-
1Academic Journal
المؤلفون: Bardhan, Bijoya, Sen, Mausumi, Sharma, Debashish
مصطلحات موضوعية: keyword:inverse eigenvalue problem, keyword:unicyclic graph, keyword:leading principal submatrices, msc:05C50, msc:15A24, msc:65F18
وصف الملف: application/pdf
Relation: reference:[1] Zarch, M. Babaei, Fazeli, S. A. Shahzadeh: Inverse eigenvalue problem for a kind of acyclic matrices.Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), 2531-2539. MR 4008794, 10.1007/s40995-019-00737-x; reference:[2] Zarch, M. Babaei, Fazeli, S. A. Shahzadeh, Karbassi, S. M.: Inverse eigenvalue problem for matrices whose graph is a banana tree.J. Algorithms Comput. 50 (2018), 89-101.; reference:[3] Chen, W. Y., Li, X., Wang, C., Zhang, X.: Linear time algorithms to the minimum all-ones problem for unicyclic and bicyclic graphs.Workshop on Graphs and Combinatorial Optimization Electronic Notes Discrete Mathematics 17. Elsevier, Amsterdam (2004), 93-98. Zbl 1152.05373, MR 2159881, 10.1016/j.endm.2004.03.018; reference:[4] Chu, M. T.: Inverse eigenvalue problems.SIAM Rev. 40 (1998), 1-39. Zbl 0915.15008, MR 1612561, 10.1137/S00361445963039; reference:[5] Cvetković, D.: Applications of graph spectra: An introduction to the literature.Applications of Graph Spectra Zbornik Radova 13. Matematički Institut SANU, Beograd (2009), 7-31. Zbl 1265.05002, MR 2543252; reference:[6] Gladwell, G. M. L.: Inverse problems in vibration.Appl. Mech. Rev. 39 (1986), 1013-1018. Zbl 0588.73110, MR 0874749, 10.1115/1.3149517; reference:[7] Hadji, M., Chau, M.: On unicyclic graphs spectra: New results.IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Business Engineering (DCABES) IEEE, Paris (2016), 586-593. 10.1109/CSE-EUC-DCABES.2016.245; reference:[8] Haoer, R. S., Atan, K. A., Said, M. R., Khalaf, A. M., Hasni, R.: Zagreb-eccentricity indices of unicyclic graph with application to cycloalkanes.J. Comput. Theor. Nanosci. 13 (2016), 8870-8873. 10.1166/jctn.2016.6055; reference:[9] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (2013). Zbl 1267.15001, MR 2978290, 10.1017/CBO9780511810817; reference:[10] Johnson, C. R., Duarte, A. Leal, Saiago, C. M.: Inverse eigenvalue problems and lists of multiplicities of eigenvalues for matrices whose graph is a tree: The case of generalized stars and double generalized stars.Linear Algebra Appl. 373 (2003), 311-330. Zbl 1035.15010, MR 2022294, 10.1016/S0024-3795(03)00582-2; reference:[11] Li, N.: A matrix inverse eigenvalue problem and its application.Linear Algebra Appl. 266 (1997), 143-152. Zbl 0901.15003, MR 1473198, 10.1016/S0024-3795(96)00639-8; reference:[12] Li, X., Magnant, C., Qin, Z.: Properly Colored Connectivity of Graphs.SpringerBriefs in Mathematics. Springer, Cham (2018). Zbl 1475.05002, MR 3793127, 10.1007/978-3-319-89617-5; reference:[13] Li, X., Wang, J.: On the ABC spectra radius of unicyclic graphs.Linear Algebra Appl. 596 (2020), 71-81. Zbl 1435.05130, MR 4075597, 10.1016/j.laa.2020.03.007; reference:[14] Nylen, P., Uhlig, F.: Inverse eigenvalue problems associated with spring-mass systems.Linear Algebra Appl. 254 (1997), 409-425. Zbl 0879.15007, MR 1436689, 10.1016/S0024-3795(96)00316-3; reference:[15] Peng, J., Hu, X.-Y., Zhang, L.: Two inverse eigenvalue problems for a special kind of matrices.Linear Algebra Appl. 416 (2006), 336-347. Zbl 1097.65053, MR 2242733, 10.1016/j.laa.2005.11.017; reference:[16] Pickmann, H., Egaña, J., Soto, R. L.: Extremal inverse eigenvalue problem for bordered diagonal matrices.Linear Algebra Appl. 427 (2007), 256-271. Zbl 1144.65026, MR 2351358, 10.1016/j.laa.2007.07.020; reference:[17] Pickmann, H., Egaña, J. C., Soto, R. L.: Two inverse eigenproblems for symmetric doubly arrow matrices.Electron. J. Linear Algebra 18 (2009), 700-718. Zbl 1189.65072, MR 2565881, 10.13001/1081-3810.1339; reference:[18] Pickmann-Soto, H., Arela-Pérez, S., Nina, H., Valero, E.: Inverse maximal eigenvalues problems for Leslie and doubly Leslie matrices.Linear Algebra Appl. 592 (2020), 93-112. Zbl 1436.15019, MR 4056072, 10.1016/j.laa.2020.01.019; reference:[19] Sharma, D., Sarma, B. K.: Extremal inverse eigenvalue problem for irreducible acyclic matrices.Appl. Math. Sci. Eng. 30 (2022), 192-209. MR 4451929, 10.1080/27690911.2022.2041631; reference:[20] Sharma, D., Sen, M.: Inverse eigenvalue problems for two special acyclic matrices.Mathematics 4 (2016), Article ID 12, 11 pages. Zbl 1382.65109, 10.3390/math4010012; reference:[21] Sharma, D., Sen, M.: Inverse eigenvalue problems for acyclic matrices whose graph is a dense centipede.Spec. Matrices 6 (2018), 77-92. Zbl 1391.15098, MR 3764333, 10.1515/spma-2018-0008; reference:[22] Sharma, D., Sen, M.: The minimax inverse eigenvalue problem for matrices whose graph is a generalized star of depth 2.Linear Algebra Appl. 621 (2021), 334-344. Zbl 1462.05243, MR 4235267, 10.1016/j.laa.2021.03.021; reference:[23] Wei, Y., Dai, H.: An inverse eigenvalue problem for the finite element model of a vibrating rod.J. Comput. Appl. Math. 300 (2016), 172-182. Zbl 1382.74129, MR 3460292, 10.1016/j.cam.2015.12.038
-
2Academic Journal
المؤلفون: Ma, Yuzheng, Shao, Yanling
مصطلحات موضوعية: keyword:graph, keyword:generalized distance matrix, keyword:generalized distance eigenvalue, keyword:generalized distance spread, msc:05C12, msc:05C50, msc:15A18
وصف الملف: application/pdf
Relation: reference:[1] Ajtai, M., Komlós, J., Szemerédi, E.: A note on Ramsey numbers.J. Comb. Theory, Ser. A 29 (1980), 354-360. Zbl 0455.05045, MR 0600598, 10.1016/0097-3165(80)90030-8; reference:[2] Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph.Linear Algebra Appl. 439 (2013), 21-33. Zbl 1282.05086, MR 3045220, 10.1016/j.laa.2013.02.030; reference:[3] Aouchiche, M., Hansen, P.: Distance spectra of graphs: A survey.Linear Algebra Appl. 458 (2014), 301-386. Zbl 1295.05093, MR 3231823, 10.1016/j.laa.2014.06.010; reference:[4] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext. Springer, Berlin (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6; reference:[5] Buckley, F., Harary, F.: Distance in Graphs.Addison-Wesley, Redwood (1990). Zbl 0688.05017, MR 1045632; reference:[6] Cui, S.-Y., He, J.-X., Tian, G.-X.: The generalized distance matrix.Linear Algebra Appl. 563 (2019), 1-23. Zbl 1403.05083, MR 3872977, 10.1016/j.laa.2018.10.014; reference:[7] Cui, S.-Y., Tian, G.-X., Zheng, L.: On the generalized distance spectral radius of graphs.Available at https://arxiv.org/abs/1901.07695 (2019), 13 pages. 10.48550/arXiv.1901.07695; reference:[8] Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B.: On the sum of Laplacian eigenvalues of graphs.Linear Algebra Appl. 432 (2010), 2214-2221. Zbl 1218.05094, MR 2599854, 10.1016/j.laa.2009.03.038; reference:[9] Johnson, C. R., Kumar, R., Wolkowicz, H.: Lower bounds for the spread of a matrix.Linear Algebra Appl. 71 (1985), 161-173. Zbl 0578.15013, MR 0813042, 10.1016/0024-3795(85)90244-7; reference:[10] Li, X., Mohapatra, E. N., Rodriguez, R. S.: Grüss-type inequalities.J. Math. Anal. Appl. 267 (2002), 434-443. Zbl 1007.26016, MR 1888014, 10.1006/jmaa.2001.7565; reference:[11] Lin, H.: On the sum of $k$ largest distance eigenvalues of graphs.Discrete Appl. Math. 259 (2019), 153-159. Zbl 1407.05151, MR 3944596, 10.1016/j.dam.2018.12.031; reference:[12] Merikoski, J. K., Kumar, R.: Characterizations and lower bounds for the spread of a normal matrix.Linear Algebra Appl. 364 (2003), 13-31. Zbl 1021.15015, MR 1971085, 10.1016/S0024-3795(02)00534-7; reference:[13] Mirsky, L.: The spread of a matrix.Mathematica, Lond. 3 (1956), 127-130. Zbl 0073.00903, MR 0081875, 10.1112/S0025579300001790; reference:[14] Pachpatte, B. G.: Analytic Inequalities: Recent Advances.Atlantis Studies in Mathematics 3. Atlantis Press, Paris (2012). Zbl 1238.26003, MR 3025304, 10.2991/978-94-91216-44-2; reference:[15] Parlett, B. N.: The Symmetric Eigenvalue Problem.Classics in Applied Mathematics 20. SIAM, Philadelphia (1998). Zbl 0885.65039, MR 1490034, 10.1137/1.9781611971163; reference:[16] Pirzada, S., Ganie, H. A., Alhevaz, A., Baghipur, M.: On spectral spread of generalized distance matrix of a graph.Linear Multilinear Algebra 70 (2022), 2819-2835. Zbl 1498.05173, MR 4491639, 10.1080/03081087.2020.1814194; reference:[17] Pirzada, S., Ganie, H. A., Rather, B. A., Shaban, R. Ul: On generalized distance energy of graphs.Linear Algebra Appl. 603 (2020), 1-19. Zbl 1484.05137, MR 4107088, 10.1016/j.laa.2020.05.022; reference:[18] Wiener, H.: Structural determination of paraffin boiling points.J. Am. Chem. Soc. 69 (1947), 17-20. 10.1021/ja01193a005; reference:[19] You, L., Ren, L., Yu, G.: Distance and distance signless Laplacian spread of connected graphs.Discrete Appl. Math. 223 (2017), 140-147. Zbl 1465.05109, MR 3627307, 10.1016/j.dam.2016.12.030; reference:[20] Yu, G., Zhang, H., Lin, H., Wu, Y., Shu, J.: Distance spectral spread of a graph.Discrete Appl. Math. 160 (2012), 2474-2478. Zbl 1251.05100, MR 2957956, 10.1016/j.dam.2012.05.015
-
3Academic Journal
المؤلفون: Bhamre, Vandana P., Pawar, Madhukar M.
مصطلحات موضوعية: keyword:covering energy of poset, keyword:eigenvalue, keyword:spectrum, keyword:upper bound, keyword:lower bound, msc:05B20, msc:05C50, msc:06A07, msc:06A11, msc:06B05, msc:06B99
وصف الملف: application/pdf
Relation: reference:[1] Adiga, C., Bayad, A., Gutman, I., Srinivas, S. A.: The minimum covering energy of a graph.Kragujevac J. Sci. 34 (2012), 39-56.; reference:[2] ndağ, Ş. B. Altı, Bozkurt, D.: Lower bounds for the energy of (bipartite) graphs.MATCH Commun. Math. Comput. Chem. 77 (2017), 9-14. Zbl 1466.92242, MR 3645362; reference:[3] Collatz, L., Sinogowitz, U.: Spektren endlicher Grafen.Abh. Math. Semin. Univ. Hamb. 21 (1957), 63-77 German. Zbl 0077.36704, MR 0087952, 10.1007/BF02941924; reference:[4] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Application.Academic Press, New York (1980). Zbl 0458.05042, MR 0572262; reference:[5] Das, K. C., Mojallal, S. A., Gutman, I.: Improving McClelland's lower bounds for energy.MATCH Commun. Math. Comput. Chem. 70 (2013), 663-668. Zbl 1299.05213, MR 3155011; reference:[6] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order.Cambridge University Press, Cambridge (1990). Zbl 1002.06001, MR 1058437, 10.1017/CBO9780511809088; reference:[7] Grätzer, G.: General Lattice Theory.Pure and Applied Mathematics 75. Academic Press, New York (1978). Zbl 0436.06001, MR 0509213, 10.1007/978-3-0348-7633-9; reference:[8] Gutman, I.: The energy of a graph.Ber. Math.-Stat. Sekt. Forschungszent. Graz 103 (1978), 22 pages. Zbl 0402.05040, MR 0525890; reference:[9] Gutman, I., Furtula, B.: The total $\pi$-electron energy saga.Croat. Chem. Acta 90 (2017), 359-368. 10.5562/cca3189; reference:[10] Gutman, I., Furtula, B.: Energies of Graphs: Survey, Census, Bibliography.Center for Scientific Research, Kragujevac (2019).; reference:[11] Gutman, I., Ramane, H. S.: Research on graph energies in 2019.MATCH Commun. Math. Comput. Chem. 84 (2020), 277-292.; reference:[12] Hückel, E.: Quantentheoretische Beiträge zum Benzolproblem I. Die Electronenkonfiguration des Benzols und verwandter Verbindungen.Z. Phys. 70 (1931), 204-286 German. Zbl 0002.09601, 10.1007/BF01339530; reference:[13] Indulal, G., Vijayakumar, A.: A note on energy of some graphs.MATCH Commun. Math. Comput. Chem. 59 (2008), 269-274. Zbl 1164.05040, MR 2381442; reference:[14] Kelly, D., Rival, I.: Crowns, fences, and dismantlable lattices.Can. J. Math. 27 (1974), 1257-1271. Zbl 0271.06003, MR 0417003, 10.4153/CJM-1974-120-2; reference:[15] Li, X., Shi, Y., Gutman, I.: Graph Energy.Springer, Berlin (2012). Zbl 1262.05100, MR 2953171, 10.1007/978-1-4614-4220-2; reference:[16] McClelland, B. J.: Properties of the latent roots of a matrix: The estimation of $\pi$-electron energies.J. Chem. Phys. 54 (1971), 640-643. 10.1063/1.1674889; reference:[17] Pawar, M. M., Bhamare, V. P.: On covering energy of posets.Math. Sci. Int. Research J. 4 (2015), 121-125.; reference:[18] Pawar, M. M., Bhamre, V. P.: Covering energy of some classes of posets.J. Indian Math. Soc., New Ser. 87 (2020), 193-205. Zbl 1463.06005, MR 4123472, 10.18311/jims/2020/25451; reference:[19] Pawar, M. M., Bhangale, S. T.: Minimum independent dominating energy of graphs.Asian-Eur. J. Math. 14 (2021), Article 2150127, 14 pages. Zbl 1473.05184, MR 4292510, 10.1142/S1793557121501278; reference:[20] Rival, I.: Lattices with doubly irreducible elements.Can. Math. Bull. 17 (1974), 91-95. Zbl 0293.06003, MR 0360387, 10.4153/CMB-1974-016-3; reference:[21] Thakare, N. K., Pawar, M. M., Waphare, B. N.: A structure theorem for dismantlable lattices and enumeration.Period. Math. Hung. 45 (2002), 147-160. Zbl 1026.06003, MR 1955202, 10.1023/A:1022314517291
-
4Academic Journal
مصطلحات موضوعية: keyword:Laplacian graph spectra, keyword:bipartite graph, keyword:spread of graph, msc:05C50, msc:15A18
وصف الملف: application/pdf
Relation: mr:MR4586907; zbl:Zbl 07729520; reference:[1] Andrade, E., Dahl, G., Leal, L., Robbiano, M.: New bounds for the signless Laplacian spread.Linear Algebra Appl. 566 (2019), 98-120. Zbl 1410.05114, MR 3896162, 10.1016/j.laa.2018.12.019; reference:[2] Andrade, E., Freitas, M. A. A. de, Robbiano, M., Rodríguez, J.: New lower bounds for the Randić spread.Linear Algebra Appl. 544 (2018), 254-272. Zbl 1388.05108, MR 3765785, 10.1016/j.laa.2017.07.037; reference:[3] Biernacki, M., Pidek, H., Ryll-Nardzewski, C.: Sur une inéqualité entre des intégrales definies.Ann. Univ. Mariae Curie-Skłodowska, Sect. A 4 (1950), 1-4 French. Zbl 0040.31904, MR 0042474; reference:[4] ndağ, Ş. B. Bozkurt Altı: Note on the sum of powers of normalized signless Laplacian eigenvalues of graphs.Math. Interdisc. Research 4 (2019), 171-182. 10.22052/mir.2019.208991.1180; reference:[5] ndağ, Ş. B. Bozkurt Altı: Sum of powers of normalized signless Laplacian eigenvalues and Randić (normalized) incidence energy of graphs.Bull. Int. Math. Virtual Inst. 11 (2021), 135-146. Zbl 07540020, MR 4187056, 10.7251/BIMVI2101135A; reference:[6] Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S.: Randić matrix and Randić energy.MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. Zbl 1265.05113, MR 2677585; reference:[7] Butler, S. K.: Eigenvalues and Structures of Graphs: Ph.D. Thesis.University of California, San Diego (2008). MR 2711548; reference:[8] Cavers, M., Fallat, S., Kirkland, S.: On the normalized Laplacian energy and general Randić index $R_{-1}$ of graphs.Linear Algebra Appl. 433 (2010), 172-190. Zbl 1217.05138, MR 2645076, 10.1016/j.laa.2010.02.002; reference:[9] Cheng, B., Liu, B.: The normalized incidence energy of a graph.Linear Algebra Appl. 438 (2013), 4510-4519. Zbl 1282.05104, MR 3034547, 10.1016/j.laa.2013.01.003; reference:[10] Chung, F. R. K.: Spectral Graph Theory.Regional Conference Series in Mathematics 92. AMS, Providence (1997). Zbl 0867.05046, MR 1421568, 10.1090/cbms/092; reference:[11] Cirtoaje, V.: The best lower bound depended on two fixed variables for Jensen's inequality with ordered variables.J. Inequal. Appl. 2010 (2010), Article ID 128258, 12 pages. Zbl 1204.26031, MR 2749168, 10.1155/2010/128258; reference:[12] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications.Pure and Applied Mathematics 87. Academic Press, New York (1980). MR 0572262; reference:[13] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacian of finite graphs.Linear Algebra Appl. 423 (2007), 155-171. Zbl 1113.05061, MR 2312332, 10.1016/j.laa.2007.01.009; reference:[14] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on the signless Laplacian. II.Linear Algebra Appl. 432 (2010), 2257-2277. Zbl 1218.05089, MR 2599858, 10.1016/j.laa.2009.05.020; reference:[15] Das, K. C., Güngör, A. D., Bozkurt, Ş. B.: On the normalized Laplacian eigenvalues of graphs.Ars Comb. 118 (2015), 143-154. Zbl 1349.05205, MR 3330443; reference:[16] Gomes, H., Gutman, I., Martins, E. Andrade, Robbiano, M., Martín, B. San: On Randić spread.MATCH Commun. Math. Comput. Chem. 72 (2014), 249-266. Zbl 1464.05070, MR 3241719; reference:[17] Gomes, H., Martins, E., Robbiano, M., Martín, B. San: Upper bounds for Randić spread.MATCH Commun. Math. Comput. Chem. 72 (2014), 267-278. Zbl 1464.05236, MR 3241720; reference:[18] Gu, R., Huang, F., Li, X.: Randić incidence energy of graphs.Trans. Comb. 3 (2014), 1-9. Zbl 1463.05331, MR 3239628, 10.22108/TOC.2014.5573; reference:[19] Gutman, I., Milovanović, E., Milovanović, I.: Bounds for Laplacian-type graph energies.Miskolc Math. Notes 16 (2015), 195-203. Zbl 1340.05164, MR 3384599, 10.18514/MMN.2015.1140; reference:[20] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals: Total $\phi$-electron energy of alternant hydrocarbons.Chem. Phys. Lett. 17 (1972), 535-538. 10.1016/0009-2614(72)85099-1; reference:[21] Liu, B., Huang, Y., Feng, J.: A note on the Randić spectral radius.MATCH Commun. Math. Comput. Chem. 68 (2012), 913-916. Zbl 1289.05133, MR 3052189; reference:[22] Liu, M., Liu, B.: The signless Laplacian spread.Linear Algebra Appl. 432 (2010), 505-514. Zbl 1206.05064, MR 2577696, 10.1016/j.laa.2009.08.025; reference:[23] Güngör, A. D. Maden, Çevik, A. S., Habibi, N.: New bounds for the spread of the signless Laplacian spectrum.Math. Inequal. Appl. 17 (2014), 283-294. Zbl 1408.05082, MR 3220994, 10.7153/mia-17-23; reference:[24] Milovanović, I., Milovanović, E., Glogić, E.: On applications of Andrica-Badea and Nagy inequalities in spectral graph theory.Stud. Univ. Babeş-Bolyai, Math. 60 (2015), 603-609. Zbl 1389.05104, MR 3437422; reference:[25] Mitrinović, D. S.: Analytic Inequalities.Die Grundlehren der mathematischen Wissenschaften 165. Springer, Berlin (1970). Zbl 0199.38101, MR 274686, 10.1007/978-3-642-99970-3; reference:[26] Randić, M.: Characterization of molecular branching.J. Am. Chem. Soc. 97 (1975), 6609-6615. 10.1021/ja00856a001; reference:[27] Shi, L.: Bounds on Randić indices.Discrete Math. 309 (2009), 5238-5241. Zbl 1179.05039, MR 2548924, 10.1016/j.disc.2009.03.036; reference:[28] Zumstein, P.: Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph: Diploma Thesis.ETH Zürich, Zürich (2005).
-
5Academic Journal
مصطلحات موضوعية: keyword:distance matrix, keyword:energy, keyword:distance Laplacian matrix, keyword:distance Laplacian energy, msc:05C12, msc:05C50, msc:15A18
وصف الملف: application/pdf
Relation: mr:MR4586898; zbl:Zbl 07729511; reference:[1] Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph.Linear Algebra Appl. 439 (2013), 21-33. Zbl 1282.05086, MR 3045220, 10.1016/j.laa.2013.02.030; reference:[2] Aouchiche, M., Hansen, P.: Distance spectra of graphs: A survey.Linear Algebra Appl. 458 (2014), 301-386. Zbl 1295.05093, MR 3231823, 10.1016/j.laa.2014.06.010; reference:[3] Aouchiche, M., Hansen, P.: Some properties of the distance Laplacian eigenvalues of a graph.Czech. Math. J. 64 (2014), 751-761. Zbl 1349.05083, MR 3298557, 10.1007/s10587-014-0129-2; reference:[4] Brouwer, A. E., Haemers, W. H.: Spectra of graphs.Universitext. Berlin: Springer (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6; reference:[5] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Application.Pure and Applied Mathematics 87. Academic Press, New York (1980). Zbl 0824.05046, MR 0572262; reference:[6] Das, K. C., Aouchiche, M., Hansen, P.: On (distance) Laplacian energy and (distance) signless Laplacian energy of graphs.Discrete Appl. Math. 243 (2018), 172-185. Zbl 1387.05147, MR 3804748, 10.1016/j.dam.2018.01.004; reference:[7] Díaz, R. C., Rojo, O.: Sharp upper bounds on the distance energies of a graph.Linear Algebra Appl. 545 (2018), 55-75. Zbl 1390.05124, MR 3769113, 10.1016/j.laa.2018.01.032; reference:[8] Ganie, H. A.: On distance Laplacian spectrum (energy) of graphs.Discrete Math. Algorithms Appl. 12 (2020), Article ID 2050061, 16 pages. Zbl 1457.05064, MR 4157019, 10.1142/S1793830920500615; reference:[9] Ganie, H. A.: On the distance Laplacian energy ordering of tree.Appl. Math. Comput. 394 (2021), Article ID 125762, 10 pages. Zbl 1462.05222, MR 4182919, 10.1016/j.amc.2020.125762; reference:[10] Ganie, H. A., Chat, B. A., Pirzada, S.: Signless Laplacian energy of a graph and energy of line graph.Linear Algebra Appl. 544 (2018), 306-324. Zbl 1388.05114, MR 3765789, 10.1016/j.laa.2018.01.021; reference:[11] Ganie, H. A., Pirzada, S., Rather, B. A., Trevisan, V.: Further developments on Brouwer's conjecture for the sum of Laplacian eigenvalues of graphs.Linear Algebra Appl. 588 (2020), 1-18. Zbl 1437.05139, MR 4037607, 10.1016/j.laa.2019.11.020; reference:[12] Gutman, I., Zhou, B.: Laplacian energy of a graph.Linear Algebra Appl. 414 (2006), 29-37. Zbl 1092.05045, MR 2209232, 10.1016/j.laa.2005.09.008; reference:[13] Indulal, G., Gutman, I., Vijayakumar, A.: On distance energy of graphs.MATCH Commun. Math. Comput. Chem. 60 (2008), 461-472. Zbl 1199.05226, MR 2457864; reference:[14] Li, X., Shi, Y., Gutman, I.: Graph Energy.Springer, New York (2012). Zbl 1262.05100, MR 2953171, 10.1007/978-1-4614-4220-2; reference:[15] Monsalve, J., Rada, J.: Oriented bipartite graphs with minimal trace norm.Linear Multilinear Algebra 67 (2019), 1121-1131. Zbl 1411.05172, MR 3937031, 10.1080/03081087.2018.1448051; reference:[16] Pirzada, S.: An Introduction to Graph Theory.Orient Blackswan, Hyderabad (2012).; reference:[17] Pirzada, S., Ganie, H. A.: On the Laplacian eigenvalues of a graph and Laplacian energy.Linear Algebra Appl. 486 (2015), 454-468. Zbl 1327.05157, MR 3401774, 10.1016/j.laa.2015.08.032; reference:[18] Yang, J., You, L., Gutman, I.: Bounds on the distance Laplacian energy of graphs.Kragujevac J. Math. 37 (2013), 245-255. Zbl 1299.05236, MR 3150862
-
6Conference
المؤلفون: Lamač, Jan, Vlasák, Miloslav
مصطلحات موضوعية: keyword:cycle cover, keyword:2-factor, keyword:Hamiltonian cycle, keyword:incidence matrix, keyword:least-square method, msc:05C38, msc:05C50, msc:93E24
وصف الملف: application/pdf
-
7Academic Journal
المؤلفون: Guterman, Alexander, Kreines, Elena, Vlasov, Alexander
مصطلحات موضوعية: keyword:tropical linear algebra, keyword:cyclicity index, keyword:linear transformations, msc:05C22, msc:05C38, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR4538621; zbl:Zbl 07655855; reference:[1] Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linearity.Wiley 1992. Zbl 0824.93003; reference:[2] Butkovič, P.: Max-algebra: the linear algebra of combinatorics?.Linear Algebra and its Applications 367 (2003), 313-335. Zbl 1022.15017; reference:[3] Dieudonné, D.J.: Sur une généralisation du groupe orthogonal á quatre variables.Arch. Math. 1 (1949), 282-287. 10.1007/BF02038756; reference:[4] Frobenius, G.: Über die Darstellung der endlichen Gruppen durch lineare Substitutionen.Sitzungsber Deutsch. Akad. Wiss., Berlin 1997.; reference:[5] Jones, D.: Matrix roots in the max-plus algebra.Linear Algebra and its Applications 631 (2021), 10-34.; reference:[6] Gavalec, M.: Periodicity in Extremal Algebras.Hradec Králové: Gaudeamus 2004.; reference:[7] Gavalec, M.: Linear matrix period in max-plus algebra.Linear Algebra and its Applications 307 (2000), 167-182.; reference:[8] Guterman, A., Johnson, M., Kambites, M.: Linear isomorphisms preserving Green's relations for matrices over anti-negative semifields.Linear Algebra and its Applications 545 (2018), 1-14.; reference:[9] Guterman, A., Kreines, E., Thomassen, C.: Linear transformations of tropical matrices preserving the cyclicity index.Special Matrices 9 (2021), 112-118.; reference:[10] Guterman, A., Maksaev, A.: Maps preserving scrambling index.Linear and Multilinear Algebra 66 (2018), 840-851.; reference:[11] Heidergott, B., Olsder, G.J., Woude, J. van der: Max Plus at Work.Princeton Series in Applied Mathematics 2006.; reference:[12] Kennedy-Cochran-Patrick, A., Merlet, G., Nowak, T., Sergeev, S.: New bounds on the periodicity transient of the powers of a tropical matrix: Using cyclicity and factor rank.Linear Algebra and its Applications 611 (2021) 279-309.; reference:[13] Merlet, G., Nowak, T., Sergeev, S.: Weak CSR expansions and transience bounds in max-plus algebra.Linear Algebra and its Applications 461 (2014) 163-199.; reference:[14] Pierce, S., al., et: A survey of linear preserver problems.Linear Multilinear Algebra 33 (1992), 1-119.; reference:[15] Rodman, L., Šemrl, P.: A localization technique for linear preserver problems.Linear Algebra and its Applications 433 (2010), 2257-2268.; reference:[16] Schur, I.: Einige Bemerkungen zur Determinantentheorie.Akad. Wiss. Berlin: S.-Ber. Preuss., (1925) 454-463.; reference:[17] Sergeev, S.: Max algebraic powers of irreducible matrices in the periodic regime: An application of cyclic classes.Linear Algebra and its Applications 431 (2009), 1325-339.
-
8Academic Journal
المؤلفون: Ma, Li
مصطلحات موضوعية: keyword:Bochner formula, keyword:heat equation, keyword:global solution, keyword:stochastic completeness, keyword:porous-media equation, keyword:McKean type estimate, msc:05C50, msc:35Jxx, msc:53Cxx, msc:58J35, msc:68R10
وصف الملف: application/pdf
Relation: mr:MR4483052; zbl:Zbl 07584089; reference:[1] Bauer, F., Horn, P., Yong, Lin, Lippner, G., Mangoubi, D., Shing-Tung, Yau: Li-Yau inequality on graphs.J. Differential Geom. 99 (3) (2015), 359–405. MR 3316971, 10.4310/jdg/1424880980; reference:[2] Chavel, I., Karp, L.: Large time behavior of the heat kernel: the parabolic-potential alternative.Comment. Math. Helv. 66 (4) (1991), 541–556, DOI 10.1007/BF02566664. MR 1129796, 10.1007/BF02566664; reference:[3] Chung, F.R.K.: Spectral graph theory.CBMS Regional Conf. Ser. in Math., 1997. xii+207 pp. ISBN: 0-8218-0315-8. MR 1421568; reference:[4] Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.: Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions.J. Spectr. Theory 2 (4) (2012), 397–432. MR 2947294, 10.4171/JST/35; reference:[5] Horn, P., Yong, Lin, Shuang, Liu, Shing-Tung, Yau: Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for non-negatively curved graphs.arXiv:1411. 5087v4. MR 4036571; reference:[6] Ji, L., Mazzeo, R., Sesum, N.: Ricci flow on surfaces with cusps.Math. Ann. 345 (2009), 819–834. MR 2545867, 10.1007/s00208-009-0377-x; reference:[7] Keller, M., Lenz, D.: Unbounded Laplacians on graphs: basic spectral properties and the heat equation.Math. Model. Nat. Phenom. 5 (4) (2010), 198–224. MR 2662456, 10.1051/mmnp/20105409; reference:[8] Lin, Y., Liu, S.: Equivalent properties of CD inequality on grap.arXiv:1512.02677, 2015. MR 4545901; reference:[9] Lin, Y., Yau, S.T.: Ricci curvature and eigen-value estimate on locally finite graphs.Math. Res. Lett. 17 (2010), 343–356. MR 2644381, 10.4310/MRL.2010.v17.n2.a13; reference:[10] Ma, L.: Harnack’s inequality and Green’s functions on locally finite graphs.Nonlinear Anal. 170 (2018), 226–237. MR 3765562; reference:[11] Ma, L., Wang, X.Y.: Kato’s inequality and Liouville theorems on locally finite graphs.Sci. China Math. 56 (4) (2013), 771–776. MR 3034839, 10.1007/s11425-013-4577-1; reference:[12] Ma, L., Witt, I.: Discrete Morse flow for the Ricci flow and porous media equation.Commun. Nonlinear Sci. Numer. Simul. 59 (2018), 158–164. MR 3758379, 10.1016/j.cnsns.2017.11.002; reference:[13] Weber, A.: Analysis of the physical Laplacian and the heat flow on a locally finite graph.J. Math. Anal. Appl. 370 (1) (2010), 146–158. MR 2651136, 10.1016/j.jmaa.2010.04.044; reference:[14] Wojciechowski, R.K.: Heat kernel and essential spectrum of infinite graphs.Indiana Univ. Math. J. 58 (3) (2009), 1419–1441. MR 2542093, 10.1512/iumj.2009.58.3575
-
9Academic Journal
المؤلفون: Bart, Harm, Ehrhardt, Torsten
مصطلحات موضوعية: keyword:additive decomposition, keyword:rank constraint, keyword:zero pattern constraint, keyword:directed bipartite graph, keyword:$ß{L}$-free directed bipartite graph, keyword:permutation $ß{L}$-free directed bipartite graph, keyword:Bell number, keyword:Stirling partition number, msc:05C20, msc:05C50, msc:15A03, msc:15A21
وصف الملف: application/pdf
Relation: mr:MR4467945; zbl:Zbl 07584105; reference:[1] Bart, H., Ehrhardt, T., Silbermann, B.: Rank decomposition in zero pattern matrix algebras.Czech. Math. J. 66 (2016), 987-1005. Zbl 1413.15010, MR 3556880, 10.1007/s10587-016-0305-7; reference:[2] Bart, H., Ehrhardt, T., Silbermann, B.: Echelon type canonical forms in upper triangular matrix algebras.Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics Operator Theory: Advances and Applications 259. Birkhäuser, Basel (2017), 79-124. Zbl 1365.15014, MR 3644514, 10.1007/978-3-319-49182-0_8; reference:[3] Bart, H., Ehrhardt, T., Silbermann, B.: $ß{L}$-free directed bipartite graphs and echelon-type canonical forms.Operator Theory, Analysis and the State Space Approach Operator Theory: Advances and Applications 271. Birkhäuser, Cham (2018), 75-117. Zbl 1427.15016, MR 3889652, 10.1007/978-3-030-04269-1_3; reference:[4] Bart, H., Ehrhardt, T., Silbermann, B.: Rank decomposition under zero pattern constraints and $ß{L}$-free directed graphs.Linear Algebra Appl. 621 (2021), 135-180. Zbl 1464.15002, MR 4231570, 10.1016/j.laa.2021.03.010; reference:[5] Bart, H., Wagelmans, A. P. M.: An integer programming problem and rank decomposition of block upper triangular matrices.Linear Algebra Appl. 305 (2000), 107-129. Zbl 0951.15013, MR 1733797, 10.1016/S0024-3795(99)00219-0; reference:[6] Birkhoff, G.: Lattice Theory.American Mathematical Society Colloquium Publications 25. AMS, Providence (1967). Zbl 0153.02501, MR 0227053, 10.1090/coll/025; reference:[7] Charalambides, C. A.: Enumerative Combinatorics.CRC Press Series on Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2002). Zbl 1001.05001, MR 1937238, 10.1201/9781315273112; reference:[8] Habib, M., Jegou, R.: $N$-free posets as generalizations of series-parallel posets.Discrete Appl. Math. 12 (1985), 279-291. Zbl 0635.06002, MR 0813975, 10.1016/0166-218X(85)90030-7; reference:[9] Riordan, J.: Combinatorial Identities.John Wiley & Sons, New York (1968). Zbl 0194.00502, MR 0231725; reference:[10] Stanley, R. P.: Enumerative Combinatorics. Vol. 1.Cambridge Studies in Advanced Mathematics 49. Cambridge University Press, Cambridge (1997). Zbl 0889.05001, MR 1442260, 10.1017/CBO9780511805967
-
10Academic Journal
المؤلفون: Wen, Fei, Huang, Qiongxiang
مصطلحات موضوعية: keyword:unicyclic graph, keyword:Laplacian eigenvalue, keyword:multiplicity, keyword:bound, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR4412765; zbl:Zbl 07547210; reference:[1] Akbari, S., Kiani, D., Mirzakhah, M.: The multiplicity of Laplacian eigenvalue two in unicyclic graphs.Linear Algebra Appl. 445 (2014), 18-28. Zbl 1292.05164, MR 3151261, 10.1016/j.laa.2013.11.022; reference:[2] Akbari, S., Dam, E. R. van, Fakharan, M. H.: Trees with a large Laplacian eigenvalue multiplicity.Linear Algebra Appl. 586 (2020), 262-273. Zbl 1429.05118, MR 4027756, 10.1016/j.laa.2019.10.011; reference:[3] Andrade, E., Cardoso, D. M., Pastén, G., Rojo, O.: On the Faria's inequality for the Laplacian and signless Laplacian spectra: A unified approach.Linear Algebra Appl. 472 (2015), 81-86. Zbl 1307.05136, MR 3314367, 10.1016/j.laa.2015.01.026; reference:[4] Barik, S., Lal, A. K., Pati, S.: On trees with Laplacian eigenvalue one.Linear Multilinear Algebra 56 (2008), 597-610. Zbl 1149.05029, MR 2457687, 10.1080/03081080600679029; reference:[5] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext. Springer, New York (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6; reference:[6] Cvetković, D. M., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518; reference:[7] Das, K. C.: Sharp lower bounds on the Laplacian eigenvalues of trees.Linear Algebra Appl. 384 (2004), 155-169. Zbl 1047.05027, MR 2055349, 10.1016/j.laa.2004.01.012; reference:[8] Doob, M.: Graphs with a small number of distinct eigenvalues.Ann. N. Y. Acad. Sci. 175 (1970), 104-110. Zbl 0241.05112, MR 0263674, 10.1111/j.1749-6632.1970.tb56460.x; reference:[9] Faria, I.: Permanental roots and the star degree of a graph.Linear Algebra Appl. 64 (1985), 255-265. Zbl 0559.05041, MR 0776531, 10.1016/0024-3795(85)90281-2; reference:[10] Grone, R., Merris, R.: Algebraic connectivity of trees.Czech. Math. J. 37 (1987), 660-670. Zbl 0681.05022, MR 0913997, 10.21136/CMJ.1987.102192; reference:[11] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph.SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. Zbl 0733.05060, MR 1041245, 10.1137/0611016; reference:[12] Guo, J.-M., Feng, L., Zhang, J.-M.: On the multiplicity of Laplacian eigenvalues of graphs.Czech. Math. J. 60 (2010), 689-698. Zbl 1224.05297, MR 2672410, 10.1007/s10587-010-0063-x; reference:[13] Huang, X., Huang, Q.: On regular graphs with four distinct eigenvalues.Linear Algebra Appl. 512 (2017), 219-233. Zbl 1348.05125, MR 3567523, 10.1016/j.laa.2016.09.043; reference:[14] Kirkland, S.: A bound on algebra connectivity of a graph in terms of the number cutpoints.Linear Multilinear Algebra 47 (2000), 93-103. Zbl 0947.05052, MR 1752168, 10.1080/03081080008818634; reference:[15] Lu, L., Huang, Q., Huang, X.: On graphs with distance Laplacian spectral radius of multiplicity $n-3$.Linear Algebra Appl. 530 (2017), 485-499. Zbl 1367.05134, MR 3672973, 10.1016/j.laa.2017.05.044; reference:[16] Rowlinson, P.: On graphs with just three distinct eigenvalues.Linear Algebra Appl. 507 (2016), 462-473. Zbl 1343.05096, MR 3536969, 10.1016/j.laa.2016.06.031; reference:[17] Dam, E. R. van: Nonregular graphs with three eigenvalues.J. Comb. Theory, Ser. B 73 (1998), 101-118. Zbl 0917.05044, MR 1631983, 10.1006/jctb.1998.1815; reference:[18] Dam, E. R. van, Koolen, J. H., Xia, Z.-J.: Graphs with many valencies and few eigenvalues.Electron. J. Linear Algebra 28 (2015), 12-24. Zbl 1320.05082, MR 3386384, 10.13001/1081-3810.2987
-
11Academic Journal
المؤلفون: Gao, Wei
مصطلحات موضوعية: keyword:graph, keyword:Randić matrix, keyword:Randić energy, msc:05C09, msc:05C50, msc:05C92
وصف الملف: application/pdf
Relation: mr:MR4389120; zbl:Zbl 07511567; reference:[1] Allem, L. E., Braga, R. O., Pastine, A.: Randić index and energy.MATCH Commun. Math. Comput. Chem. 83 (2020), 611-622.; reference:[2] Allem, L. E., Molina, G., Pastine, A.: Short note on Randić energy.MATCH Commun. Math. Comput. Chem. 82 (2019), 515-528. MR 3645368; reference:[3] Bozkurt, Ş. B., Güngör, A. D., Gutman, I.: Randić spectral radius and Randić energy.MATCH Commun. Math. Comput. Chem. 64 (2010), 321-334. Zbl 1265.05351, MR 2759776; reference:[4] Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S.: Randić matrix and Randić energy.MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. Zbl 1265.05113, MR 2677585; reference:[5] Das, K. C., Sorgun, S.: On Randić energy of graphs.MATCH Commun. Math. Comput. Chem. 72 (2014), 227-238. Zbl 06704610, MR 3241662; reference:[6] Das, K. C., Sorgun, S., Gutman, I.: On Randić energy.MATCH Commun. Math. Comput. Chem. 73 (2015), 81-92. Zbl 06749505, MR 3362137; reference:[7] Gutman, I., Furtula, B., Bozkurt, Ş. B.: On Randić energy.Linear Algebra Appl. 442 (2014), 50-57. Zbl 1282.05118, MR 3134349, 10.1016/j.laa.2013.06.010; reference:[8] He, J., Liu, Y.-M., Tian, J.-K.: Note on the Randić energy of graphs.Kragujevac J. Math. 42 (2018), 209-215. MR 3811340, 10.5937/kgjmath1802209j
-
12Academic Journal
المؤلفون: Ramezani, Farzaneh, Rowlinson, Peter, Stanić, Zoran
مصطلحات موضوعية: keyword:signed graph, keyword:join, keyword:adjacency matrix, keyword:main eigenvalue, keyword:net-degree, keyword:association scheme, msc:05C22, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR4389106; zbl:Zbl 07511553; reference:[1] elić, M. Anđ, Koledin, T., Stanić, Z.: On regular signed graphs with three eigenvalues.Discuss. Math., Graph Theory 40 (2020), 405-416. Zbl 1433.05139, MR 4060992, 10.7151/dmgt.2279; reference:[2] Belardo, F., Cioabă, S. M., Koolen, J., Wang, J.: Open problems in the spectral theory of signed graphs.Art Discrete Appl. Math. 1 (2018), Article ID P2.10, 23 pages. Zbl 1421.05052, MR 3997096, 10.26493/2590-9770.1286.d7b; reference:[3] Belardo, F., Simić, S. K.: On the Laplacian coefficients of signed graphs.Linear Algebra Appl. 475 (2015), 94-113. Zbl 1312.05078, MR 3325220, 10.1016/j.laa.2015.02.007; reference:[4] Chan, H. C., Rodger, C. A., Seberry, J.: On inequivalent weighing matrices.Ars Comb. 21A (1986), 299-333. Zbl 0599.05013, MR 0835757; reference:[5] Cheng, X.-M., Gavrilyuk, A. L., Greaves, G. R. W., Koolen, J. H.: Biregular graphs with three eigenvalues.Eur. J. Comb. 56 (2016), 57-80. Zbl 1335.05107, MR 3490095, 10.1016/j.ejc.2016.03.004; reference:[6] Cheng, X.-M., Greaves, G. R. W., Koolen, J. H.: Graphs with three eigenvalues and second largest eigenvalue at most 1.J. Comb. Theory, Ser. B 129 (2018), 55-78. Zbl 1379.05072, MR 3758241, 10.1016/j.jctb.2017.09.004; reference:[7] Colbourn, C. J., (eds.), J. H. Dinitz: Handbook of Combinatorial Designs.Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2007). Zbl 1101.05001, MR 2246267, 10.1201/9781420010541; reference:[8] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications.J. A. Barth, Leipzig (1995). Zbl 0824.05046, MR 1324340; reference:[9] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518; reference:[10] Harada, M., Munemasa, A.: On the classification of weighing matrices and self-orthogonal codes.J. Comb. Des. 20 (2012), 45-57. Zbl 1252.05026, MR 2864617, 10.1002/jcd.20295; reference:[11] Hou, Y., Tang, Z., Wang, D.: On signed graphs with just two distinct adjacency eigenvalues.Discrete Math. 342 (2019), Article ID 111615, 8 pages. Zbl 1422.05049, MR 3990025, 10.1016/j.disc.2019.111615; reference:[12] McKee, J., Smyth, C.: Integer symmetric matrices having all their eigenvalues in the interval $[-2,2]$.J. Algebra 317 (2007), 260-290. Zbl 1140.15007, MR 2360149, 10.1016/j.jalgebra.2007.05.019; reference:[13] Ramezani, F.: On the signed graphs with two distinct eigenvalues.Util. Math. 114 (2020), 33-48. Zbl 07274222, MR 4230326; reference:[14] Ramezani, F.: Some regular signed graphs with only two distinct eigenvalues.(to appear) in Linear Multilinear Algebra. MR 4388842, 10.1080/03081087.2020.1736979; reference:[15] Ramezani, F., Rowlinson, P., Stanić, Z.: On eigenvalue multiplicity in signed graphs.Discrete Math. 343 (2020), Article ID 111982, 8 pages. Zbl 07233221, MR 4107756, 10.1016/j.disc.2020.111982; reference:[16] Rowlinson, P.: Certain 3-decompositions of complete graphs, with an application to finite fields.Proc. R. Soc. Edinb., Sect. A 99 (1985), 277-281. Zbl 0562.05044, MR 0785534, 10.1017/S0308210500014293; reference:[17] Rowlinson, P.: On graphs with just three distinct eigenvalues.Linear Algebra Appl. 507 (2016), 462-473. Zbl 1343.05096, MR 3536969, 10.1016/j.laa.2016.06.031; reference:[18] Rowlinson, P.: More on graphs with just three distinct eigenvalues.Appl. Anal. Discrete Math. 11 (2017), 74-80. MR 3648655, 10.2298/AADM161111033R; reference:[19] Seidel, J. J.: Graphs and two-graphs.Proceedings of the 5th Southeastern Conference on Combinatorics, Graph Theory, and Computing Utilitas Mathematica Publication, Winnipeg (1974), 125-143. Zbl 0308.05120, MR 0364028; reference:[20] Simić, S. K., Stanić, Z.: Polynomial reconstruction of signed graphs.Linear Algebra Appl. 501 (2016), 390-408. Zbl 1334.05056, MR 3485074, 10.1016/j.laa.2016.03.036; reference:[21] Stanić, Z.: Regular Graphs: A Spectral Approach.De Gruyter Series in Discrete Mathematics and Applications 4. De Gruyter, Berlin (2017). Zbl 1370.05002, MR 3753662, 10.1515/9783110351347; reference:[22] Stanić, Z.: Integral regular net-balanced signed graphs with vertex degree at most four.Ars Math. Contemp. 17 (2019), 103-114. Zbl 1433.05142, MR 3998150, 10.26493/1855-3974.1740.803; reference:[23] Stanić, Z.: On strongly regular signed graphs.Discrete Appl. Math. 271 (2019), 184-190 corrigendum ibid. 284 640 2020. Zbl 1428.05331, MR 4030312, 10.1016/j.dam.2019.06.017; reference:[24] Stanić, Z.: Spectra of signed graphs with two eigenvalues.Appl. Math. Comput. 364 (2020), Article ID 124627, 9 pages. Zbl 1433.05210, MR 3996372, 10.1016/j.amc.2019.124627; reference:[25] Dam, E. R. van: Nonregular graphs with three eigenvalues.J. Comb. Theory, Ser. B 73 (1998), 101-118. Zbl 0917.05044, MR 1631983, 10.1006/jctb.1998.1815; reference:[26] Dam, E. R. van: Three-class association schemes.J. Algebr. Comb. 10 (1999), 69-107. Zbl 0929.05096, MR 1701285, 10.1023/A:1018628204156; reference:[27] Zaslavsky, T.: Signed graphs.Discrete Appl. Math. 4 (1982), 47-74. Zbl 0476.05080, MR 0676405, 10.1016/0166-218X(82)90033-6; reference:[28] Zaslavsky, T.: Matrices in the theory of signed simple graphs.Advances in Discrete Mathematics and Applications Ramanujan Mathematical Society Lecture Notes Series 13. Ramanujan Mathematical Society, Mysore (2010), 207-229. Zbl 1231.05120, MR 2766941
-
13Academic Journal
المؤلفون: Kim, Sooyeong, Kirkland, Steve
مصطلحات موضوعية: keyword:algebraic connectivity, keyword:Fiedler vector, keyword:minimum degree, msc:05C50, msc:15A18
وصف الملف: application/pdf
Relation: mr:MR4339112; zbl:Zbl 07442475; reference:[1] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext. Springer, New York (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6; reference:[2] Cvetković, D., Rowlinson, P., Simić, S.: Spectral Generalizations of Line Graphs: On Graphs with Least Eigenvalue $-2$.London Mathematical Society Lecture Note Series 314. Cambridge University Press, Cambridge (2004). Zbl 1061.05057, MR 2120511, 10.1017/CBO9780511751752; reference:[3] Cvetković, D., Simić, S.: The second largest eigenvalue of a graph (a survey).Filomat 9 (1995), 449-472. Zbl 0851.05078, MR 1385931; reference:[4] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007, 10.21136/CMJ.1973.101168; reference:[5] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory.Czech. Math. J. 25 (1975), 619-633. Zbl 0437.15004, MR 0387321, 10.21136/CMJ.1975.101357; reference:[6] Kirkland, S. J., Molitierno, J. J., Neumann, M., Shader, B. L.: On graphs with equal algebraic and vertex connectivity.Linear Algebra Appl. 341 (2002), 45-56. Zbl 0991.05071, MR 1873608, 10.1016/S0024-3795(01)00312-3; reference:[7] Merris, R.: Degree maximal graphs are Laplacian integral.Linear Algebra Appl. 199 (1994), 381-389. Zbl 0795.05091, MR 1274427, 10.1016/0024-3795(94)90361-1; reference:[8] Merris, R.: Laplacian graph eigenvectors.Linear Algebra Appl. 278 (1998), 221-236. Zbl 0932.05057, MR 1637359, 10.1016/S0024-3795(97)10080-5; reference:[9] Seidel, J. J.: Strongly regular graphs with $(-1,1,0)$ adjacency matrix having eigenvalue 3.Linear Algebra Appl. 1 (1968), 281-298. Zbl 0159.25403, MR 234861, 10.1016/0024-3795(68)90008-6; reference:[10] Urschel, J. C., Zikatanov, L. T.: Spectral bisection of graphs and connectedness.Linear Algebra Appl. 449 (2014), 1-16. Zbl 1286.05101, MR 3191855, 10.1016/j.laa.2014.02.007; reference:[11] Urschel, J. C., Zikatanov, L. T.: On the maximal error of spectral approximation of graph bisection.Linear Multilinear Algebra 64 (2016), 1972-1979. Zbl 1352.05120, MR 3521152, 10.1080/03081087.2015.1133557
-
14Academic Journal
المؤلفون: Belardo, Francesco, Brunetti, Maurizio, Ciampella, Adriana
مصطلحات موضوعية: keyword:signed graph, keyword:spectral radius, keyword:bicyclic graph, msc:05C22, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR4263178; zbl:07361077; reference:[1] Akbari, S., Belardo, F., Dodongeh, E., Nematollahi, M. A.: Spectral characterizations of signed cycles.Linear Algebra Appl. 553 (2018), 307-327. Zbl 1391.05126, MR 3809382, 10.1016/j.laa.2018.05.012; reference:[2] Akbari, S., Belardo, F., Heydari, F., Maghasedi, M., Souri, M.: On the largest eigenvalue of signed unicyclic graphs.Linear Algebra Appl. 581 (2019), 145-162. Zbl 1420.05070, MR 3982012, 10.1016/j.laa.2019.06.016; reference:[3] Akbari, S., Haemers, W. H., Maimani, H. R., Majd, L. Parsaei: Signed graphs cospectral with the path.Linear Algebra Appl. 553 (2018), 104-116. Zbl 1391.05156, MR 3809370, 10.1016/j.laa.2018.04.021; reference:[4] Belardo, F., Brunetti, M.: Connected signed graphs $L$-cospectral to signed $\infty$-graphs.Linear Multilinear Algebra 67 (2019), 2410-2426. Zbl 1425.05067, MR 4017722, 10.1080/03081087.2018.1494122; reference:[5] Belardo, F., Brunetti, M., Ciampella, A.: Signed bicyclic graphs minimizing the least Laplacian eigenvalue.Linear Algebra Appl. 557 (2018), 201-233. Zbl 1396.05066, MR 3848268, 10.1016/j.laa.2018.07.026; reference:[6] Belardo, F., Cioabă, S., Koolen, J., Wang, J.: Open problems in the spectral theory of signed graphs.Art Discrete Appl. Math. 1 (2018), Article ID P2.10, 23 pages. Zbl 1421.05052, MR 3997096, 10.26493/2590-9770.1286.d7b; reference:[7] Belardo, F., Marzi, E. M. Li, Simić, S. K.: Some results on the index of unicyclic graphs.Linear Algebra Appl. 416 (2006), 1048-1059. Zbl 1092.05043, MR 2242480, 10.1016/j.laa.2006.01.008; reference:[8] Brualdi, R. A., Solheid, E. S.: On the spectral radius of connected graphs.Publ. Inst. Math., Nouv. Sér. 39 (1986), 45-54. Zbl 0603.05028, MR 0869175; reference:[9] Brunetti, M.: On the existence of non-golden signed graphs.Atti Accad. Peloritana Pericolanti, Cl. Sci. Fis. Mat. Nat. 96 (2018), Article A2, 10 pages. MR 3900933, 10.1478/AAPP.96S2A2; reference:[10] Chang, A., Tian, F., Yu, A.: On the index of bicyclic graphs with perfect matchings.Discrete Math. 283 (2004), 51-59. Zbl 1064.05118, MR 2060353, 10.1016/j.disc.2004.02.005; reference:[11] Cvetković, D., Rowlinson, P.: Spectra of unicyclic graphs.Graphs Comb. 3 (1987), 7-23. Zbl 0623.05038, MR 0932109, 10.1007/BF01788525; reference:[12] Cvetković, D., Rowlinson, P., Simić, S.: Eigenspaces of Graphs.Encyclopedia of Mathematics and Its Applications 66. Cambridge University Press, Cambridge (1997). Zbl 0878.05057, MR 1440854, 10.1017/CBO9781139086547; reference:[13] Guo, S.-G.: The spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices.Linear Algebra Appl. 408 (2005), 78-85. Zbl 1073.05550, MR 2166856, 10.1016/j.laa.2005.05.022; reference:[14] Guo, S.-G.: On the spectral radius of bicyclic graphs with $n$ vertices and diameter $d$.Linear Algebra Appl. 422 (2007), 119-132. Zbl 1112.05064, MR 2298999, 10.1016/j.laa.2006.09.011; reference:[15] McKee, J., Smyth, C.: Integer symmetric matrices having all their eigenvalues in the interval $[-2, 2]$.J. Algebra 317 (2007), 260-290. Zbl 1140.15007, MR 2360149, 10.1016/j.jalgebra.2007.05.019; reference:[16] Simić, S. K.: On the largest eigenvalue of unicyclic graphs.Publ. Inst. Math., Nouv. Sér. 42 (1987), 13-19. Zbl 0641.05040, MR 0937447; reference:[17] Simić, S. K.: On the largest eigenvalue of bicyclic graphs.Publ. Inst. Math., Nouv. Sér. 46 (1989), 1-6. Zbl 0747.05058, MR 1060049; reference:[18] Stanić, Z.: Bounding the largest eigenvalue of signed graphs.Linear Algebra Appl. 573 (2019), 80-89. Zbl 1411.05109, MR 3933292, 10.1016/j.laa.2019.03.011; reference:[19] Stevanović, D.: Spectral Radius of Graphs.Elsevier Academic Press, Amsterdam (2015). Zbl 1309.05001, 10.1016/c2014-0-02233-2; reference:[20] Yu, A., Tian, F.: On the spectral radius of bicyclic graphs.MATCH Commun. Math. Comput. Chem. 52 (2004), 91-101. Zbl 1080.05522, MR 2104641; reference:[21] Zaslavsky, T.: Biased graphs. I: Bias, balance, and gains.J. Comb. Theory, Ser. B 47 (1989), 32-52. Zbl 0714.05057, MR 1007712, 10.1016/0095-8956(89)90063-4; reference:[22] Zaslavsky, T.: Matrices in the theory of signed simple graphs.Advances in Discrete Mathematics and Applications Ramanujan Mathematical Society Lecture Notes Series 13. Ramanujan Mathematical Society, Mysore (2010), 207-229. Zbl 1231.05120, MR 2766941; reference:[23] Zaslavsky, T.: A mathematical bibliography of signed and gain graphs and allied areas.Electron. J. Comb., Dynamic Surveys 5 (1998), Article ID DS8, 127 pages. Zbl 0898.05001, MR 1744869, 10.37236/29; reference:[24] Zaslavsky, T.: Glossary of signed and gain graphs and allied areas.Electron. J. Comb., Dynamic Survey 5 (1998), Article ID DS9, 41 pages. Zbl 0898.05002, MR 1744870, 10.37236/31
-
15Academic Journal
المؤلفون: Chen, Xiaodan, Liu, Xiaoqian
مصطلحات موضوعية: keyword:graph energy, keyword:vertex cover number, keyword:matching number, keyword:bound, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR4263171; zbl:07361070; reference:[1] Akbari, S., Ghorbani, E., Zare, S.: Some relations between rank, chromatic number and energy of graphs.Discrete Math. 309 (2009), 601-605. Zbl 1194.05075, MR 2499013, 10.1016/j.disc.2008.09.012; reference:[2] Andrade, E., Robbiano, M., Martín, B. San: A lower bound for the energy of symmetric matrices and graphs.Linear Algebra Appl. 513 (2017), 264-275. Zbl 1350.05090, MR 3573802, 10.1016/j.laa.2016.10.022; reference:[3] Altındağ, Ş. B. Bozkurt, Bozkurt, D.: Lower bounds for the energy of (bipartite) graphs.MATCH Commun. Math. Comput. Chem. 77 (2017), 9-14. MR 3645362; reference:[4] Caporossi, G., Cvetković, D., Gutman, I., Hansen, P.: Variable neighborhood search for extremal graphs 2. Finding graphs with extremal energy.J. Chem. Inf. Comput. Sci. 39 (1999), 984-996. 10.1021/ci9801419; reference:[5] Cheng, B., Liu, B.: On the nullity of graphs.Electron. J. Linear Algebra 16 (2007), 60-67. Zbl 1142.05336, MR 2285832, 10.13001/1081-3810.1182; reference:[6] Coulson, C. A.: On the calculation of the energy in unsaturated hydrocarbon molecules.Proc. Camb. Philos. Soc. 36 (1940), 201-203. 10.1017/S0305004100017175; reference:[7] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518; reference:[8] Das, K. C., Mojallal, S. A., Gutman, I.: Improving McClelland's lower bound for energy.MATCH Commun. Math. Comput. Chem. 70 (2013), 663-668. Zbl 1299.05213, MR 3155011; reference:[9] Day, J., So, W.: Graph energy change due to edge deletion.Linear Algebra Appl. 428 (2008), 2070-2078. Zbl 1136.05037, MR 2401641, 10.1016/j.laa.2007.11.009; reference:[10] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (1985). Zbl 0576.15001, MR 0832183, 10.1017/CBO9780511810817; reference:[11] Jahanbani, A.: Some new lower bounds for energy of graphs.Appl. Math. Comput. 296 (2017), 233-238. Zbl 1411.05165, MR 3572791, 10.1016/j.amc.2016.10.019; reference:[12] Koolen, J. H., Moulton, V.: Maximal energy graphs.Adv. Appl. Math. 26 (2001), 47-52. Zbl 0976.05040, MR 1806691, 10.1006/aama.2000.0705; reference:[13] Li, X., Shi, Y., Gutman, I.: Graph Energy.Springer, New York (2012). Zbl 1262.05100, MR 2953171, 10.1007/978-1-4614-4220-2; reference:[14] McClelland, B. J.: Properties of the latent roots of a matrix: The estimation of $\pi$-electron energies.J. Chem. Phys. 54 (1971), 640-643. 10.1063/1.1674889; reference:[15] Milovanović, I., Milovanović, E., Gutman, I.: Upper bounds for some graph energies.Appl. Math. Comput. 289 (2016), 435-443. Zbl 1410.05138, MR 3515866, 10.1016/j.amc.2016.05.045; reference:[16] Rada, J., Tineo, A.: Upper and lower bounds for the energy of bipartite graphs.J. Math. Anal. Appl. 289 (2004), 446-455. Zbl 1034.05034, MR 2026917, 10.1016/j.jmaa.2003.08.027; reference:[17] Wang, L., Ma, X.: Bounds of graph energy in terms of vertex cover number.Linear Algebra Appl. 517 (2017), 207-216. Zbl 1353.05082, MR 3592020, 10.1016/j.laa.2016.12.015; reference:[18] Wong, D., Wang, X., Chu, R.: Lower bounds of graph energy in terms of matching number.Linear Algebra Appl. 549 (2018), 276-286. Zbl 1390.05139, MR 3784349, 10.1016/j.laa.2018.03.040; reference:[19] Yu, A., Lu, M., Tian, F.: New upper bounds for the energy of graphs.MATCH Commun. Math. Comput. Chem. 53 (2005), 441-448. Zbl 1081.05067, MR 2134203; reference:[20] Zhou, B.: Energy of a graph.MATCH Commun. Math. Comput. Chem. 51 (2004), 111-118. Zbl 1106.05068, MR 2063930
-
16Academic Journal
المؤلفون: Mehatari, Ranjit, Kannan, M. Rajesh
مصطلحات موضوعية: keyword:adjacency matrix, keyword:Laplacian matrix, keyword:normalized adjacency matrix, keyword:spectral radius, keyword:algebraic connectivity, keyword:Randić index, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR4226479; zbl:07332714; reference:[1] Banerjee, A., Mehatari, R.: An eigenvalue localization theorem for stochastic matrices and its application to Randić matrices.Linear Algebra Appl. 505 (2016), 85-96. Zbl 1338.15069, MR 3506485, 10.1016/j.laa.2016.04.023; reference:[2] Bollobás, B., Erdös, P.: Graphs of extremal weights.Ars Comb. 50 (1998), 225-233. Zbl 0963.05068, MR 1670561; reference:[3] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications.American Elsevier, New York (1976). Zbl 1226.05083, MR 0411988; reference:[4] Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S.: Randić matrix and Randić energy.MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. Zbl 1265.05113, MR 2677585; reference:[5] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext. Springer, Berlin (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6; reference:[6] Butler, S., Chung, F.: Spectral graph theory.Handbook of Linear Algebra L. Hogben Discrete Mathematics and its Applications. CRC Press, Boca Raton (2014), Article ID 47. Zbl 1284.15001, MR 3013937; reference:[7] Cavers, M. S.: The normalized Laplacian matrix and general Randić index of graphs: Ph.D. Thesis.University of Regina, Regina (2010). MR 3078627; reference:[8] Chung, F. R. K.: Spectral Graph Theory.Regional Conference Series in Mathematics 92. American Mathematical Society, Providence (1997). Zbl 0867.05046, MR 1421568; reference:[9] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications.Pure and Applied Mathematics 87. Academic Press, New York (1980). Zbl 0458.05042, MR 0572262; reference:[10] Das, K. C.: A sharp upper bound for the number of spanning trees of a graph.Graphs Comb. 23 (2007), 625-632. Zbl 1139.05032, MR 2365415, 10.1007/s00373-007-0758-4; reference:[11] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007, 10.21136/CMJ.1973.101168; reference:[12] Li, J., Guo, J-M., Shiu, W. C.: Bounds on normalized Laplacian eigenvalues of graphs.J. Inequal. Appl. 316 (2014), Article ID 316, 8 pages. Zbl 1332.05090, MR 3344113, 10.1186/1029-242X-2014-316; reference:[13] Marsli, R., Hall, F. J.: On bounding the eigenvalues of matrices with constant row-sums.Linear Multilinear Algebra 67 (2019), 672-684. Zbl 1412.15020, MR 3914323, 10.1080/03081087.2018.1430736; reference:[14] Randić, M.: Characterization of molecular branching.J. Am. Chem. Soc. 97 (1975), 6609-6615. 10.1021/ja00856a001; reference:[15] Rojo, O., Soto, R. L.: A new upper bound on the largest normalized Laplacian eigenvalue.Oper. Matrices 7 (2013), 323-332. Zbl 1283.05168, MR 3099188, 10.7153/oam-07-19; reference:[16] Stanić, Z.: Inequalities for Graph Eigenvalues.London Mathematical Society Lecture Note Series 423. Cambridge University Press, Cambridge (2015). Zbl 1368.05001, MR 3469535, 10.1017/CBO9781316341308; reference:[17] Varga, R. S.: Geršgorin and His Circles.Springer Series in Computational Mathematics 36. Springer, Berlin (2004). Zbl 1057.15023, MR 2093409, 10.1007/978-3-642-17798-9; reference:[18] Wolkowicz, H., Styan, G. P. H.: Bounds for eigenvalues using traces.Linear Algebra Appl. 29 (1980), 471-506. Zbl 0435.15015, MR 0562777, 10.1016/0024-3795(80)90258-X
-
17Academic Journal
المؤلفون: Andelić, Milica, Du, Zhibin, da Fonseca, Carlos M., Simić, Slobodan K.
مصطلحات موضوعية: keyword:tridiagonal matrix, keyword:threshold graph, keyword:chain graph, keyword:eigenvalue-free interval, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR4181801; zbl:07285984; reference:[1] Aguilar, C. O., Lee, J.-Y., Piato, E., Schweitzer, B. J.: Spectral characterizations of anti-regular graphs.Linear Algebra Appl. 557 (2018), 84-104. Zbl 1396.05064, MR 3848263, 10.1016/j.laa.2018.07.028; reference:[2] Alazemi, A., elić, M. Anđ, Simić, S. K.: Eigenvalue location for chain graphs.Linear Algebra Appl. 505 (2016), 194-210. Zbl 1338.05155, MR 3506491, 10.1016/j.laa.2016.04.030; reference:[3] elić, M. Anđ, Andrade, E., Cardoso, D. M., Fonseca, C. M. da, Simić, S. K., Tošić, D. V.: Some new considerations about double nested graphs.Linear Algebra Appl. 483 (2015), 323-341. Zbl 1319.05084, MR 3378905, 10.1016/j.laa.2015.06.010; reference:[4] elić, M. Anđ, Fonseca, C. M. da: Sufficient conditions for positive definiteness of tridiagonal matrices revisited.Positivity 15 (2011), 155-159 \99999DOI99999 10.1007/s11117-010-0047-y \goodbreak. Zbl 1216.15022, MR 2782752, 10.1007/s11117-010-0047-y; reference:[5] elić, M. Anđ, Ghorbani, E., Simić, S. K.: Vertex types in threshold and chain graphs.Discrete Appl. Math. 269 (2019), 159-168. Zbl 1421.05062, MR 4016594, 10.1016/j.dam.2019.02.040; reference:[6] elić, M. Anđ, Simić, S. K., Živković, D., Dolićanin, E. Ć.: Fast algorithms for computing the characteristic polynomial of threshold and chain graphs.Appl. Math. Comput. 332 (2018), 329-337. Zbl 1427.05127, MR 3788693, 10.1016/j.amc.2018.03.024; reference:[7] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518; reference:[8] Fonseca, C. M. da: On the eigenvalues of some tridiagonal matrices.J. Comput. Appl. Math. 200 (2007), 283-286. Zbl 1119.15012, MR 2276832, 10.1016/j.cam.2005.08.047; reference:[9] Ghorbani, E.: Eigenvalue-free interval for threshold graphs.Linear Algebra Appl. 583 (2019), 300-305. Zbl 1426.05096, MR 4002158, 10.1016/j.laa.2019.08.028; reference:[10] Jacobs, D. P., Trevisan, V., Tura, F.: Eigenvalues and energy in threshold graphs.Linear Algebra Appl. 465 (2015), 412-425. Zbl 1302.05103, MR 3274686, 10.1016/j.laa.2014.09.043; reference:[11] Lazzarin, J., Márquez, O. F., Tura, F. C.: No threshold graphs are cospectral.Linear Algebra Appl. 560 (2019), 133-145. Zbl 1401.05152, MR 3866549, 10.1016/j.laa.2018.09.033; reference:[12] Maybee, J. S., Olesky, D. D., Driessche, P. van den, Wiener, G.: Matrices, digraphs, and determinants.SIAM J. Matrix Anal. Appl. 10 (1989), 500-519. Zbl 0701.05038, MR 1016799, 10.1137/0610036
-
18Academic Journal
المؤلفون: Stanić, Zoran
مصطلحات موضوعية: keyword:main angle, keyword:signed graph, keyword:adjacency matrix, keyword:Laplacian matrix, keyword:Gram matrix, msc:05C22, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR4181798; zbl:07285981; reference:[1] Cardoso, D. M., Sciriha, I., Zerafa, C.: Main eigenvalues and $(\kappa, \tau)$-regular sets.Linear Algebra Appl. 432 (2010), 2399-2408. Zbl 1217.05136, MR 2599869, 10.1016/j.laa.2009.07.039; reference:[2] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications.J. A. Barth Verlag, Heidelberg (1995). Zbl 0824.05046, MR 1324340; reference:[3] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518; reference:[4] Deng, H., Huang, H.: On the main signless Laplacian eigenvalues of a graph.Electron. J. Linear Algebra 26 (2013), 381-393. Zbl 1282.05109, MR 3084649, 10.13001/1081-3810.1659; reference:[5] Doob, M.: A geometric interpretation of the least eigenvalue of a line graph.Combinatorial Mathematics and its Applications R. C. Bose, T. A. Dowling University of North Carolina, Chapel Hill (1970), 126-135. Zbl 0209.55403, MR 0268060; reference:[6] Haynsworth, E. V.: Applications of a theorem on partitioned matrices.J. Res. Natl. Bur. Stand., Sec. B 63 (1959), 73-78. Zbl 0090.24104, MR 0109432, 10.6028/jres.063B.009; reference:[7] Hou, Y., Tang, Z., Shiu, W. C.: Some results on graphs with exactly two main eigenvalues.Appl. Math. Lett. 25 (2012), 1274-1278. Zbl 1248.05112, MR 2947393, 10.1016/j.aml.2011.11.025; reference:[8] Hou, Y., Zhou, H.: Trees with exactly two main eigenvalues.J. Nat. Sci. Hunan Norm. Univ. 28 (2005), 1-3 Chinese. Zbl 1109.05071, MR 2240441; reference:[9] Petersdorf, M., Sachs, H.: Über Spektrum, Automorphismengruppe und Teiler eines Graphen.Wiss. Z. Tech. Hochsch. Ilmenau 15 (1969), 123-128 German. Zbl 0199.27504, MR 0269552; reference:[10] Rowlinson, P.: The main eigenvalues of a graph: A survey.Appl. Anal. Discrete Math. 1 (2007), 445-471. Zbl 1199.05241, MR 2355287, 10.2298/AADM0702445R; reference:[11] Stanić, Z.: Inequalities for Graph Eigenvalues.London Mathematical Society Lecture Note Series 423, Cambridge University Press, Cambridge (2015). Zbl 1368.05001, MR 3469535, 10.1017/CBO9781316341308; reference:[12] Stanić, Z.: Bounding the largest eigenvalue of signed graphs.Linear Algebra Appl. 573 (2019), 80-89. Zbl 1411.05109, MR 3933292, 10.1016/j.laa.2019.03.011; reference:[13] Zaslavsky, T.: Matrices in the theory of signed simple graphs.Advances in Discrete Mathematics and Applications B. D. Acharya, G. O. H. Katona, J. Nešetřil Ramanujan Mathematical Society Lecture Notes Series 13, Ramanujan Mathematical Society, Mysore (2010), 207-229. Zbl 1231.05120, MR 2766941
-
19Academic Journal
المؤلفون: Rocha, Israel
مصطلحات موضوعية: keyword:sum of eigenvalues, keyword:graph energy, keyword:random matrix, msc:05C50, msc:15A18
وصف الملف: application/pdf
Relation: mr:MR4160784; zbl:07285948; reference:[1] Das, K. C., Mojallal, S. A., Sun, S.: On the sum of the $k$ largest eigenvalues of graphs and maximal energy of bipartite graphs.Linear Algebra Appl. 569 (2019), 175-194. Zbl 1411.05156, MR 3904318, 10.1016/j.laa.2019.01.016; reference:[2] Füredi, Z., Komlós, J.: The eigenvalues of random symmetric matrices.Combinatorica 1 (1981), 233-241. Zbl 0494.15010, MR 0637828, 10.1007/BF02579329; reference:[3] Graovac, A., Gotman, I., Trinajstić, N.: Topological Approach to the Chemistry of Conjugated Molecules.Lecture Notes in Chemistry 4. Springer, Berlin (1977). Zbl 0385.05032, 10.1007/978-3-642-93069-0; reference:[4] Hoeffding, W.: Probability inequalities for sums of bounded random variables.J. Am. Stat. Assoc. 58 (1963), 13-30. Zbl 0127.10602, MR 0144363, 10.2307/2282952; reference:[5] Li, X., Shi, Y., Gutman, I.: Graph Energy.Springer, New York (2012). Zbl 1262.05100, MR 2953171, 10.1007/978-1-4614-4220-2; reference:[6] Mohar, B.: On the sum of $k$ largest eigenvalues of graphs and symmetric matrices.J. Comb. Theory, Ser. B 99 (2009), 306-313. Zbl 1217.05151, MR 2482950, 10.1016/j.jctb.2008.07.001; reference:[7] Nikiforov, V.: The energy of graphs and matrices.J. Math. Anal. Appl. 326 (2007), 1472-1475. Zbl 1113.15016, MR 2280998, 10.1016/j.jmaa.2006.03.072; reference:[8] Nikiforov, V.: On the sum of $k$ largest singular values of graphs and matrices.Linear Algebra Appl. 435 (2011), 2394-2401. Zbl 1222.05172, MR 2811124, 10.1016/j.laa.2010.08.014; reference:[9] Nikiforov, V.: Beyond graph energy: norms of graphs and matrices.Linear Algebra Appl. 506 (2016), 82-138. Zbl 1344.05089, MR 3530671, 10.1016/j.laa.2016.05.011; reference:[10] Rocha, I.: Brouwer's conjecture holds asymptotically almost surely.Linear Algebra Appl. 597 (2020), 198-205. Zbl 07190773, MR 4082064, 10.1016/j.laa.2020.03.019; reference:[11] Wigner, E. P.: On the distribution of the roots of certain symmetric matrices.Ann. Math. (2) 67 (1958), 325-327. Zbl 0085.13203, MR 0095527, 10.2307/1970008
-
20Academic Journal
مصطلحات موضوعية: keyword:tree, keyword:Laplacian matrix, keyword:inertia, keyword:Haynsworth formula, msc:05C50, msc:15B48
وصف الملف: application/pdf
Relation: mr:MR4160783; zbl:07285947; reference:[1] Balaji, R., Bapat, R. B.: Block distance matrices.Electron. J. Linear Algebra 16 (2007), 435-443. Zbl 1148.15016, MR 2365897, 10.13001/1081-3810.1213; reference:[2] Bapat, R. B.: Determinant of the distance matrix of a tree with matrix weights.Linear Algebra Appl. 416 (2006), 2-7. Zbl 1108.15006, MR 2232916, 10.1016/j.laa.2005.02.022; reference:[3] Bapat, R., Kirkland, S. J., Neumann, M.: On distance matrices and Laplacians.Linear Algebra Appl. 401 (2005), 193-209. Zbl 1064.05097, MR 2133282, 10.1016/j.laa.2004.05.011; reference:[4] Fiedler, M.: Matrices and Graphs in Geometry.Encyclopedia of Mathematics and Its Applications 139. Cambridge University Press, Cambridge (2011). Zbl 1225.51017, MR 2761077, 10.1017/CBO9780511973611; reference:[5] Fiedler, M., Markham, T. L.: Completing a matrix when certain entries of its inverse are specified.Linear Algebra Appl. 74 (1986), 225-237. Zbl 0592.15002, MR 0822149, 10.1016/0024-3795(86)90125-4