يعرض 1 - 20 نتائج من 538 نتيجة بحث عن '"monoterpenos"', وقت الاستعلام: 0.60s تنقيح النتائج
  1. 1
  2. 2
    Dissertation/ Thesis

    المؤلفون: Miralpeix i Anglada, Bruna

    المساهمون: University/Department: Universitat de Lleida. Departament de Producció Vegetal i Ciència Forestal

    Thesis Advisors: Christou, Paul, Capell Capell, Teresa

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  3. 3
    Academic Journal
  4. 4
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8

    المؤلفون: Oliveira, Ana Margarida Comba

    المساهمون: Xavier, Generosa Maria Manso Teixeira, Repositório da Universidade de Lisboa

    وصف الملف: application/pdf

  9. 9
    Dissertation/ Thesis

    المؤلفون: RICO MOLINS, JUAN

    المساهمون: University/Department: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament

    Thesis Advisors: Orejas Suarez, Margarita L

  10. 10
    Dissertation/ Thesis

    المساهمون: University/Department: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament

    Thesis Advisors: Orejas Suarez, Margarita L

  11. 11
    Dissertation/ Thesis
  12. 12
    Dissertation/ Thesis
  13. 13
    Dissertation/ Thesis
  14. 14
    Academic Journal
  15. 15
    Academic Journal

    المصدر: Revista Facultad de Ciencias Básicas; Vol. 10 No. 2 (2014); 204-209 ; Revista Facultad de Ciencias Básicas; Vol. 10 Núm. 2 (2014); 204-209 ; 2500-5316 ; 1900-4699

    وصف الملف: application/pdf

    Relation: https://revistas.unimilitar.edu.co/index.php/rfcb/article/view/331/128; Adams, R. (1995). Identification of essential oil components by gas chromatography / mass spectroscopy. Allured Publishing Corporation. USA, 468 p. 2. Babushok, V., & Zenkevich, I. (2009). Retention Indices for most frequently reported essential oil compounds in GC. Chromatographia, 69: 257-269. 3. Clemants, S. (1991). Two New Species of Bejaria (Ericaceae) from South America. Brittonia, 43: 171-177. 4. Goodner, K. (2008). Practical retention index models of OV-101, DB-1, DB-5, and DB-Wax for flavor and fragance compounds. LWT - Food Science and Technology, 41: 951-958. 5. Luteyn, J. (1995). Ericaceae. Organization for Flora Neotrópica. New York Botanical Garden. New York, 1034 p. 6. Matulevich, J. (2013). Estudio fitoquímico de hojas, flores y frutos de Bejaria resinosa Mutis ex Linné filius (Ericaceae) y evaluación de su actividad antiinflamatoria. Trabajo de grado, Programa de Maestría en Ciencias Biológicas, Facultad de Ciencias, Pontificia Universidad Javeriana. Bogotá, 93 p. 7. Radulovic, N., Blagojevic, P., & Palic, R. (2010). Comparative study of the leaf volatiles of Arctostaphylos uva-ursi (L) Spreng and Vaccinium vitis-idaea L. (Ericaceae). Molecules, 15: 6168-6185. 8. Wilches, F. (1981). Contribución al estudio fitoquímico de Befaria glutinosa y sus posibles efectos fisiológicos. Trabajo de grado, Programa de Maestría en Ciencias Biológicas, Facultad de Ciencias, Pontificia Universidad Javeriana. Bogotá, 125 p.; https://revistas.unimilitar.edu.co/index.php/rfcb/article/view/331; http://hdl.handle.net/10654/37432

  16. 16
    Academic Journal

    المصدر: Revista Facultad de Ciencias Básicas; Vol. 12 No. 1 (2016); 84-91 ; Revista Facultad de Ciencias Básicas; Vol. 12 Núm. 1 (2016); 84-91 ; 2500-5316 ; 1900-4699

    مصطلحات موضوعية: Citronelal, CG-EM, Monoterpenos, Arrayán, Sesquiterpenos

    وصف الملف: application/pdf

    Relation: http://revistas.unimilitar.edu.co/index.php/rfcb/article/view/1857/1497; Adams R, 2007, Identification of essential oil components by gas chromatography / mass spectroscopy. Allured Publishing Corporation. USA, 468p. Apel M, Sobral M, Henriques A, 2006, Composição química do óleo volátil de Myrcianthes nativas da região sul do Brasil, Revista Brasileira de Farmacognosia, 16 (3):402-407 Arze JBL, Jean FI, Gagnon H, Collin G, Garneau F, Pichette A, 2005, Essential oils from Bolivia. VIl. Myrtaceae: Myrcianthes osteomeloides (Rusby) McVaugh and Myrcianthes pseudomato (Legrand) McVaugh. Journal of Essential Oil Research, 17: 64-65. Barrales C, Tamayo V, Santiago S, Viveros T, 2011, One pot synthesis of menthol from (±)-citronellal on nickel sulfated zirconia catalysts, Catalysis Today, 172:21-26. Cole R, Haber W, Lawton R, Setzer W, 2008, Leaf Essential Oil Composition of Three Species of Myrcianthes from Monteverde, Costa Rica, Chemystry & Biodiversity. 5:1327-1334. Cole R, Haber W, Setzer W, 2007, Chemical composition of essential oils of seven species of Eugenia from Monteverde, Costa Rica, Biochemical Systematics and Ecology 35:887-886. Demo S M, Olivia M, Zunino M, Lopez M, & Zyngadlo J, 2002, Aromatic Plants from Yungas. Part IV: Composition and Antimicrobial Activity of Myrcianthes pseudo-mato Essential Oil. Pharmaceutical Biology, 40(7):481-484. Gentry, A. 1993.A Field Guide to the Families and Genera of Woody Plants of Northwest South America (Colombia, Ecuador, Peru). Pp 646 Gomes-Carneiro MR, Marcias ES, Felzenswalb I, Paumgartten FJR, 2005, Evaluation of b-myrcene, a-terpinene and (+)- and (-)-a-pinene in the Salmonella/microsome assay, Journal Food and Chemical Toxicology 43: 247-252. Goodner K, 2007, Practical retention index models of OV-101, DB-1, DB-5, and DB-Wax for flavor and fragrance compound LWT-Food Science and Technology, 41:951-958 Goralaka JLR, Shumaker MA, Langenheim JH, 1996, Variation in chemical and physical proprieties during leaf development in California Bay tree (Umbellularia californica): predictions regarding palatalability for deer. Biochem Syst Ecol. 24: 93-103. Niño, G.E.A., Torrenegra R.D. 2011. Extracción, Separación e Identificación de la Sustancia Activa Producida por Espeletia killipii como Defensa Ante el Ataque de Larvas de Lepidóptero. Revista Facultad de Ciencias Básicas, 7:126 – 133. Lizcano A, Torres M, Vergara J, 2009, Evaluacion de la actividad antimicrobiana de los extractos etanolicos y aceites esenciales de las especies vegetales Valeriana pilosa, Hesperomeles ferruginea, Myrcianthes rhopaloides, y Passiflora manicata, frente a microorganismo patógenos. Pérez-Arbelaezia Revista José Celestino Mutis. 19:163-187 Malagon O, Vila R, Iglesias J, Zaragoza T, Cañigueral S, 2003, Composition of the essential oils of four medicinal plants from Ecuador, Flavour and Fragrance Journal, 18:527-531. Manzano P, Miranda M, Gutierrez y, Garcia G, Orellana T, Orellana A. 2011, Efecto antiinflamatorio y antimicótico del extracto alcoholico y composición química del aceite esencial de Conyza bonariensis (L.) Cronquist (Canilla de venado), Revista Cubana de plantas medicinales, 16(1):13-23. Matulevich J, Gil E, 2014, Composición química del aceite esencial de hojas de Bejaria resinosa (Ericaceae). Revista Facultad de Ciencias Básicas. 10(2): 204-209. Nakamura M, Monteiro S, Bizarri C, Siani A, Ramos M, 2010, Essential oils of four Myrtaceae species from the Brazilian southeast, Biochemical Systematics and Ecology 38:1170-1175. Oliveira RN, Dias IJM, Câmara CAG, 2005. Estudo comparativo do óleo essencial de Eugenia punicifolia (HBK) DC de diferentes localidades de Pernambuco. Revista Brasilera de Farmacognosia,15: 39-43. Padovan A, Keszei A, Kulheim C, Forley W, 2014, The evolution of foliar terpene diversity in Myrtaceae, Phytochemistry Reviews, 13:695:716. Parra C, 2012, Una nueva especie de Myrcianthes (MYRTACEAE) de Colombia. Caldasia 34(2): 277-282. Rufino A, Ribeiro m, Sousa C, Judas F, Salgueiro L, Cavaleiro C, Ferreira A, (2015), Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis, European Journal of Pharmacology, 750: 141-150. Tuerker AO, Maciarello MJ, Landrum LR, (2002), Volatile leaf oil of Myrcianthes coquimbensis (Barnoud) Landrum et Grifo (Myrtaceae) of Chile, Journal of Essential Oil Research, 14:40-41 Wielgorskaya T, 1995. Dictionary of generic names of seed plants. Columbia University Press, New York. (2):570-575.; http://revistas.unimilitar.edu.co/index.php/rfcb/article/view/1857; http://hdl.handle.net/10654/37485

  17. 17
    Academic Journal

    المصدر: Revista Facultad de Ciencias Básicas; Vol. 15 No. 1 (2019); 63-70 ; Revista Facultad de Ciencias Básicas; Vol. 15 Núm. 1 (2019); 63-70 ; 2500-5316 ; 1900-4699

    وصف الملف: application/pdf; text/xml

    Relation: http://revistas.unimilitar.edu.co/index.php/rfcb/article/view/3676/3608; http://revistas.unimilitar.edu.co/index.php/rfcb/article/view/3676/3645; De Cássia ES, R., Andrade L, De Sousa D. 2013. A Review on Anti-Inflammatory Activity of Monoterpenes. Brasil: Parabai, Molecules, 18(1): 1227-1254; Devia, B. 2007. Determination de L’emploi d’une nouvelle source de colorants rouges a L’epoque précolobienne: Arrabidaea chica H.B.K. Bruxelles: Institut royal du patrimoine artistique. Bulletin, 31 (05): 297-321.; Guilhon G, Sarmento E, Silva L, Graças M, Santos I, Trovatti A. 2012. Volatile and non-volatile compounds and antimicrobial activity of Mansoa difficilis (Cham.) Bureau & K. Schum. (Bignoniaceae). Brasil: Pará, Quimica Nova, 35(11): 2249-2253.; Hua Y, Xianping W, Linlin Y, Shu, Z. 1997. The antitumor activity of elemene is associated with apoptosis, Chinese, Journal of Cancer Research, 18(3): 83-88.; Klinger W, Pinzón C, Pachón M, Rojas F, Aragón J. 2000. Estudio de las especies promisorias productoras de colorante en el trapecio amazónico. Colombia: Bogotá. Colombia forestal, 11(5): 18, 15-33.; Lohman L. G. y Taylor C.M. 2014. A New Generic Classification of Tribe Bignonieae (Bignoniaceae), Annals of the Missouri Botanical Garden, 99: 348-489.; Mafioleti L, Ferrerirada I, Colodel E, Flach A, Tabajara of Oliveira D. 2013. Evaluation of the toxicity and antimicrobial activity of hydroethanolic extract of Arrabidaea chica (Humb. & Bonpl.) B. Verl. Brasil: Matto Grosso. Journal of ethnopharmacology, 150(2): 576-582.; Miranda N, Passarella A, Novello C, Nakamura TU, of Oliveira S, Prado B, Hioka N, Palazzo J, Nakamura CV. 2017. Pheophorbide a, a compound isolated from the leaves of Arrabidaea chica, induces photodynamic inactivation of Trypanosoma cruzi. Brazil: Paraná, Photodiagnosis and Photodynamic Therapy, 16: 256-265.; Moreira L, Silva S. 2016. Ação inibitória do Crajiru Arrabidaea chica (Humb. & Bonpl.) B.Verlot sobre Staphylococcus SP, como microorganismo oportunista no tratamiento da acne vulgar, Revista de publicações da FAAr, 2(2): 210-232.; Mostafa N, Eldahshan O, Nasser A. 2014. Chemical Composition and Antimicrobial Activity of Flower Essential Oil of Jacaranda acutifolia Juss. Against, Food-Borne Pathogens, Egipto, European Journal of Medicinal Plants, 6(2): 62-69.; Noge K, Becerra J. 2009. Germacrene D, A Common Sesquiterpene in the Genus Bursera (Burseraceae), Estados Unidos: Arizona, Molecules, 14(1): 5289-5294.; Oloyede GK, Oladosu IA, Shodia AF, Oloyade OO. 2010. Cytotoxic effects of Tabebuia rosea oils (leaf and stem bark), Nigeria: Ibadan, Archives of Applied Science Research, 2(3): 127-130.; Sahin F, Gulluce M, Daferera D, Sokmen A, Sokmen M, Polissiou M, Agar G, Ozer H. 2004. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey, Turquía, Food control, 15(7): 549-557.; Skelding GM, Sarmento E, da Silva L, das Graças M, Santos I, Trovatti AP. 2012. Volatile and non-volatile compounds and antimicrobial activity of Mansoa difficilis (Cham.) Bureau & K. Schum. (Bignoniaceae), Química Nova, 35 (10): 2249-2253.; van Vuuren SF, Viljoen A. 2007. Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination., Sur Africa, Flavour and Fragrance Journal, 22(6): 540-544.; http://revistas.unimilitar.edu.co/index.php/rfcb/article/view/3676; http://hdl.handle.net/10654/37614

  18. 18
    Academic Journal

    المصدر: Gestión y Ambiente; Vol. 24 Núm. 2 (2021); 93916 ; Gestión y Ambiente; Vol. 24 No. 2 (2021); 93916 ; 2357-5905 ; 0124-177X

    جغرافية الموضوع: Colombia, Bogota DC, Bogotá DC

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/gestion/article/view/93916/82131; Acton, W., Schallhart, S., Langford, B., Valach, A., Rantala, P., Fares, S., Carriero, G., Tillmann, R., Tomlinson, S., Dragosits, U., Gianelle, D., Hewitt, C., Nemitz, E., 2016. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy. Atmos. Chem. Phys. 16(11), 7149-7170. DOI:10.5194/acp-16-7149-2016; Adams, H., Macalady, A., Breshears, D., Allen, C., Stephenson, N., Saleska, S., Huxman, T., McDowell, N., 2010. Climate-induced tree mortality: Earth system consequences. Eos, Trans. AGU 91(17), 153-154. DOI:10.1029/2010EO170003; Álvarez-González, J., Balboa Murias M., Merino, A., Rodríguez-Soalleiro, R., 2005. Estimación de la biomasa arbórea de Eucalyptus globulus y Pinus pinaster en Galicia. Recursos Rurais 1, 21-30.; Anderegg, W., Hicke, J., Fisher, R., Allen, C., Aukema, J., Bentz, B., Hood, S., Lichstein, J., Macalady, A., McDowell, N., Pan, Y., Raffa, K., Sala, A., Shaw, J., Stephenson, N., Tague, C., Zeppel, M., 2015. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 208(3), 674-683. DOI:10.1111/nph.13477; Aydin, Y., Yaman, B., Koca, H., Dasdemir, O., Kara, M., Altiok, H., Dumanoglu, Y., Bayram, A., Tolunay, D., Odabasi, M., Elbir, T., 2014. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species. Sci. Total Environ. 490, 239-253. DOI:10.1016/j.scitotenv.2014.04.132; Bauwens, M., Stavrakou, T., Müller, J.-F. Van Schaeybroeck, B., De Cruz, L., De Troch, R., Giot, O., Hamdi, R., Termonia, P., Laffineur, Q., Amelynck, C., Schoon, N., Heinesch, B., Holst, T., Arneth, A., Ceulemans, R., Sanchez-Lorenzo, A., Guenther, A., 2018. Recent past (1979-2014) and future (2070-2099) isoprene fluxes over Europe simulated with the MEGAN-MOHYCAN model. Biogeosciences 15, 3673-3690. DOI:10.5194/bg-15-3673-2018; Boix, Y., Torres, J., Chávez, E., Luna, L., Quinones-Galvez, J., Dubois, A., Alemán, E., Cuypers, A., 2016. Evaluación cualitativa de monoterpenos en Rosmarinus officinalis cultivados con agua tratada magneticamente. Cult. Trop. 37(Supl. 1), 136-141.; Bolaño Ortiz, T., Camargo Caicedo, Y., Vélez-Pereira, A., 2015. Emisiones biogénicas de monoterpenos en el Parque Nacional Natural Tayrona, Santa Marta (Colombia). Luna Azul, 40, 102-116.; Bourtsoukidis, E., Williams, J., Kesselmeier, J., Jacobi, S., Bonn, B., 2014. From emissions to ambient mixing ratios: Online seasonal field measurements of volatile organic compounds over a Norway spruce-dominated forest in central Germany. Atmos. Chem. Phys. 14(13), 6495-6510. DOI:10.5194/acp-14-6495-2014; Caicedo Camargo, Y., Bolaño Ortiz, T., Álvarez Mancilla, A., 2010. Emisiones de compuestos orgánicos volátiles de origen biogénico y su contribución a la dinámica atmosférica. Intropica 5, 77-86.; Derley Ramón, J., Navazo, M., Durana, N., Gómez, M., Uria, I., Ramón, J., Valencia, F., 2014. Estudio de compuestos orgánicos volátiles biogénicos en un área de fondo rural. El Hombre y la Máquina (44), 103-116.; Diem, J., Comrie, A., 2011. Integrating remote sensing and local vegetation information for a high-resolution biogenic emissions inventory— application to an urbanized, semiarid region. J. Air Waste Manage. Assoc. 50(11), 1968-1979. DOI:10.1080/10473289.2000.10464223; Dimitropoulou, E., Assimakopoulos, V., Fameli, K., Flocas, H., Kosmopoulos, P., Kazadzis, S., Lagouvardos, K., Bossioli, E., 2018. Estimating the biogenic non-methane hydrocarbon emissions over Greece. Atmosphere 9(1), 14. DOI:10.3390/atmos9010014; Faiola, C., Wen, M., VanReken, T., 2015. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: Inter- and intra-species variability for six coniferous species. Atmos. Chem. Phys. 15(7), 3629-3646. DOI:10.5194/acp-15-3629-2015; Gaffar Malik, T., Gajbhiye, T., Kumar Pandey, S., 2018. Seasonality in emission patterns of isoprene from two dominant tree species of Central India: Implications on terrestrial carbon emission and climate change. Proc. Int. Acad. Ecol. Environ. Sci. 8(4), 204-212.; Gaitán Varón, M., Cárdenas Ruíz, P., 2017. Guía para la elaboración de Inventarios de emisiones atmosféricas. Ministerio de Ambiente y Desarrollo Sostenible, Bogotá, DC.; Gastelum, S., Mejía-Velázquez, G., Lozano-García, D., 2016. Remote sensing estimation of isoprene and monoterpene emissions generated by natural vegetation in Monterrey, Mexico. Environ. Monit. Assess. 188, 321. DOI:10.1007/s10661-016-5324-1; Ghirardo, A., Xie, J., Zheng, X., Wang, Y., Grote, R., Block, K., Wildt, J., Mentel, T., Kiendler-Scharr, A., Hallquist, M., Butterbach-Bahl, K., Schnitzler, J.-P., 2016. Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing. Atmos. Chem. Phys. 16(5), 2901-2920. DOI:10.5194/acp-16-2901-2016; Guenther, A., Jiang, X., Heald, C., Sakulyanontvittaya, T., Duhl, T., Emmons, L., Wang, X., 2012. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471-1492. DOI:10.5194/gmd-5-1471-2012; Guenther, A., Zimmerman, P., Harley, P., Monson, R., Fall, R., 1993. Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. J. Geophysical Research 98(D7), 12609-12617. DOI:10.1029/93JD00527; Guidolotti, G., Pallozzi, E., Gavrichkova, O., Scartazza, A., Mattioni, M., Loreto, F., Calfapietra, C., 2019. Emission of constitutive isoprene, induced monoterpenes, and other volatiles under high temperatures in Eucalyptus camaldulensis: A 13C labelling study. Plant Cell and Environment 42(6), 1929-1938. DOI:10.1111/pce.13521; He, K., Shen, Z., Sun, J., Lei, Y., Zhang, Y., Wang, X., 2020. Spatial distribution, source apportionment, ozone formation potential, and health risks of volatile organic compounds over a typical central plain city in China. Atmosphere 11(12), 1365. DOI:10.3390/atmos11121365; Im, U., Poupkou, A., Incecik, S., Markakis, K., Kindap, T., Unal, A., Melas, D., Yenigun, O., Topcu, S., Odman, M., Tayanc, M., Guler, M., 2011. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul. Sci. Total Environ. 409(7), 1255-1265. DOI:10.1016/j.scitotenv.2010.12.026; Instituto Geográfico Agustín Codazzi (IGAC), 2021. Geovisor Colombia. Disponible en: https://geoportal.igac.gov.co/contenido/consulta-catastral; consultado: 2 de septiembre 2021.; Inzunza, J., 2019. Presión atmosférica y vientos. En: Meteorología descriptiva. Universitaria, Santiago. pp. 191-223.; Jardín Botánico de Bogotá (JBB), 2019. Sistema de información para la gestión del arbolado urbano - SIGAU. Disponible en: http://www.jbb.gov.co/index.php/productos-y-servicios/sigau; consultado: 20 de mayo de 2020.; Jing, X., Lun, X., Fan, C., Ma, W., 2020. Emission patterns of biogenic volatile organic compounds from dominant forest species in Beijing, China. J. Environ. Sci. 95, 73-81. DOI:10.1016/j.jes.2020.03.049; Jones, C., Hopkins, J., Lewis, A., 2011. In situ measurements of isoprene and monoterpenes within a south-east Asian tropical rainforest. Atmos. Chem. Phys. 11, 6971-6984. DOI:10.5194/acp-11-6971-2011; Kanagendran, A., Pazouki, L., Niinemets, Ü., 2018. Differential regulation of volatile emission from Eucalyptus globulus leaves upon single and combined ozone and wounding treatments through recovery and relationships with ozone uptake. Environ. Exp. Bot. 145, 21-38. DOI:10.1016/j.envexpbot.2017.10.012; Khan, M., Schlich, B.-L., Jenkin, M., Shallcross, B., Moseley, K., Walker, C., Morris, W., Derwent, R., Percival, C., Shallcross, D., 2018. A two-decade anthropogenic and biogenic isoprene emissions study in a London urban background and a London urban traffic site. Atmosphere 9(10), 387. DOI:10.3390/atmos9100387; Laothawornkitkul, J., Paul, N., Vickers, C., Possell, M., Taylor, J., Mullineaux, P., Hewitt C., 2008. Isoprene emissions influence herbivore feeding decisions. Plant Cell Environ. 31(10), 1410-1415. DOI:10.1111/j.1365-3040.2008.01849.x; Leung, D., Tsui, J., Chen, F., Wing-Kin, Y., Vrijmoed, L., Chun-Ho, L., 2011. Effects of urban vegetation on urban air quality. Landsc. Res. 36(2), 173-188. DOI:10.1080/01426397.2010.547570; Leung, D., Wong, P., Cheung, B., Guenther, A., 2010. Improved land cover and emission factors for modeling biogenic volatile organic compounds emissions from Hong Kong. Atm. Environ. 44(11), 1456-1468. DOI:10.1016/j.atmosenv.2010.01.012; Li, L., Chen, Y., Xie, S., 2013. Spatio-temporal variation of biogenic volatile organic compounds emissions in China. Environ. Pollut. 182, 157-168. DOI:10.1016/j.envpol.2013.06.042; Li-Ramírez, J., Zambrano-Nájera, J., Aristizábal-Zuluaga, B., 2017. Inventory of biogenic volatile organic compounds for an Andean region. En: Mem. VI Congreso Colombiano y Conferencia Internacional de Calidad del Aire y Salud Pública. Gestion de la calidad del aire, retos y alternativas. Cali, Colombia. pp. 271-275.; Lobstein, A., Couic-Marinier, F., Koziol, N., 2018. Huile essentielle d’Eucalyptus globulus. Actual. Pharm. 57(573), 59-61. DOI:10.1016/j.actpha.2017.11.033; Manea, A., Tabassum, S., Leishman, M., 2021. Eucalyptus species maintain secondary metabolite production under water stress conditions at the expense of growth. Austral Ecol. 46(7), 1030-1038. DOI:10.1111/aec.13035; Mendoza, B., Cruz, M., Carrera, L., Jimenez, M., Caicedo, J., Osorio, M., Santillán, L., Arias, F., 2019. Biogenetic study of the emissions of species: Pinus radiata, Eucalyptus globulus Labill and Alnus acuminata in Riobamba canton, Ecuador. F1000Research 8, 1012. DOI:10.12688/f1000research.19255.1; Mendoza-Domínguez, A., León-Romero, M., Caballero-Mata, P., 2010. Emisiones de compuestos orgánicos volátiles durante arranques en frío de automóviles ligeros. Ing. Inves. Tecnol. 11(3), 333-347. DOI:10.22201/fi.25940732e.2010.11n3.029; Minckler, L., Gingrich. S., 1970. Relation of crown width to tree diameter in some upland hardwood stands of southern Illinois. Res. Note NC-99, 4, Forest Serv., Dep. Agric., North Central Forest Exp. Stn., St. Paul, MN.; Mochizuki, T., Miyazaki, Y., Ono, K., Wada, R., Takahashi, Y., Saigusa, N., Kawamura, K., Tani, A., 2015. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest. Atm. Chem. Phys. 15(20), 12029-12041. DOI:10.5194/acp-15-12029-2015; Mohd Hanif, N., Limi Hawari, N., Othman, M., Abd Hamid, H., Ahamad, F., Uning, R., Ooi, M., Wahab, M., Sahani, M., Latif, M., 2021. Ambient volatile organic compounds in tropical environments: Potential sources, composition and impacts –A review. Chemosphere 285, 131355. DOI:10.1016/j.chemosphere.2021.131355; Morfopoulos, C., Prentice, I., Keenan, T., Friedlingstein, P., Medlyn, B., Peñuelas, J., Possell, M., 2013. A unifying conceptual model for the environmental responses of isoprene emissions from plants. Ann. Bot. 112(7), 1223-1238. DOI:10.1093/aob/mct206; Olguín, L., Magadán, H., Rodríguez, M., 2004. Metodos en biotecnología: cromatografía de gases. Instituto de Biotecnología-Universidad Nacional Autónoma de México, México, DF.; Pratt, K., Mielke, L., Shepson, P., Bryan, A., Steiner, A., Ortega, J., Daly, R., Helmig, D., Vogel, C., Griffith, S., Dusanter, S., Stevens, P., Alaghmand, M., 2012. Contributions of individual reactive biogenic volatile organic compounds to organic nitrates above a mixed forest. Atm. Chem. Phys. 12(21), 10125-10143. DOI:10.5194/acp-12-10125-2012; Rovelli, S., Cattaneo, A., Fazio, A., Spinazzè, A., Borghi, F., Campagnolo, D., Dossi, C., Cavallo, D., 2019. VOCs measurements in residential buildings: Quantification via thermal desorption and assessment of indoor concentrations in a case-study. Atmosphere 10(2), 57. DOI:10.3390/atmos10020057; Rubiano Calderón, K., 2019. Distribución de la infraestructura verde y su capacidad de regulación térmica en Bogotá, Colombia. Colomb. Fores. 22(2), 83-100. DOI:10.14483/2256201X.14304; Sakulyanontvittaya, T., Cho, S., Aklilu, Y.-A., Morris, R., Nopmongcol, U., 2016. An assessment of enhanced biogenic emissions influence on ozone formation in central Alberta, Canada. Air Qual. Atmos. Health 9, 117-127. DOI:10.1007/s11869-015-0324-9; Sánchez Buitrago, J., 2013. Estudio de la diversidad genética en Eucalyptus globulus (Labill.) empleando marcadores moleculares tipo microsatélite (SSR). Tesis de maestría, Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá, DC.; Sawers, B., 2019. Controlling biogenic volatile organic compounds for air quality. Ind. Law J. 94(5), 79-90; Secretaría Distrital de Planeación Bogotá (SDP), s.f. POT. Alcaldía Mayor de Bogotá, DC, disponible en: http://www.sdp.gov.co/micrositios/pot/que-es; consultado: abril de 2020.; Secretaría Distrital de Ambiente Bogotá (SDA), 2019. Informe anual de calidad de aire en Bogotá: red de monitoreo de calidad del aires de Bogotá 2018. Alcaldía Mayor de Bogotá, DC, disponible en: http://rmcab.ambientebogota.gov.co/Pagesfiles/IA Informe Anual 2018 RMCAB.pdf; consultado; Seinfeld, J., Pandis, S., 1998. Atmospheric chemistry and physics from air pollution to climate change: problem solution manual. John Wiley & Sons, Neueva York, NY.; Silveira, C., Tchepel, O., 2014. Influence of the spatial resolution of satellite-derived vegetation parameters on the biogenic Volatile Organic Compounds (VOC) emission modeling. Cent. Eur. J. Geosci. 6(1), 104-111. DOI:10.2478/s13533-012-0166-z; Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., Knorr, W., 2014. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. 14(17), 9317-9341. DOI:10.5194/acp-14-9317-2014; Situ, S., Guenther, A., Wang, X., Jiang, X., Turnipseed, A., Wu, Z., Bai, J., Wang, X., 2013. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl river delta region, China. Atmos. Chem. Phys. 13(23), 11803-11817. DOI:10.5194/acp-13-11803-2013; Velasco, E., Bernabé, R., 2004. Emisiones biogénicas. Instituto Nacional de Ecología-Secretaría de Medio Ambiente y Recursos (SEMARNAT), México, DF.; Wang, Q., Han, Z., Wang, T., Higano, Y., 2007. An estimate of biogenic emissions of volatile organic compounds during summertime in China. Environ. Sci. Pollut. Res. 14, 69-75. DOI:10.1065/espr2007.02.376; Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X., Liu, Y., Breton, M., Du, Z., Shang, D., Wu, Y., Wu, Z., Song, Y., Lou, S., Hallquist, M., Yu, J., 2018. The secondary formation of organosulfates under the interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing. Atmos. Chem. Phys. 18(14), 10693-10713. DOI:10.5194/acp-18-10693-2018; Wu, K., Yang, X., Chen, D., Gu, S., Lu, Y., Jiang, Q., Wang, K., Ou, Y., Qian, Y., Shao, P., Lu, S., 2020. Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China. Atmos. Res. 231, 104656. DOI:10.1016/j.atmosres.2019.104656; Wyche, K., Ryan, A., Hewitt, C., Alfarra, M., McFiggans, G., Carr, T., Monks, P., Smallbone, K., Capes, G., Hamilton, J., Pugh, T., MacKenzie, A., 2014. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species. Atmos. Chem. Phys. 14(23), 12781-12801. DOI:10.5194/acp-14-12781-2014; Yáñez-Serrano, A., Bourtsoukidis, E., Alves, E., Bauwens, M., Stavrakou, T., Llusià, J., Filella, I., Guenther, A., Williams, J., Artaxo, P., Sindelarova, K., Doubalova, J., Kesselmeier, J., Peñuelas, J., 2020. Amazonian biogenic volatile organic compounds under global change. Glob. Change Biol. 26(9), 4722-4751. DOI:10.1111/gcb.15185; https://revistas.unal.edu.co/index.php/gestion/article/view/93916

  19. 19
    Academic Journal
  20. 20
    Dissertation/ Thesis