; reference:[9] S.J. Kirkland, M. Neumann, and B. Shader: Distances in weighted trees via group inverses of Laplacian matrices.SIAM J. Matrix Anal. Appl (to appear). MR 1471996; reference:[10] S.J. Kirkland, M. Neumann, and B. Shader: Characteristic vertices of weighted trees via Perron values.Lin. Multilin. Alg. 40 (1996), 311–325. MR 1384650, 10.1080/03081089608818448; reference:[11] S.J. Kirkland, M. Neumann, and B. Shader: Applications of Paz’s inequality to perturbation bounds ffor Markov chains.Lin. Alg. Appl (to appear).; reference:[12] R. Merris: Characteristic vertices of trees.Lin. Multilin. Alg., 22 (1987), 115–131. Zbl 0636.05021, MR 0936566, 10.1080/03081088708817827; reference:[13] A. Paz: Introduction to Probabilistic Automata.Academic Press, New-York, 1971. Zbl 0234.94055, MR 0289222; reference:[14] E. Seneta: Non-negative Matrices and Markov Chains. Second Edition.Springer Verlag, New-York, 1981, pp. . MR 2209438

  11. 11
    Academic Journal

    المؤلفون: Mond, Bertrand, Pečarić, Josip E.

    مصطلحات موضوعية: msc:15A45, msc:15A54, msc:26A51, msc:26D07

    وصف الملف: application/pdf

    Relation: mr:MR1485051; zbl:Zbl 0963.15019; reference:[1] London D.: Inequalities in quadratic forms.Duke Math. J. 33 (1966), 511-522. Zbl 0166.03901, MR 0204435; reference:[2] Mond B., Pečarić J. E.: Classical Inequalities for Matrix Functions.Utilitas Math. 46 (1994), 155-166. Zbl 0823.15018, MR 1301304; reference:[3] Mond B., Pečarić J. E.: Generalization of a matrix inequality of Ky Fan.J. Math. Anal. Appl. 190 (1995), 244-247. MR 1314116; reference:[4] Marcus M., Minc H.: A Survey of Matrix Theory and Inequalities.Allyn and Bacon, Boston, 1964. MR 0162808; reference:[5] Bellman R.: Introduction to Matrix Analysis.McGraw-Hill, New York, 1960. Zbl 0124.01001, MR 0122820; reference:[6] Vasić P. M., Pečarić J. E.: On the Jensen inequality for monotone functions, I and II.An. Univ. Timisoara Ser. St. Mat. 17, 1 (1979), 95-104; An. Univ. Timisoara Ser. St. Mat. 18, 1 (1980), 95-104. MR 0576070; reference:[7] Beesack P. R., Pečarić J. E.: On Jessen’s inequality for convex functions.J. Math. Anal. Appl. 110 (1985), 536-552. Zbl 0591.26009, MR 0805275; reference:[8] Shisha O., Mond B.: Bounds on Differences of Means.In: Inequalities, Academic Press Inc., 1967, pp. 293-308. MR 0241591; reference:[9] Zhuang, Y-D.: On Inverses of the Hölder Inequality.J. Math. Anal. Appl. 161 (1991), 566-575. Zbl 0752.26009, MR 1132127; reference:[10] Mond B., Pečarić J. E.: Remark on a recent converse of Hölder’s inequality.J. Math. Anal. Appl. 181 (1994), 280-281. Zbl 0803.26008, MR 1257970; reference:[11] Mitrinovic D. S.: Analytic Inequalities.Springer Verlag, Berlin-Heidelberg-New York, 1970. Zbl 0199.38101, MR 0274686

  12. 12
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1342368; zbl:Zbl 0841.65087; reference:[1] T.M. Apostol: Mathematical Analysis.Addison-Wesley, Reading M.A., 1977.; reference:[2] F.L. Bauer, A.S. Householder: Absolute norms and characteristic roots.Numerische Math. 3 (1961), 241–246. MR 0130105, 10.1007/BF01386023; reference:[3] I.E. Butsenieks, E.V. Shcherbinin: Magnetohydrodynamic flow in electrodynamically coupled rectangular ducts I.Magn. Girodinam 2 (1976), 35–40.; reference:[4] J.R. Cannon, R.E. Klein: On the observability and stability of the temperature distribution in a composite head conductor.SIAM J. Appl. Math. 24 (1973), 596–602. MR 0370318, 10.1137/0124061; reference:[5] H.H. Chiu: Theory of irreducible linear systems.Quart. Appl. Maths. XXVII (1969), 87–104. MR 0244596, 10.1090/qam/244596; reference:[6] R.V. Churchill, J.W. Brown: Fourier Series and Boundary Value Problems.McGraw-Hill, New York, 1978. MR 0513825; reference:[7] R. Courant, D. Hilbert: Methods of Mathematical Physics, Vol. II.Interscience, New York, 1962. MR 0065391; reference:[8] G.H. Golub, C.F. van Loan: Matrix Computations.Johns Hopkins Univ. Press, Baltimore M.A., 1985.; reference:[9] K. Gopalsamy: An arms race with deteriorating armaments.Math. Biosci. 37 (1977), 191–203. Zbl 0368.90101, MR 0682615, 10.1016/0025-5564(77)90092-X; reference:[10] J.M. Hill, J.R. Willis: Analytic aspects of heat flow in random two-component laminates.Quart. Appl. Maths. 46 (1988), no. 2, 353–364. MR 0950607, 10.1090/qam/950607; reference:[11] L. Jódar: Computing accurate solutions for coupled systems of second order partial differential equations.Int. J. Computer Math. 37 (1990), 201–212. 10.1080/00207169008803948; reference:[12] L. Jódar: Computing accurate solutions for coupled systems of second order partial differential equations II.Int. J. Computer Math. 46 (1992), 63–75. 10.1080/00207169208804139; reference:[13] A.I. Lee, J.M. Hill: On the general linear coupled system for diffusion in media with two diffusivities.J. Math. Anal. Appl. 89 (1982), 530–557. MR 0677744, 10.1016/0022-247X(82)90116-0; reference:[14] M. Mascagni: An initial-boundary value problem of physiological significance for equations of nerve conduction.Com. Pure Appl. Math. XLII (1989), 213–227. Zbl 0664.92007, MR 0978705, 10.1002/cpa.3160420206; reference:[15] M. Mascagni: The backward Euler method for numerical solution of the Hodgkin-Huxley equations of nerve condition.SIAM J. Numer. Anal. 27 (1990), no. 4, 941–962. MR 1051115, 10.1137/0727054; reference:[16] M. Mascagni: A parallelizing algorithm for compution solutions to arbitrarily branched cable neutron models.J. Neurosc. Methods 36 (1991), 105–114. 10.1016/0165-0270(91)90143-N; reference:[17] C.B. Moler, C.F. van Loan: Nineteen dubious ways to compute the exponential of a matrix.SIAM Review 20 (1978), 801–836. MR 0508383, 10.1137/1020098; reference:[18] M. Sezgin: Magnetohydrodynamic flow in an infinite channel.Int. J. Numer. Methods Fluids 6 (1986), 593–609. Zbl 0597.76116, 10.1002/fld.1650060903; reference:[19] J. Stoer, R. Bulirsch: Introduction to Numerical Analysis.Springer-Verlag, New York, 1980. MR 0557543; reference:[20] K.S. Yee: Explicit solutions for the initial boundary value problem of a system of lossless transmission lines.SIAM J. Appl. Math. 24 (1975), 62–80. MR 0318657, 10.1137/0124008; reference:[21] E.C. Zachmanoglou, D.W. Thoe: Introduction to Partial Differential Equations with Applications.William and Wilkins, Baltimore, 1976. MR 0463623

  13. 13
    Academic Journal

    المؤلفون: Schwarz, Štefan

    مصطلحات موضوعية: msc:15A45, msc:15A48, msc:15A51, msc:60J10

    وصف الملف: application/pdf

    Relation: mr:MR849711; zbl:Zbl 0615.15006; reference:[1] BERMAN A., PLEMMONS R.: Nonnegative Matrices in the Mathematical Sciences.Academic Pгess, New Yoгk and London, 1979. Zbl 0484.15016, MR 0544666; reference:[2] DULMAGE A. L., MENDELSOHN N. S.: The stгucture of powers of non-negative matгices.Canad. J. of Math. 17, 1965, 318-330.; reference:[3] DULMAGE A. L., MENDELSOHN N. S.: Gгaphs and matгices.Graph Theoгy and Theoгetical Physics (Ed. F. Haгaгy), Academic Press, New Yoгk and London, 1967, 167-227. MR 0252247; reference:[4] KI HANG KIM: Boolean Matrix Theoгy and Applications.Maгcel Dekkeг, inc., New Yoгk and Basel, 1982. MR 0655414; reference:[5] KOU L. T.: Fixed length sources and sinks of a gгaph.Math. Japonica 29, 1984, 411-417. MR 0752239; reference:[6] PULLMAN N. J.: On the numbeг of positive entгies in the powers of a non-negative matгix.Canad. Math. Bull. 7, 1964, 525-537. MR 0180562; reference:[7] SCHWARZ Š.: The semigroup of binaгy relations on a finite set.Czech. Math. J. 20, 1970, 632-679. MR 0296190; reference:[8] ISAACSON D., MADSEN R.: Positive columns for stochastic matrices.J. Appl. Prob. 11, 1974, 829-835. Zbl 0301.60052, MR 0409525

  14. 14
    Academic Journal

    المؤلفون: Buoni, John J.

    مصطلحات موضوعية: msc:15A45, msc:47B10

    وصف الملف: application/pdf

    Relation: mr:MR0380487; zbl:Zbl 0307.47023; reference:[1] Davis C.: An Inequality for Traces of Matrix Functions.Czech. Math. J., vol. 15 (1965), pp. 37-41. Zbl 0138.08002, MR 0175914; reference:[2] Dunford N., Schwartz J. T.: Linear Operators (Part II).Interscience, New York (1963). Zbl 0128.34803, MR 0188745

  15. 15
    Academic Journal

    المؤلفون: Thompson, R. C.

    مصطلحات موضوعية: msc:15A45

    وصف الملف: application/pdf

    Relation: mr:MR0419482; zbl:Zbl 0339.15008; reference:[1] E. SEILER B. SIMON: An inequality among determinants.Proc Nat. Acad. Sci. U.S.A. 72 (1975), 3277-3278. MR 0433247; reference:[2] R. C. THOMPSON: Convex and concave functions of singular values of matrix sums.submitted. Zbl 0361.15014

  16. 16
    Academic Journal

    المؤلفون: Vitória, José

    وصف الملف: application/pdf

    Relation: mr:MR0596845; zbl:Zbl 0469.15005; reference:[1] S. Barnet: Matrices in control theory.Van Nostrand. London 1971. MR 0364275; reference:[2] R. Bellman: Introduction to matrix analysis.2nd. edit. Mc-Graw Hill, New York, 1970. Zbl 0216.06101, MR 0258847; reference:[3] J. E. Dennis (JR) J. F. Traub R. P. Weber: On the matrix polynomial, lambda-matrix and eigenvalue problems.Technical Report 71 - 109, Depart. Computer Science, Cornell Univ. 1971.; reference:[4] E. Deutsch: Matricial norms.Numer. Math. 16 (1970), 73 - 84. Zbl 0206.35801, MR 0277552, 10.1007/BF02162408; reference:[5] E. Deutsch: Matricial norms and the zeros of polynomials.Lin. Alg. Appl. 6 (1973), 143 to 148. MR 0311877, 10.1016/0024-3795(73)90012-8; reference:[6] F. R. Dias Agudo: Sobre a equação caracteristica duma matriz.Rev. Fac. Cienc. (Lisboa). Vol. III (1953-1954), 87-136.; reference:[7] K. G. Guderley: On non linear eigenvalue problems for matrices.J. Ind. and Appl. Math. 6 (1958), 335-353. 10.1137/0106024; reference:[8] P. Lancaster: Theory of Matrices.Academic Press, New York, 1969. Zbl 0186.05301, MR 0245579; reference:[9] M. Marden: Geometry of polyomials.American Mathematical Society, Providence, Rhode Island, 2nd. edition, (Math. Survey n° 3), 1966. MR 0225972; reference:[10] D. S. Mitrinovic: Analytic inequalities.Springer-Verlag, Berlin, 1970. Zbl 0199.38101, MR 0274686; reference:[11] M. Parodi: La localisation des valeurs caractéristiques des matrices et ses applications.Gauthier-Villars, Paris, 1969.; reference:[12] F. Robert: Normes vectorielles de vecteurs et de matrices.R.F.T.I. - CHIFFRES, 7, 4 (1964), 261-299. MR 0205433; reference:[13] F. Robert: Sur les normes vectorielles régulières sur un espace de dimension finie.C.R.A.S. Paris, 261 (1965), 5173-5176. MR 0192317; reference:[14] F. Robert: Matrices non-negatives et normes vectorielles.(Cours D.E.A.). Université Scientifique et Médicale, Lyon, 1973.; reference:[15] J. Vitória: Normas vectoriais de vectores e de matrizes.Report. Univ. Lourenço Marques (Mozambique), 1974.; reference:[16] J. Vitória: Matricial norms and lambda-matrices.Rev. Cienc. Mat. (Maputo, Mozambique), 5 (1974-75), 11-30. MR 0457466; reference:[17] J. Vitória: Matricial norms and the differences between the zeros of determinants with polynomial elements.Lin. Alg. its Appl. 28 (1979), 279-283. MR 0549440, 10.1016/0024-3795(79)90139-3

  17. 17
    Academic Journal

    المؤلفون: Seitz, George

    مصطلحات موضوعية: keyword:Schwarz inequality, Chebyshev inequality, msc:15A45

    وصف الملف: application/pdf

    Relation: jfm:JFM 63.0927.01