يعرض 1 - 20 نتائج من 63 نتيجة بحث عن '"mohr – coulomb failure criterion"', وقت الاستعلام: 0.52s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المؤلفون: Dongshuai Tian, Hong Zheng

    المصدر: Applied Sciences; Volume 13; Issue 9; Pages: 5405

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Civil Engineering; https://dx.doi.org/10.3390/app13095405

  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المؤلفون: Dongli Li, Miaojun Sun, Echuan Yan, Tao Yang

    المصدر: Sustainability; Volume 13; Issue 15; Pages: 8647

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Sustainable Engineering and Science; https://dx.doi.org/10.3390/su13158647

  9. 9
    Academic Journal
  10. 10
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
  15. 15
  16. 16
    Academic Journal
  17. 17
  18. 18

    المساهمون: Publica

    المصدر: Materials, Vol 14, Iss 247, p 247 (2021)
    Materials
    Materials; Volume 14; Issue 2; Pages: 247

    وصف الملف: application/pdf

  19. 19
  20. 20
    Academic Journal

    المساهمون: Dipartimento di Fisica e Astronomia, University of Bologna, Italy, Swiss Seismological Service, ETH Zurich, Switzerland, Swiss Seismological Service, ETH Zurich, Switzerland, Dipartimento di Fisica e Astronomia, University of Bologna, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia

    وصف الملف: application/pdf; application/vnd.openxmlformats-officedocument.wordprocessingml.document

    Relation: Earth and Planetary Science Letters; /527 (2019); Aki, K., 1965. Maximum likelihood estimate of bin the formula logN=_a −bMand its confidence limits. Bull. Earthq. Res. Inst. Univ. Tokyo. Amitrano, D., 2003. Brittle-ductile transition and associated seismicity: experimental and numerical studies and relationship with the bvalue. J. Geophys. Res.108, 1–15. https://doi .org /10 .1029 /2001JB000680. Amitrano, D., 2012. Variability in the power-law distributions of rupture events. Eur. Phys. J. Spec. Top.205, 199–215. https://doi .org /10 .1140 /epjst /e2012 -01571 -9. Anderson, E.M., 1905. The dynamics of faulting. Trans. Edinb. Geol. Soc.8, 387–402. https://doi .org /10 .1144 /transed .8 .3 .387. Bird, P., 2003. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst.4. https://doi .org /10 .1029 /2001GC000252. Boettcher, M.S., Jordan, T.H., 2004. Earthquake scaling relations for mid-ocean ridge transform faults. J. Geophys. Res., Solid Earth. https://doi .org /10 .1029 /2004JB003110. Célérier, B., 2010. Remarks on the relationship between the tectonic regime, the rake of the slip vectors, the dip of the nodal planes, and the plunges of the P, B, and T axes of earthquake focal mechanisms. Tectonophysics482, 42–49. https://doi .org /10 .1016 /j .tecto .2009 .03 .006. Collettini, C., Tesei, T., Scuderi, M.M., Carpenter, B.M., Viti, C., 2019. Beyond Byer-lee friction, weak faults and implications for slip behavior. Earth Planet. Sci. Lett.519, 245–263. https://doi .org /10 .1016 /J .EPSL .2019 .05 .011. Copley, A., 2018. The strength of earthquake-generating faults. Q. J. Geol. Soc. Lond. https://doi .org /10 .1144 /jgs2017 -037. Coulomb, C.A., 1776. Essai sur une application des regles des maximis et minimis a quelquels problemesde statique relatifs, a la architecture. Mem. Acad. Roy. Div. Sav.7, 343–387. Dziewonski, A.M., Chou, T.-A., Woodhouse, J.H., 1981. Determination of earth-quake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res.86, 2825–2852. https://doi .org /10 .1029 /JB086iB04p02825. Ekström, G., Nettles, M., Dziewo´nski, A.M., 2012. The global CMT project 2004-2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. In-ter.200–201, 1–9. https://doi .org /10 .1016 /j .pepi .2012 .04 .002. Frohlich, C., 2001. Display and quantitative assessment of distributions of earthquake focal mechanisms. Geophys. J. Int.144, 300–308. https://doi .org /10 .1046 /j .1365 -246X .2001.00341.x. Frohlich, C., Apperson, K.D., 1992. Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics11, 279–296. https://doi .org /10 .1029 /91TC02888. Gasperini, P., Vannucci, G., 2003. FPSPACK: a package of FORTRAN subroutines to manage earthquake focal mechanism data. Comput. Geosci.29, 893–901. https://doi .org /10 .1016 /S0098 -3004(03 )00096 -7. Ghosh, A., Newman, A.V., Thomas, A.M., Farmer, G.T., 2008. Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula, Costa Rica. Geophys. Res. Lett.35. https://doi .org /10 .1029 /2007GL031617. Goebel, T.H.W., Schorlemmer, D., Becker, T.W., Dresen, G., Sammis, C.G., 2013. Acous-tic emissions document stress changes over many seismic cycles in stick-slip ex-periments. Geophys. Res. Lett.40, 2049–2054. https://doi .org /10 .1002 /grl .50507. Gulia, L., Wiemer, S., 2010. The influence of tectonic regimes on the earthquake size distribution: a case study for Italy. Geophys. Res. Lett.37. https://doi .org /10 .1029 /2010GL043066. Gutenberg, B., Richter, C.F., 1944. Frequency of earthquakes in California. Bull. Seis-mol. Soc. Am.34, 185–188. Hayes, G.P., Wald, D.J., Johnson, R.L., 2012. Slab1.0: a three-dimensional model of global subduction zone geometries. J. Geophys. Res., Solid Earth117. https://doi .org /10 .1029 /2011JB008524. Hubbert, B.M., Rubey, W.W., 1959. Role of fluid pressure in mechanics of overthrust faulting, 1: Mechanics of fluid-filled porous solids and its application to over-thrust faulting. Kagan, Y.Y., 1997. Seismic moment-frequency relation for shallow earthquakes: regional comparison. J. Geophys. Res.102, 2835. https://doi .org /10 .1029 /96JB03386. Kagan, Y.Y., 1999. Universality of the seismic moment-frequency relation. Pure Appl. Geophys.155, 537–573. https://doi .org /10 .1007 /s000240050277. Kagan, Y.Y., 2010. Earthquake size distribution: power-law with exponent β≡1/2? Tectonophysics490, 103–114. https://doi .org /10 .1016 /j .tecto .2010 .04 .034. Mogi, K., 1962. Study of elastic shocks caused by the fracture of heterogeneous ma-terials and its relation to earthquake phenomena. Bull. Earthq. Res. Inst. Univ. Tokyo40, 125–173. Nishikawa, T., Ide, S., 2014. Earthquake size distribution in subduction zones linked to slab buoyancy. Nat. Geosci.7, 904–908. https://doi .org /10 .1038 /ngeo2279. Okal, E.A., Romanowicz, B.A., 1994. On the variation of b-values with earthquake size. Phys. Earth Planet. Inter.87, 55–76. https://doi .org /10 .1016 /0031 -9201(94 )90021 -3. Petruccelli, A., Vannucci, G., Lolli, B., Gasperini, P., 2018. Harmonic fluctuation of the slope of the frequency–magnitude distribution (b-value) as a function of the angle of rake. Bull. Seismol. Soc. Am.108. https://doi .org /10 .1785 /0120170328. Roberts, N.S., Bell, A.F., Main, I.G., 2016. Mode switching in volcanic seismicity: El Hierro 2011-2013. Geophys. Res. Lett.43, 4288–4296. https://doi .org /10 .1002 /2016GL068809. Roberts, N.S., Bell, A.F., Main, I.G., 2015. Are volcanic seismic b-values high, and if so when? J. Volcanol. Geotherm. Res. https://doi .org /10 .1016 /j .jvolgeores .2015 .10 .021. Sammonds, P.R., Meredith, P.G., Main, I.G., 1992. Role of pore fluids in the generation of seismic precursors to shear fracture. Nature359, 228–230. https://doi .org /10 .1038 /359228a0. Samowitz, I.R., Forsyth, D.W., 1981. Double seismic zone beneath the Mariana Is-land Arc. J. Geophys. Res., Solid Earth86, 7013–7021. https://doi .org /10 .1029 /JB086iB08p07013. Scholz, C.H., 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am.58, 399–415. Scholz, C.H., 2002. The Mechanics of Earthquakes and Faulting, 2nd edition. Cam-bridge University Press. Scholz, C.H., 2015. On the stress dependence of the earthquake bvalue. Geophys. Res. Lett.42, 1399–1402. https://doi .org /10 .1002 /2014GL062863. Schorlemmer, D., Wiemer, S., 2005. Earth science: microseismicity data forecast rup-ture area. Nature434, 1086. https://doi .org /10 .1038 /4341086a. Schorlemmer, D., Wiemer, S., Wyss, M., 2005. Variations in earthquake-size distri-bution across different stress regimes. Nature437, 539–542. https://doi .org /10 .1038 /nature04094 Schorlemmer, D., Wiemer, S., Wyss, M., 2004. Earthquake statistics at Parkfield, 1: stationarity of bvalues. J. Geophys. Res., Solid Earth109, 1–17. https://doi .org /10 .1029 /2004JB003234. Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., Baldi, P., Gasperini, P., 2007. Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys. J. Int.169, 1180–1200. https://doi .org /10 .1111 /j .1365 -246X .2007.03367.x. Shi, Y., Bolt, B., 1982. The standarderror of the magnitude-frequency b-value. Bull. Seismol. Soc. Am.72, 1677–1687. Sibson, R.H., 2004. Controls on maximum fluid overpressure defining conditions for mesozonal mineralisation. J. Struct. Geol. https://doi .org /10 .1016 /j .jsg .2003 .11.003. Sibson, R.H., 2014. Earthquake rupturing in fluid-overpressured crust: how com-mon? Pure Appl. Geophys.171, 2867–2885. https://doi .org /10 .1007 /s00024 -014 -0838 -3. Spada, M., Tormann, T., Wiemer, S., Enescu, B., 2013. Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophys. Res. Lett.40, 709–714. https://doi .org /10 .1029 /2012GL054198. Stein, S., Okal, E.A., 2007. Ultralong period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the sub-duction process. Bull. Seismol. Soc. Am.97. https://doi .org /10 .1785 /0120050617. Stern, R.J., Fouch, M.J., Klemperer, S.L., 2003. An overview of the Izu-Bonin-Mariana subduction factory. Insid. Subduction Fact.138, 175–222. https://doi .org /10 .1029 /138GM10. Tormann, T., Enescu, B., Woessner, J., Wiemer, S., 2015. Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nat. Geosci.8, 152–158. https://doi .org /10 .1038 /ngeo2343. Tormann, T., Wiemer, S., Hardebeck, J.L., 2012. Earthquake recurrence models fail when earthquakes fail to reset the stress field. Geophys. Res. Lett.39. https://doi .org /10 .1029 /2012GL052913. Tormann, T., Wiemer, S., Mignan, A., 2014. Systematic survey of high-resolution bvalue imaging along Californian faults: inference on asperities. J. Geophys. Res., Solid Earth. https://doi .org /10 .1002 /2013JB010867. Townend, J., Zoback, M.D., 2000. How faulting keeps the crust strong. Geology. https://doi .org /10 .1130 /0091 -7613(2000 )0282 .3 .CO ;2. Turcotte, D.L., Schubert, G., 2002. Geodynamics, 2nd edition. Cambridge University Press. Utsu, T., 1966. A statistical significance test of the difference in b-value between two earthquake groups. J. Phys. Earth14, 37–40. https://doi .org /10 .4294 /jpe1952 .14 .37. Uyeda, S., 1982. Subduction zones: an introduction to comparative subductology. Tectonophysics81, 133–159. https://doi .org /10 .1016 /0040 -1951(82 )90126 -3. Uyeda, S., Kanamori, H., 1979. Back-arc opening and the mode of subduction. J. Geo-phys. Res.84, 1049. https://doi .org /10 .1029 /JB084iB03p01049. Wiemer, S., Wyss, M., 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States and Japan. Bull. Seis-mol. Soc. Am.90, 859–869. https://doi .org /10 .1785 /0119990114. Wiemer, S., Wyss, M., 2002. Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Adv. Geophys.45. https://doi .org /10 .1016 /S0065 -2687(02 )80007 -3. Woessner, J., Wiemer, S., 2005. Assessing the quality of earthquake catalogues: es-timating the magnitude of completeness and its uncertainty. Bull. Seismol. Soc. Am.95, 684–698. https://doi .org /10 .1785 /0120040007. Yang, W., Hauksson, E., Shearer, P.M., 2012. Computing a large refined catalog of fo-cal mechanisms for southern California (1981-2010): temporal stability of the style of faulting. Bull