يعرض 1 - 20 نتائج من 43 نتيجة بحث عن '"msc:04A72"', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2722090; zbl:Zbl 1211.03073; reference:[1] Cock, M. De, Kerre, E.: Why fuzzy T-equivalence relations do not resolve the Poincaré paradox, and related issues.Fuzzy Sets and Systems 133 (2003), 181–192. MR 1949021; reference:[2] Cock, M. De, Kerre, E.: On (un)suitable fuzzy relations to model approximate equality.Fuzzy Sets and Systems 133 (2003), 137–153. Zbl 1020.03049, MR 1949016; reference:[3] Janiš, V., Renčová, M., Šešelja, B., Tepavčević, A.: Construction of fuzzy relation by closure systems.In: PReMI 2009 (S. Chaudhury et al., eds.), LNCS 5909, Springer-Verlag, Berlin – Heidelberg 2009, pp. 116–121.; reference:[4] Kalina, M.: Derivatives of fuzzy functions and fuzzy derivatives.Tatra Mountains Math. Publ. 12 (1997), 27–34. Zbl 0951.26015, MR 1607135; reference:[5] Šešelja, B., Tepavčević, A.: Completion of ordered structures by cuts of fuzzy sets: an overview.Fuzzy Sets and Systems 136 (2003), 1–19. Zbl 1020.06005, MR 1978466; reference:[6] Šešelja, B., Tepavčević, A.: Representing ordered structures by cuts of fuzzy sets: an overview.Fuzzy Sets and Systems 136 (2003), 21–39. MR 1978467; reference:[7] Šešelja, B., Tepavčević, A.: Equivalent fuzzy sets.Kybernetika 41 (2005), 115–128. Zbl 1249.03088, MR 2138763

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2068599; zbl:Zbl 1249.91024; reference:[1] Butnariu D., Klement E. P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions.Kluwer, Dordrecht 1993 Zbl 0804.90145, MR 2867321; reference:[2] Dasgupta M., Deb R.: Transitivity and fuzzy preferences.Social Choice and Welfare 13 (1996), 305–318 Zbl 1075.91526, MR 1395364, 10.1007/BF00179234; reference:[3] Dasgupta M., Deb R.: Factoring fuzzy transitivity.Fuzzy Sets and Systems 118 (2001), 489–502 Zbl 1017.91012, MR 1809396; reference:[4] Baets B. De, Fodor J.: Twenty years of fuzzy preference structures (1978–1997).JORBEL 37 (1997), 61–82 Zbl 0926.91012, MR 1619319; reference:[5] Baets B. De, Fodor J.: Generator triplets of additive fuzzy preference structures.In: Proc. Sixth Internat. Workshop on Relational Methods in Computer Science, Tilburg, The Netherlands, 2001, pp. 306–315; reference:[6] Baets B. De, Walle, B. Van De, Kerre E.: Fuzzy preference structures without incomparability.Fuzzy Sets and Systems 76 (1995), 333–348 Zbl 0858.90001, MR 1365400, 10.1016/0165-0114(94)00379-9; reference:[7] Díaz S., Baets, B. De, Montes S.: On the transitivity of fuzzy indifference relations.Fuzzy Sets and Systems – IFSA 2003 (T. Bilgiç, B. DeBaets, and O. Kayak, eds., Lecture Notes in Computer Science 2715.) Springer–Verlag, Berlin 2003, pp. 87–94 Zbl 1132.68768; reference:[8] Díaz S., Baets, B. De, Montes S.: $T$-Ferrers relations versus $T$-biorders.Fuzzy Sets and Systems – IFSA 2003 (T. Bilgiç, B. DeBaets, and O. Kayak, eds., Lecture Notes in Computer Science 2715.) Springer–Verlag, Berlin 2003, pp. 269–276 Zbl 1132.68769; reference:[9] Fodor J.: Contrapositive symmetry of fuzzy implications.Fuzzy Sets and Systems 69 (1995), 141–156 Zbl 0845.03007, MR 1317882, 10.1016/0165-0114(94)00210-X; reference:[10] Fodor J., Roubens M.: Valued preference structures.European J. Oper. Res. 79 (1994), 277–286 Zbl 0812.90005, 10.1016/0377-2217(94)90358-1; reference:[11] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer, Dordrecht 1994 Zbl 0827.90002; reference:[12] Jenei S.: Structure of left-continuous triangular norms with strong induced negations.(I) Rotation construction. J. Appl. Non-Classical Logics 10 (2000), 83–92 Zbl 1050.03505, MR 1826844, 10.1080/11663081.2000.10510989; reference:[13] Jenei S.: Structure of left-continuous triangular norms with strong induced negations.(II) Rotation-annihilation construction. J. Appl. Non-Classical Logics 11 (2001), 351–366 Zbl 1050.03505, MR 1916884, 10.3166/jancl.11.351-366; reference:[14] Jenei S.: Structure of left-continuous triangular norms with strong induced negations.(III) Construction and decomposition. Fuzzy Sets and Systems 128 (2002), 197–208 Zbl 1050.03505, MR 1908426; reference:[15] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer, Dordrecht 2000 Zbl 1087.20041, MR 1790096; reference:[16] Perny P.: Modélisation, agrégation et expoitation des préférences floues dans une problématique de rangement.Ph.D. Thesis, Université Paris Dauphine, Paris 1992; reference:[17] Perny P., Roy B.: The use of fuzzy outranking relations in preference modelling.Fuzzy Sets and Systems 49 (1992), 33–53 Zbl 0765.90003, MR 1177945, 10.1016/0165-0114(92)90108-G; reference:[18] Roubens M., Vincke, Ph.: Preference Modelling.Springer–Verlag, Berlin 1985 Zbl 0612.92020, MR 0809182; reference:[19] Walle B. Van De: Het bestaan en de karakterisatie van vaagpreferentiestrukturen.Ph.D. Thesis, Ghent University, 1996

  3. 3
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1676825; zbl:Zbl 0954.16033; reference:[1] P. J. Allen: A fundamental theorem of homomorphisms for semirings.Proc. Amer. Math. Soc. 21 (1969), 412–416. Zbl 0197.02902, MR 0237575, 10.1090/S0002-9939-1969-0237575-4; reference:[2] Y. B. Jun, J. Neggers and H. S. Kim: On $L$-fuzzy ideals in semirings I.Czechoslovak Math. J. 48(123) (1998), 669–675. MR 1658233, 10.1023/A:1022479320940; reference:[3] Y. B. Jun, J. Neggers and H. S. Kim: Normal $L$-fuzzy ideals in semirings.Fuzzy Sets and Sys. 82 (1996), 383–386. MR 1409711; reference:[4] J. Y. Kim, Y. B. Jun and H. S. Kim: $BCK$-algebras inherited from the posets.Math. Japonica 45 (1997), 119–123. MR 1434966; reference:[5] H. S. Kim: On quotient semiring and extension of quotient halfring.Comm. Korean Math. Soc. 4 (1988), 17–22.; reference:[6] N. Kuroki: Fuzzy bi-ideals in semigroups.Comment. Math. Univ. St. Pauli. 28 (1979), 17–21. Zbl 0428.20041, MR 0579053; reference:[7] Wang-Jin Liu: Operation on fuzzy ideals.Fuzzy Sets and Systems 8 (1983), 41–43. MR 0714623; reference:[8] R. G. McLean and H. Kummer: Fuzzy ideals in semigroups.Fuzzy Sets and Systems 48 (1992), 137–140. MR 1172208, 10.1016/0165-0114(92)90258-6; reference:[9] A. Rosenfeld: Fuzzy groups.J. Math. Anal. Appl. 35 (1971), 512–517. Zbl 0194.05501, MR 0280636, 10.1016/0022-247X(71)90199-5

  4. 4
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1621507; zbl:Zbl 1274.62096; reference:[1] Bourguignon F.: Decomposable income inequality measures.Econometrica 47 (1979), 901–920 Zbl 0424.90013, MR 0537636, 10.2307/1914138; reference:[2] Caso C., Gil M. A.: Estimating income inequality in the stratified sampling from complete data.Part I: The unbiased estimation and applications. Kybernetika 25 (1989), 298–311 Zbl 0682.62087, MR 1015034; reference:[3] Caso C., Gil M. A.: Estimating income inequality in the stratified sampling from complete data.Part II: The asymptotic behaviour and the choice of sample size. Kybernetika 25 (1989), 312–319 Zbl 0682.62087, MR 1015035; reference:[4] Corral N., Gil M. A., López-García H.: The fuzzy hyperbolic inequality index of fuzzy random variables in finite populations.Mathware $\&$ Soft Computing 3 (1996), 329–339 Zbl 0859.60004, MR 1489755; reference:[5] Cox E.: The Fuzzy Systems Handbook.Academic Press, Cambridge 1994 Zbl 0847.68111; reference:[6] Gastwirth J. L., Nayak T. K., Krieger A. M.: Large sample theory for the bounds on the Gini and related indices of inequality estimated from grouped data.J. Business Econom. Statist. 4 (1986), 269–273; reference:[7] Gil M. A., Gil P.: On some information measures of degree ${\beta = 2}$; Estimation in simple–stage cluster sampling.Statist. Probab. Lett. 8 (1989), 157–162 Zbl 0677.62008, MR 1017883, 10.1016/0167-7152(89)90009-6; reference:[8] Gil M. A., Corral N., Casals M. R.: The likelihood ratio test for goodness of fit with fuzzy experimental observations.IEEE Trans. Systems Man Cybernet. 19 (1989), 771–779 10.1109/21.35340; reference:[9] Gil M. A., López–Díaz M.: Fundamentals and Bayesian analyses of decision problems with fuzzy–valued utilities.Internat. J. Approx. Reason. 15 (1996), 203–224 Zbl 0949.91504, MR 1415767, 10.1016/S0888-613X(96)00073-4; reference:[10] Gil M. A., Martínez I.: On the asymptotic optimum allocation in estimating inequality from complete data.Kybernetika 28 (1992), 325–332 Zbl 0771.62083, MR 1183623; reference:[11] Gil M. A., Pérez R., Gil P.: A family of measures of uncertainty involving utilities: definitions, properties, applications and statistical inferences.Metrika 36 (1989), 129–147 MR 1024002, 10.1007/BF02614085; reference:[12] Jang J.-S. R., Gulley N.: Fuzzy Logic Toolbox for Use with MATLAB.The Math Works Inc., Natick–Massachussets 1995; reference:[13] Kaufmann A., Gupta M. M.: Introduction to Fuzzy Arithmetic.Van Nostrand Reinhold Co., New York 1985 Zbl 0754.26012, MR 0796665; reference:[14] Mareš M.: Addition of rational fuzzy quantities: Disjunction–conjunction approach.Kybernetika 25 (1989), 104–116 MR 0995953; reference:[15] Mareš M.: Algebraic equivalences over fuzzy quantities.Kybernetika 25 (1992), 121–132 MR 1227746; reference:[16] Mareš M.: Computation over Fuzzy Quantities.CRC Press, Boca Raton 1994 Zbl 0859.94035, MR 1327525; reference:[17] Puri M. L., Ralescu D. A.: Fuzzy random variables.J. Math. Anal. Appl. 114 (1986), 409–422 Zbl 0605.60038, MR 0833596, 10.1016/0022-247X(86)90093-4; reference:[18] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning.Inform. Sci. Part 1, 8 (1975), 199–249; Part 2, 8 (1975), 301–353; Part 3, 9 (1975), 43–80 Zbl 0404.68075, MR 0386371, 10.1016/0020-0255(75)90017-1

  5. 5
    Academic Journal

    المؤلفون: Lupiáñez, Francisco Gallego

    وصف الملف: application/pdf

    Relation: mr:MR1621508; zbl:Zbl 1274.54037; reference:[1] Arhangel’skii A. V.: A criterion for the existence of a bicompact element in a continuous decomposition.A theorem on the invariance of weight under open–closed finite–to–one mappings. Soviet Math. Dokl. 7 (1966), 249–253; reference:[2] Arhangel’skii A. V.: A theorem of the metrizability of the inverse image of a metric space under an open–closed finite–to–one mapping.Example and unsolved problems. Soviet Math. Dokl. 7 (1966), 1258–1262 MR 0206899; reference:[3] Chaber J.: Open finite–to–one images of metric spaces.Topology Appl. 14 (1982), 241–246 Zbl 0505.54013, MR 0675587, 10.1016/0166-8641(82)90053-0; reference:[4] Chang C. L.: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182–190 Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7; reference:[5] Christoph F. T.: Quotient fuzzy topology and local compactness, J.Math. Anal. Appl. 57 (1977), 497–504 MR 0440480, 10.1016/0022-247X(77)90242-6; reference:[6] Čoban M. M.: Open finite–to–one mappings.Soviet Math. Dokl. 8 (1967), 603–605; reference:[7] El–Monsef M. E. A., Zeyada F. M., El–Deeb S. N., Hanafy I. M.: Good extensions of paracompactness.Math. Japon. 37 (1992), 195–200 Zbl 0772.54007, MR 1148533; reference:[8] Ghosh B.: Directed family of fuzzy sets and fuzzy perfect maps.Fuzzy Sets and Systems 75 (1995), 93–101 Zbl 0863.54003, MR 1351595, 10.1016/0165-0114(94)00357-D; reference:[9] Gittings R. F.: Finite–to–one open maps of generalized metric spaces.Pacific J. Math. 59 (1975), 33–41 Zbl 0296.54011, MR 0385787, 10.2140/pjm.1975.59.33; reference:[10] Gittings R. F.: Open mapping theory.In: Set–theoretic Topology (G. M. Reed, ed.), Academic Press, New York 1977, pp. 141–191 Zbl 0401.54008, MR 0482628; reference:[11] Kohli J. K.: Finite–to–one maps and open extensions of maps.Proc. Amer. Math. Soc. 48 (1975), 464–468 Zbl 0323.54007, MR 0370472, 10.1090/S0002-9939-1975-0370472-5; reference:[12] Lowen R.: Fuzzy topological spaces and fuzzy compactness.J. Math. Anal. Appl. 56 (1976), 621–633 Zbl 0342.54003, MR 0440482, 10.1016/0022-247X(76)90029-9; reference:[13] Lowen R.: A comparison of different compactness notions in fuzzy topological spaces.J. Math. Anal. Appl. 64 (1978), 446–454 Zbl 0381.54004, MR 0497443, 10.1016/0022-247X(78)90052-5; reference:[14] Luo M. K.: Paracompactness in fuzzy topological spaces.J. Math. Anal. Appl. 130 (1988), 55–77 Zbl 0642.54006, MR 0926828, 10.1016/0022-247X(88)90386-1; reference:[15] Lupiáñez F. G.: Fuzzy perfect maps and fuzzy paracompactness.Fuzzy Sets and Systems, to appear Zbl 0941.54008, MR 1640139; reference:[16] Martin H. W.: Weakly induced fuzzy topological spaces.J. Math. Anal. Appl. 78 (1980), 634–639 Zbl 0463.54007, MR 0601558, 10.1016/0022-247X(80)90170-5; reference:[17] Okuyama A.: Note on inverse images under finite–to–one mappings.Proc. Japan Acad. 43 (1967), 953–956 MR 0234416; reference:[18] Pareek C. M.: Open finite–to–one mappings on $p$–spaces.Math. Japon. 28 (1983), 9–13 Zbl 0531.54025, MR 0692548; reference:[19] Proizvolov V. V.: Finitely multiple open mappings.Soviet Math. Dokl. 7 (1966), 35–38 MR 0188991; reference:[20] Pu P.–M., Liu Y.–M.: Fuzzy topology I.Neighborhood structure of a fuzzy point and Moore–Smith convergence. J. Math. Anal. Appl. 76 (1980), 571–599 Zbl 0447.54006, MR 0587361, 10.1016/0022-247X(80)90048-7; reference:[21] Sadyrkhanov R. S.: A finite–to–one criterion for covering maps.Soviet Math. Dokl. 28 (1983), 587–590 Zbl 0558.54011; reference:[22] Shostak A. P.: Two decades of fuzzy topology: basic ideas, notions, and results.Russian Math. Surveys 44 (6) (1989), 125–186 Zbl 0716.54004, MR 1037011, 10.1070/RM1989v044n06ABEH002295; reference:[23] Srivastava R., Lal S. N.: On fuzzy proper maps.Mat. Vesnik 38 (1986), 337–342 Zbl 0654.54005, MR 0870958; reference:[24] Srivastava R., Lal S. N., Srivastava A. K.: Fuzzy Hausdorff topological spaces, J.Math. Anal. Appl. 81 (1981), 497–506 MR 0622833, 10.1016/0022-247X(81)90078-0; reference:[25] Srivastava R., Lal S. N., Srivastava A. K.: Fuzzy $T_1$–topological spaces.J. Math. Anal. Appl. 102 (1984), 442–448 MR 0755975, 10.1016/0022-247X(84)90184-7; reference:[26] Tanaka Y.: On open finite–to–one maps.Bull. Tokyo Gakugei Univ., Ser. IV, 25 (1973), 1–13. Zbl 0355.54008, MR 0346730; reference:[27] Wong C. K.: Fuzzy topology: product and quotient theorems.J. Math. Anal. Appl. 45 (1974), 512–521 Zbl 0273.54002, MR 0341366, 10.1016/0022-247X(74)90090-0

  6. 6
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1658233; zbl:Zbl 0954.16032; reference:[1] J. Ahsan and M. Shabir: Semirings with projective ideals.Math. Japonica 38 (1993), 271–276. MR 1213388; reference:[2] P. J. Allen: A fundamental theorem of homomorphisms for semirings.Proc. Amer. Math. Soc. 21 (1969), 412–416. Zbl 0197.02902, MR 0237575, 10.1090/S0002-9939-1969-0237575-4; reference:[3] L. Dale: Direct sums of semirings and the Krull-Schmidt theorem.Kyungpook Math. J. 17, 135–141. Zbl 0382.16019, MR 0463248; reference:[4] H. S. Kim: On quotient semiring and extension of quotient halfring.Comm. Korean Math. Soc. 4 (1989), 17–22.; reference:[5] Wang-jin Liu: Fuzzy invariants subgroups and fuzzy ideals.Fuzzy Sets and Sys. 8 (1987), 133–139. MR 0666626; reference:[6] T. K. Mukherjee and M. K. Sen: On fuzzy ideals of a ring I.Fuzzy Sets and Sys. 21 (1987), 99–104. MR 0868358; reference:[7] K. L. N. Swamy and U. M. Swamy: .Fuzzy prime idelas of rings J. Math. Anal. Appl. 134 (1988), 345–350.; reference:[8] Zhang Yue: Prime L-fuzzy ideals and primary L-fuzzy ideals.Fuzzy Sets and Sys. 27 (1988), 345–350. Zbl 0663.13001, MR 0956381; reference:[9] L. A. Zadeh: Fuzzy sets.Inform. and Control 8 (1965), 338–353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X

  7. 7
    Academic Journal

    المؤلفون: Thakur, S. S., Philip, Annamma

    وصف الملف: application/pdf

    Relation: mr:MR1489398; zbl:Zbl 0897.54004; reference:[1] G. Balasubramanian: Fuzzy disconnectedness and its stronger forms.Indian J. Pure Appl. Math. 24 (1993), no. 1, 27-30. Zbl 0785.54005, MR 1203246; reference:[2] C. L. Chang: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182-190. Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7; reference:[3] U. V. Fetteh D. S. Bassan: Fuzzy connectedness and its stronger forms.J. Math. Anal. Appl. III (1985), 449-464. MR 0813222; reference:[4] M. H. Ghanim E. E. Kerre A. S. Mashhour: Separation axioms, subspaces and sums in fuzzy topology.J. Math. Anal. Appl. 102 (1984), 189-202. MR 0751352, 10.1016/0022-247X(84)90212-9; reference:[5] A. Kandil: Biproximities and fuzzy topological spaces.Simon Stevin 63 (1989), 45-46. MR 1021455; reference:[6] S. N. Maheshwari S. S. Thakur, Rita Malviya: Conectedness between fuzzy sets.J. Fuzzy Math. 1 (1993), no. 4, 757-759. MR 1249187; reference:[7] M. N. Mukherjee: Pairwise set connected mappings in bitopological spaces.Indian J. Pure Appl. Math 16 (1989), no. 9, 1106-1113. MR 0864150; reference:[8] P. M. Pu Y. M. Liu: Fuzzy topology 1, Neighbourhood structure of a fuzzy point and Moore Smith convergence.J. Math. Anal. Appl. 76 (1980), 571-599. MR 0587361, 10.1016/0022-247X(80)90048-7; reference:[9] S. S. Thakur, Annamma Philip: Connectedness in fuzzy bitopological spaces.Epsilon J. Math. (Submitted).; reference:[10] L. A. Zadeh: Fuzzy sets.Inform. and Control (Shenyang) 8 (1965), 338-353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X

  8. 8
    Academic Journal

    المؤلفون: Balasubramanian, Ganesan

    مصطلحات موضوعية: msc:04A72, msc:54A40, msc:54G05

    وصف الملف: application/pdf

    Relation: mr:MR1463609; zbl:Zbl 0932.54008; reference:[1] M. E. Abd El-Monsef S. N. El-Deeb, R. A. Mahmould: $\beta$-open sets and $\beta$-continuous mapping.Bull. Fac. Sci. Assiut Univ. (1982).; reference:[2] A. A. Aliam, K. M. Abd El-Hakkim: On $\beta$-compact spaces.Bull. Calcutta Math. Soc. 81 (1989), 179-182. MR 1008608; reference:[3] G. Balasubramanian: On extensions of fuzzy topologies.Kybernetika 28 (1992), 239-244. Zbl 0795.54011, MR 1174660; reference:[4] A. S. Bin Shahna: On fuzzy strong semicontinuity and fuzzy precontinuity.Fuzzy Sets and Systems 44 (1991), 303-308. Zbl 0753.54001, MR 1140864; reference:[5] A. S. Mashhour M. E. Abd El-Monsef, S. N. El-Deeb: On precontinuous and weak precontinuous mappings.Proc. Phys. Soc. Egypt 15 (1981).

  9. 9
    Academic Journal

    المؤلفون: Klement, Erich Peter, Navara, Mirko

    مصطلحات موضوعية: msc:04A72, msc:28A20, msc:28E10, msc:46S10, msc:46S99

    وصف الملف: application/pdf

    Relation: mr:MR1479313; zbl:Zbl 0902.28015; reference:[BK] Butnariu, D., Klement, E.P.: Triangular norm-based measures and games with fuzzy coalitions.Kluwer, Dordrecht, 1993.; reference:[F] Frank, M.J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$.Aequationes Math. 19 (1979), 194–226. Zbl 0444.39003, MR 0556722, 10.1007/BF02189866; reference:[K] Klement, E.P.: Construction of fuzzy $\sigma $-algebras using triangular norms.J. Math. Anal Appl. 85 (1982), 543–565. Zbl 0491.28003, MR 0649189, 10.1016/0022-247X(82)90015-4; reference:[M:semi] Mesiar, R.: Fundamental triangular norm based tribes and measures.J. Math. Anal. Appl. 177 (1993), 633–640. Zbl 0816.28014, MR 1231507, 10.1006/jmaa.1993.1283; reference:[M] Mesiar, R.: On the structure of $T_s$-tribes.Tatra Mountains Math. Publ. 3 (1993), 167–172. MR 1278531; reference:[MN] Mesiar, R., Navara, M.: $T_s$-tribes and $T_s$-measures.J. Math. Anal. Appl (to appear). MR 1397888; reference:[N] Navara, M.: A characterization of triangular norm based tribes.Tatra Mountains Math Publ. 3 (1993), 161–166. Zbl 0799.28013, MR 1278530; reference:[Pykacz] Pykacz, J.: Fuzzy set ideas in quantum logics.Int. J. Theor. Physics 31 (1992), 1765–1781. Zbl 0789.03049, MR 1183522, 10.1007/BF00671785; reference:[SS] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces.North-Holland, New York, 1983. MR 0790314

  10. 10
    Academic Journal

    المؤلفون: Thakur, S. S., Malviya, R.

    وصف الملف: application/pdf

    Relation: mr:MR1419881; zbl:Zbl 0879.54006; reference:[1] K. K. Azad: On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity.J. Math. Anal. Appl. 82 (1981), 14-32. MR 0626738, 10.1016/0022-247X(81)90222-5; reference:[2] C. L. Chang: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182-190. Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7; reference:[3] M. H. Ghanim E. E. Kerre, A. S. Mashhour: Separation axiom, subspaces and sums in fuzzy topology.J. Math. Anal. Appl. 102 (1984), 189-202. MR 0751352, 10.1016/0022-247X(84)90212-9; reference:[4] A. Kandil: Biproximities and fuzzy bitopological spaces.Simon Stevin 63 (1989), 45-66. Zbl 0681.54015, MR 1021455; reference:[5] N. Levine: Semi-open sets and semi continuity in topological spaces.Amer. Math. Monthly 70 (1963), 36-41. Zbl 0113.16304, MR 0166752, 10.1080/00029890.1963.11990039; reference:[6] S. N. Maheshwari, R. Prasad: Semi-open sets and semi continuity in bitopological spaces.Math. Notae XXVI (1977), 29-37. MR 0536731; reference:[7] S. N. Maheshwari, R. Prasad: Pairwise irresolute functions.Mathematica 18 (1976), no. 2, 169-172. Zbl 0387.54015, MR 0493987; reference:[8] P. M. Pu, Y. M. Liu: Fuzzy topology I, Neighbourhood structure of a fuzzy point and Moore Smith Convergence.J. Math. Anal. Appl. 76 (1980), 371-599. MR 0587361; reference:[9] P. M. Pu, Y. M. Liu: Fuzzy topology II, Product and Quotient spaces.J. Math. Anal. Appl. 77 (1980), 20-37. Zbl 0447.54007, MR 0591259; reference:[10] S. S. Thakur, R. Malviya: Semi open sets and semi continuity in fuzzy bitopological spaces.Fuzzy Sets and Systems. (Accepted). Zbl 0867.54016; reference:[11] T. H. Yalvac: Fuzzy sets and functions on fuzzy spaces.J. Math. Anal. Appl. 120 (1987), 409-423. Zbl 0639.54004, MR 0900757; reference:[12] T. H. Yalvac: Semi interior and semi closure of a fuzzy set.J. Math. Anal. Appl. 132 (1988), 356-364. Zbl 0645.54007, MR 0943512, 10.1016/0022-247X(88)90067-4; reference:[13] L. A. Zadeh: Fuzzy sets.Inform. and Control 8 (1965), 338-353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X

  11. 11
    Academic Journal

    المؤلفون: Mareš, Milan

    مصطلحات موضوعية: msc:03E72, msc:04A72, msc:94D05

    وصف الملف: application/pdf

    Relation: mr:MR1420127; zbl:Zbl 0884.04004; reference:[1] D. Dubois, H. Prade: Fuzzy numbers: An overview.In: Analysis of Fuzzy Information, CRC, Boca Raton, FA 1987, Vol. I, pp. 3-39. Zbl 0663.94028, MR 0910312; reference:[2] M. Mareš: Algebra of fuzzy quantities.Internat. J. Gen. Systems 20 (1991), 1, 59-65.; reference:[3] M. Mareš: Algebraic equivalences over fuzzy quantities.Kybernetika 29 (1993), 2, 121-132. MR 1227746; reference:[4] M. Mareš: Multiplication of fuzzy quantities.Kybernetika 28 (1992), 5, 337-356. MR 1197719; reference:[5] M. Mareš: Brief note on distributivity of triangular fuzzy quantities.Kybernetika 31 (1995), 5, 451-458. MR 1361306; reference:[6] M. Mareš: Additive decomposition of fuzzy quantities with finite supports.Fuzzy Sets and Systems 47 (1992), 341-346. MR 1166282

  12. 12
    Academic Journal

    مصطلحات موضوعية: msc:04A72, msc:68Q70

    وصف الملف: application/pdf

    Relation: mr:MR1446783; zbl:Zbl 0870.68104; reference:[1] Mizumoto M., Toyoda J., Tanaka K.: Some considerations on fuzzy automata.J. Computer and System Sciences 8 (1969), 409-422. Zbl 0183.29501, MR 0250795, 10.1016/S0022-0000(69)80029-2; reference:[2] Mockof J.: Some categorical aspects of fuzzy automata.Int. J. General Systems 20 (1991), 73-82. 10.1080/03081079108945016; reference:[3] Močkoř J., Smolíková R.: Output functions of fuzzy automata.Acta Math, et Inf. Univ. Ostraviensis 3 (1995), 55-59. MR 1474066; reference:[4] Močkoř J., Smolíková R.: Fuzzy Automata.in print for Tatra Mountains Math. Publ.; reference:[5] Novák V.: Fuzzy sets and their applications.A. Hilger, Bristol, 1989. MR 1019090; reference:[6] Santos E. S.: Maximin automata.Inf. Control 13 (1968), 363-377. Zbl 0174.03601, MR 0246722, 10.1016/S0019-9958(68)90864-4; reference:[7] Wee W. G., Fu K. S.: A formulation of fuzzy automata and its application as a model of learning system.IEEE Trans. System Science and Cyb. 3 (1969), 215-223. 10.1109/TSSC.1969.300263

  13. 13
    Academic Journal

    المؤلفون: Mareš, Milan, Mesiar, Radko

    مصطلحات موضوعية: msc:03E72, msc:04A72

    وصف الملف: application/pdf

    Relation: mr:MR1446782; zbl:Zbl 0870.04003; reference:[1] Jacas J., Mareš M., Recasens J.: Homogenous classes of fuzzy quantities.Mathware, to appear in 1997.; reference:[2] Mareš M.: Computation Over Fuzzy Quantities.CRC-Press. Boca Raton, 1994. MR 1327525; reference:[3] Mareš M., Mesiar R.: Processing of sources of fuzzy quantitites.Transactions of the IPMU'96 Conference, Granada, July 1-5, 1996. University of Granada Vol. I (1996), 359-364.; reference:[4] Mareš M.: Following fuzzy instructions.Fuzzy Economic Reviews, (submitted).; reference:[5] Mesiar R.: A note to the T-sum of L - R fuzzy numbers.Fuzzy Sets and Systems 79 (1996), 259-261. Zbl 0871.04010, MR 1388398; reference:[6] Novák V.: Fuzzy Sets and Their Applications.A. Hilger, Bristol, 1989. MR 1019090; reference:[7] Yager R. R., Rybalov A.: Uniform aggregation operators.Technical report # MII-1407, Machine Intelligence Institute, New Rochelle, NY, 1994.

  14. 14
    Academic Journal

    المؤلفون: Thakur, S. S., Saraf, R. K.

    وصف الملف: application/pdf

    Relation: mr:MR1369688; zbl:Zbl 0841.54005; reference:[1] C. L. Chang: Fuzzy topological spaces.J. Math. Anal. 24 (1968), 182-190. Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7; reference:[2] O. Njästed: On some classes of nearly open sets.Pacific J. Math. 15 (1976), 961-970. MR 0195040, 10.2140/pjm.1965.15.961; reference:[3] S. N. Maheshwari, S. S. Thakur: On $alpha$-irresolute mapping.Tamkang J. Math. 11 (1980), 209-214. MR 0696921; reference:[4] S. N. Maheshwari, S. S. Thakur: On $alpha$-continuous mapping.J. Ind. Acad. Math. 7 (1985), 46-50. MR 0879373; reference:[5] S. N. Maheshwari, S. S. Thakur: On $alpha$-compact spaces.Bull. Inst. Math. Acad. Sinica 13 (1985), 341-347. MR 0866569; reference:[6] A. S. Mashhour I. A. Hassanian S. N. El-deeb: $alpha$-continuous and $alpha$-open mappings.Acta Math. Sci. Hungar. 41 (1983), 213-218. MR 0703734, 10.1007/BF01961309; reference:[7] L. A. Zadeh: Fuzzy sets.Inform and control 8 (1965), 338-353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X

  15. 15
    Academic Journal

    المؤلفون: Balasubramanian, Ganesan

    مصطلحات موضوعية: msc:04A72, msc:54A10, msc:54A40

    وصف الملف: application/pdf

    Relation: mr:MR1361307; zbl:Zbl 0856.54004; reference:[1] A. S. Bin Shahna: On fuzzy compactness and fuzzy Lindelofness.Bull. Calcutta Math. Soc. 83 (1991), 146-150. MR 1134246; reference:[2] A. B. Raha: Maximal topologies.J. Austral. Math. Soc. 8 (1968), 700-705. MR 0236884; reference:[3] K. K. Azad: On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity.J. Math. Anal. Appl. 82 (1981), 14-32. Zbl 0511.54006, MR 0626738; reference:[4] G. Balasubramanian: On extensions of fuzzy topologies.Kybernetika 28 (1992), 3, 239-244. Zbl 0795.54011, MR 1174660; reference:[5] C. L. Chang: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182-190. Zbl 0167.51001, MR 0236859; reference:[6] U. V. Fatteh, D. S. Bassan: Fuzzy connectedness and its stronger forms.J. Math. Anal. Appl. 111 (1985), 440-464. Zbl 0588.54008, MR 0813222; reference:[7] S. Ganguly, S. Saha: A note on compactness in a fuzzy setting.Fuzzy Sets and Systems 34 (1990), 117-124. Zbl 0689.54002, MR 1039716; reference:[8] R. Lowen: Fuzzy topological spaces and fuzzy compactness.J. Math. Anal. Appl. 56 (1976), 621-633. Zbl 0342.54003, MR 0440482; reference:[9] S. Nanda: Strongly compact fuzzy topological spaces.Fuzzy Sets and Systems 42 (1991), 259-262. Zbl 0736.54003, MR 1117827

  16. 16
    Academic Journal

    المؤلفون: Mareš, Milan

    مصطلحات موضوعية: msc:03E72, msc:04A72

    وصف الملف: application/pdf

    Relation: mr:MR1361306; zbl:Zbl 0856.04009; reference:[1] D. Dubois, H. Prade: Fuzzy numbers: An overview.In: Analysis of Fuzzy Information (J. C. Bezdek, ed.), CRC Press, Boca Raton 1988, pp. 3-39. MR 0910312; reference:[2] M. Kovacs, L.Ii. Tran: Algebraic structure of centered M-fuzzy numbers.Fuzzy Sets and Systems 39 (1991), 1, 91-100. Zbl 0724.04006, MR 1089014; reference:[3] M. Mareš: Algebra of fuzzy quantities.Internat. J. Gen. Systems 20 (1991), 1, 59-65.; reference:[4] M. Mareš: Equivalentions over fuzzy quantities.Tatra Mountains Mathematical Journal (to appear). MR 1363989

  17. 17
    Academic Journal

    مصطلحات موضوعية: msc:04A72, msc:68Q45, msc:68Q70

    وصف الملف: application/pdf

    Relation: mr:MR1474066; zbl:Zbl 0852.68059; reference:[1] Mizumoto M., Toyoda J., Tanaka K.: Some considerations on fuzzy automata.J. Computeг and System Sciences 8 (1969), 409-422. Zbl 0183.29501, MR 0250795, 10.1016/S0022-0000(69)80029-2; reference:[2] Močkoř J.: Some categorical aspects of fuzzy automata.Int. J. Geneгal Systems 20 (1991), 73-82. 10.1080/03081079108945016; reference:[3] Wee W. G., Fu K. S.: A formulatгon of fuzzy automata and its application as a model of learning system.IEEE Tгans. System Science and Cyb. 3 (1969), 215-223. 10.1109/TSSC.1969.300263

  18. 18
    Academic Journal

    المؤلفون: Mareš, Milan

    مصطلحات موضوعية: msc:03B52, msc:03E72, msc:04A72

    وصف الملف: application/pdf

    Relation: mr:MR1227746; zbl:Zbl 0788.04006; reference:[1] D. Dubois, H. Prade: Fuzzy Sets and Systems.Academic Press, New York-London-Tokyo 1980. Zbl 0444.94049, MR 0589341; reference:[2] D. Dubois, H. Prade: Fuzzy numbers: an overview.In: Analysis of Fuzzy Information. (J.C. Bezdek, ed.), CRC Press, Boca Raton 1988, Vol. I, pp. 3-39. MR 0910312; reference:[3] U. Hohle: Representation theorem for L-fuzzy quantities.Fuzzy Sets and Systems 3 (1981), 1, 83-107. MR 0595955; reference:[4] M. Kovács, L. H. Tran: Algebraic structure of centered m-fuzzy numbers.Fuzzy Sets and Systems 59 (1991), 1, 91-100. MR 1089014; reference:[5] M. Mareš: Addition of fuzzy quantities: disjunction-conjunction approach.Kybernetika 25 (1989), 2, 104-116. MR 0995953; reference:[6] M. Mareš: Algebra of fuzzy quantities.Internat. J. Gen. Systems 20 (1991), 1, 59-65.; reference:[7] M. Mareš: Additive decomposition of fuzzy quantities with finite supports.Fuzzy Sets and Systems 47 (1992), 3, 341-346. MR 1166282; reference:[8] M. Mareš: Space of symmetric normal fuzzy quantities.Internat. J. Gen. Systems, submitted.; reference:[9] M. Mareš: Multiplication of fuzzy quantities.Kybernetika 28 (1992), 5, 337-356. MR 1197719; reference:[10] V. Novák: Fuzzy Sets and Their Applications.A. Hilger, Bristol 1989. MR 1019090

  19. 19
    Academic Journal

    المؤلفون: Mareš, Milan

    مصطلحات موضوعية: msc:03E72, msc:04A72, msc:94D05

    وصف الملف: application/pdf

    Relation: mr:MR1227747; zbl:Zbl 0797.04006; reference:[1] D. Dubois, H. Prade: Fuzzy numbers: an overview.In: Analysis of Fuzzy Information (J.C. Bezdek, ed.), CRC Press, Boca Raton 1988, Vol. 1, pp. 3-39. MR 0910312; reference:[2] M. Mareš: Addition of fuzzy quantities: disjunction-conjunction approach.Kybernetika 25 (1989), 2, 104-116. MR 0995953; reference:[3] M. Mareš: Space of symmetric normal fuzzy quantities.International J. Gen. Systems, submitted.; reference:[4] M. Mareš: Multiplication of fuzzy quantities.Kybernetika 25 (1992), 5, 337-356. MR 1197719; reference:[5] M. Mareš: Additive decomposition of fuzzy quantities with finite supports.Fuzzy Sets and Systems. 47 (1992), 3, 341-346. MR 1166282; reference:[6] M. Mareš: Algebraic equivalences over fuzzy quantities.Kybernetika 29 (1993), 2, 121-132. MR 1227746; reference:[7] M. Mareš: Some remarks to fuzzy CPM.Ekonomicko-matematicky obzor 27(1991), 4, 367-370.; reference:[8] G. J. Klir, T. A. Folger: Fuzzy Sets, Uncertainty, and Information.Prentice Hall, Englewood Cliffs - London 1988. Zbl 0675.94025, MR 0930102

  20. 20
    Academic Journal

    المؤلفون: Šostak, Alexander P.

    وصف الملف: application/pdf

    Relation: mr:MR1165894; zbl:Zbl 0786.54007; reference:[1] C. J. R. Borges: Stratifiable spaces.Pacific J. Math. 17 (1966), 1-16. Zbl 0175.19803, MR 0188982, 10.2140/pjm.1966.17.1; reference:[2] C. J. R. Borges: A survey of $M_i$-spaces: open questions and partial results.General Topology Appl. 1 (1971), 79-84. MR 0293571, 10.1016/0016-660X(71)90113-9; reference:[3] R. Cauty: Retractions dans les espaces stratifiables.Bull. Soc. Math. France 105 (1961), 129-149. MR 0355957; reference:[4] J. Ceder: Some generalizations of metrizable spaces.Pacific J. Math. 11 (1961), 105-125. MR 0131860, 10.2140/pjm.1961.11.105; reference:[5] C. L. Chang: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182-190. Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7; reference:[6] F. T. Christoph: Quotient fuzzy topology and local compactness.J. Math. Anal. Appl. 57 (1977), 497-504. Zbl 0357.54008, MR 0440480, 10.1016/0022-247X(77)90242-6; reference:[7] R. Engelking: General Topology.PWN, Warszawa, 1977. Zbl 0373.54002, MR 0500780; reference:[8] T. E. Gantner R. C. Steinlage R. H. Warren: Compactness in fuzzy topological spaces.J. Math. Anal. Appl. 62 (1978), 547-562. MR 0488689, 10.1016/0022-247X(78)90148-8; reference:[9] B. Hutton: Normality in fuzzy topological spaces.J. Math. Anal. Appl. 50 (1975), 74-79. Zbl 0297.54003, MR 0370457, 10.1016/0022-247X(75)90039-6; reference:[10] B. Hutton: Uniformities on fuzzy topological spaces.J. Math. Anal. Appl. 58 (1977), 559-571. Zbl 0358.54008, MR 0644639, 10.1016/0022-247X(77)90192-5; reference:[11] J. L. Kelley: General Topology.New York, 1955. Zbl 0066.16604, MR 0070144; reference:[12] R. Lowen: A comparison of different compactness notions for fuzzy topological spaces.J. Math. Anal. Appl. 64 (1978), 446-454. MR 0497443, 10.1016/0022-247X(78)90052-5; reference:[13] J-iti Nagata: Some theorems on generalized metric spaces.Theory of Sets and Topology, VEB, Berlin, 1972, pp. 377-390. MR 0341425; reference:[14] Pu Pao-ming, Liu Ying-ming: Fuzzy topology I. Neighborhood structure of a fuzzy point.J. Math. Anal. Appl. 76(1980), 571-599. Zbl 0447.54006, MR 0587361, 10.1016/0022-247X(80)90048-7; reference:[14b] Pu Pao-ming, Liu Ying-ming: Fuzzy topology II. Product and quotient spaces.J. Math. Anal. Appl., 77 (1980), 20-37. Zbl 0447.54007, MR 0591259; reference:[15] A. P. Šostak: Some remarks about bijections onto metric spaces.Czechoslovak Math. J. 34 no. 109 (1984), 227-238. MR 0743487; reference:[16] A. P. Šostak: A fuzzy modification of a linearly ordered space.Coll. Math. Soc. Janos Bolyai, Topol. and Appl. 41 (1983), 581-604. MR 0863941; reference:[17] L. A. Zadeh: Fuzzy sets.Inform. and Control 8 (1965), 338-353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X; reference:[18] R. H. Warren: Neighborhoods, bases and continuity in fuzzy topological spaces.Rocky Mount. J. Math. 9 (1978), 459-470. Zbl 0394.54003, MR 0478091, 10.1216/RMJ-1978-8-3-459; reference:[19] A. V. Arkhangelskii: Mappings and spaces.Uspekhi mat. nauk 21 no, 4 (1966), 133-184. (In Russian.); reference:[20] S. Mardešić A. P. Šostak: On perfect preimages of stratifiable spaces.Uspekhi mat. nauk 35 no. 3 (1980), 84-93. (In Russian.) MR 0580624; reference:[21] A. P. Šostak: Fuzzy stratifiable spaces.Leningrad. Internat. Topological Conf., Leningrad, 1982, p. 153. (In Russian.) MR 0760276; reference:[22] A. P. Šostak: On fuzzy stratifiable spaces.Topologia i Teoria Mnozhestv, Izhevsk, 1982, pp. 71-74. (In Russian.) MR 0760276; reference:[23] A. P. Šostak: Functional characteristic of fuzzy stratifiable spaces.Topologicheskie prostranstva i otobrazhenia, Riga, 1985, pp. 158-165. (In Russian.); reference:[24] A. P. Šostak: Two decades of fuzzy topology: principal ideas, notions and results.Uspekhi mat. nauk 44 no. 6 (1989), 99-147. (In Russian.) MR 1037011; reference:[25] A. P. Shostak: On the property of E-regularity in fuzzy topology.Nechetkie sistemi, Poderzhki prinyatia reshenii, Kalinin, 1989, pp. 4-14. (In Russian.)