-
1Academic Journal
المصدر: Известия Саратовского университета. Новая серия: Серия Науки о Земле, Vol 24, Iss 3, Pp 172-183 (2024)
مصطلحات موضوعية: fault stability, mohr – coulomb failure criterion, fault reactivation, 1d geomechanical model, wellbore stability, safe mud weight window, Geology, QE1-996.5, Geography (General), G1-922
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Prabhat Paudyal, Pranish Dahal, Prakash Bhandari, Bhim Kumar Dahal
المصدر: Geoenvironmental Disasters, Vol 10, Iss 1, Pp 1-14 (2023)
مصطلحات موضوعية: Excavation guidelines, Slope stability, Limit equilibrium, Mohr–Coulomb failure criterion, Rural roads, Disasters and engineering, TA495, Environmental sciences, GE1-350
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2197-8670
-
3Academic Journal
المؤلفون: Dongshuai Tian, Hong Zheng
المصدر: Applied Sciences; Volume 13; Issue 9; Pages: 5405
مصطلحات موضوعية: failure criterion, Mohr-Coulomb failure criterion, Lade–Duncan failure criterion, SMP failure criterion, non-smooth strength surface
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Civil Engineering; https://dx.doi.org/10.3390/app13095405
الاتاحة: https://doi.org/10.3390/app13095405
-
4Academic Journal
المصدر: Prosiding Temu Profesi Tahunan PERHAPI; 2022: PROSIDING TEMU PROFESI TAHUNAN PERHAPI; 145-154 ; 2685-8908
مصطلحات موضوعية: Optimiziation, Slope Stability, Mohr–Coulomb Failure Criterion
-
5Academic Journal
المؤلفون: Yuan Wei, Li Haibin, Tan Hanhua, Niu Jiandong
المصدر: Geomatics, Natural Hazards & Risk, Vol 11, Iss 1, Pp 1490-1504 (2020)
مصطلحات موضوعية: slope stability analysis, factor of safety, limit equilibrium method, mohr–coulomb failure criterion, critical stability chart, Environmental technology. Sanitary engineering, TD1-1066, Environmental sciences, GE1-350, Risk in industry. Risk management, HD61
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: Ildar I. Girfanov, Oleg S. Sotnikov, Marat M. Remeev, Azat A. Lutfullin, Ilnur R. Mukhliev
المصدر: Georesursy, Vol 21, Iss 4, Pp 114-118 (2019)
مصطلحات موضوعية: failure criterion, strength certificate, mohr-coulomb failure criterion, hoek-brown failure criterion, ultimate stress, tensile, uniaxial compression, triaxial compression, Geology, QE1-996.5
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: Dian Kusumawati, David P. Sahara, Sri Widiyantoro, Andri Dian Nugraha, Muzli Muzli, Iswandi Imran, Nanang T. Puspito, Zulfakriza Zulfakriza
المصدر: Frontiers in Earth Science, Vol 8 (2021)
مصطلحات موضوعية: 2016 Mw 6.5 Pidie Jaya earthquake, fault instability, Mohr-Coulomb failure criterion, off great sumatran fault, static coulomb failure stress, Science
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: Dongli Li, Miaojun Sun, Echuan Yan, Tao Yang
المصدر: Sustainability; Volume 13; Issue 15; Pages: 8647
مصطلحات موضوعية: slope stability, seismic, three-dimensional analysis, Mohr–Coulomb failure criterion, global sensitivity analysis, pseudo-static analysis
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Sustainable Engineering and Science; https://dx.doi.org/10.3390/su13158647
الاتاحة: https://doi.org/10.3390/su13158647
-
9Academic Journal
المؤلفون: Zhang Ligang, Fu Xiao Fei, Liu G. R., Li Shi Bin, Li Wei, Qu Sining
المصدر: Open Geosciences, Vol 10, Iss 1, Pp 289-296 (2018)
مصطلحات موضوعية: flat-end indenter, crater, indentation hardness (hri), uniaxial compressive strength (ucs), brittle rock, mohr–coulomb failure criterion, angle of internal friction, poisson’s ratio, Geology, QE1-996.5
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2391-5447
-
10Three-Dimensional Upper Bound Limit Analysis of Tunnel Stability with an Extended Collapse Mechanism
المؤلفون: Liu, Zhizhen, Cao, Ping, Wang, Fei, Meng, Jingjing, Cao, Rihong, Liu, Jingshuo
المصدر: KSCE Journal of Civil Engineering. 26(12):5318-5327
مصطلحات موضوعية: Three-dimensional collapse mechanism, Tunnel stability, Nonlinear Mohr-Coulomb failure criterion, Upper bound limit analysis, Support pressure, Collapse range prediction, Soil Mechanics, Geoteknik
وصف الملف: print
-
11Academic Journal
المؤلفون: Boyko, Igor, Chechelnytskyi, Serhii
المصدر: Bases and Foundations; No. 39 (2019): BASES AND FOUNDATIONS; 65-73 ; Основи та Фундаменти / Bases and Foundations; № 39 (2019): Основи та фундаменти; 65-73 ; 0475-1132 ; 10.32347/0475-1132.39.2019
مصطلحات موضوعية: Числове моделювання штампових випробувань, експериментальні штампові випробування, осідання, критерій міцності Кулона-Мора, ґрунтовий масив, Numerical simulation of stamp tests, experimental stamp tests, settlement, the Mohr-Coulomb failure criterion, soil massif
وصف الملف: application/pdf
-
12Academic Journal
المؤلفون: Kovrov, O. S., Babiy, Ye. V., Bubnova, Ye. A.
مصطلحات موضوعية: stability of the open pit edges and dump slopes, internal dump, maximum rock mass displacements, safety factor, seismic impact, Mohr-Coulomb failure criterion
Relation: http://ir.nmu.org.ua/handle/123456789/154901; 622.271.33:624.131.543
-
13Academic Journal
المؤلفون: Isamu NATSUKA, Junpei ASANO, Kazuhiro UENO, Masayuki ISHII, Tatsuro NISHIYAMA, 上野 和広, 浅野 純平, 石井 将幸, 西山 竜朗, 長束 勇
المصدر: 農業農村工学会論文集 / Transactions of The Japanese Society of Irrigation, Drainage and Rural Engineering. 2019, 87(1)17
-
14
المصدر: Georesursy, Vol 21, Iss 4, Pp 114-118 (2019)
مصطلحات موضوعية: strength certificate, triaxial compression, tensile, hoek-brown failure criterion, Field (physics), Horizon (archaeology), Terrigenous sediment, mohr-coulomb failure criterion, uniaxial compression, lcsh:QE1-996.5, Geology, Soil science, lcsh:Geology, Geophysics, ultimate stress, failure criterion, Selection (genetic algorithm)
-
15
المؤلفون: Ignat, Razvan, 1973, Baker, S., Holmén, M., Larsson, Stefan
المصدر: Soils and Foundations. 59(5):1399-1416
مصطلحات موضوعية: Dry deep mixing, Mobilized strength, Stress paths, Triaxial tests, Cements, Lime, Mixing, Surface testing, Tensile strength, Tensile testing, Conventional triaxial test, Deep mixing, Mohr-Coulomb failure criterion, Over consolidation ratio, Tension and compression, Undrained triaxial test, Strength of materials
وصف الملف: print
-
16Academic Journal
المؤلفون: Lechner, Philipp, Hartmann, Christoph, Ettemeyer, Florian, Volk, W.
مصطلحات موضوعية: Kern (Gießerei), Mohr-Coulombsche Bruchbedingung, Bruchfestigkeit, Weibull-Verteilung, core (foundry), Mohr-Coulomb failure criterion, fracture strength, Weibull-distribution
Time: 624
وصف الملف: application/pdf
Relation: Materials; https://publica.fraunhofer.de/handle/publica/265912
-
17
-
18
المؤلفون: Christoph Hartmann, Philipp Lechner, Florian Ettemeyer, Wolfram Volk
المساهمون: Publica
المصدر: Materials, Vol 14, Iss 247, p 247 (2021)
Materials
Materials; Volume 14; Issue 2; Pages: 247مصطلحات موضوعية: 0209 industrial biotechnology, Computer science, Hydrostatic pressure, foundry cores, foundry core materials, Mohr-Coulomb, Weibull, fracture strength, water-glass, tri-axial testing, hydrostatic pressure, 02 engineering and technology, Mohr–Coulomb theory, lcsh:Technology, Article, Bruchfestigkeit, Stress (mechanics), 020901 industrial engineering & automation, Flexural strength, Weibull-Verteilung, General Materials Science, Kern (Gießerei), Mohr-Coulombsche Bruchbedingung, lcsh:Microscopy, Plane stress, lcsh:QC120-168.85, Weibull-distribution, lcsh:QH201-278.5, business.industry, lcsh:T, Mohr-Coulomb failure criterion, Structural engineering, 021001 nanoscience & nanotechnology, Finite element method, Casting (metalworking), lcsh:TA1-2040, Fracture (geology), lcsh:Descriptive and experimental mechanics, lcsh:Electrical engineering. Electronics. Nuclear engineering, 0210 nano-technology, business, core (foundry), lcsh:Engineering (General). Civil engineering (General), lcsh:TK1-9971
وصف الملف: application/pdf
-
19
المؤلفون: Dian Kusumawati (8470863), David P. Sahara (8470833), Sri Widiyantoro (8133666), Andri Dian Nugraha (10142270), Muzli Muzli (7105853), Iswandi Imran (10142273), Nanang T. Puspito (10142276), Zulfakriza Zulfakriza (8470824)
مصطلحات موضوعية: Solid Earth Sciences, Climate Science, Atmospheric Sciences not elsewhere classified, Exploration Geochemistry, Inorganic Geochemistry, Isotope Geochemistry, Organic Geochemistry, Geochemistry not elsewhere classified, Igneous and Metamorphic Petrology, Ore Deposit Petrology, Palaeontology (incl. Palynology), Structural Geology, Tectonics, Volcanology, Geology not elsewhere classified, Seismology and Seismic Exploration, Glaciology, Hydrogeology, Natural Hazards, Quaternary Environments, Earth Sciences not elsewhere classified, Evolutionary Impacts of Climate Change, 2016 Mw 6.5 Pidie Jaya earthquake, fault instability, Mohr-Coulomb failure criterion, off great sumatran fault, static coulomb failure stress
-
20Academic Journal
المؤلفون: Petruccelli, Antonio, Schorlemmer, Danijel, Tormann, Thessa, Rinaldi, Antonio Pio, Wiemer, Stefan, Gasperini, Paolo, Vannucci, Gianfranco
المساهمون: Dipartimento di Fisica e Astronomia, University of Bologna, Italy, Swiss Seismological Service, ETH Zurich, Switzerland, Swiss Seismological Service, ETH Zurich, Switzerland, Dipartimento di Fisica e Astronomia, University of Bologna, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia
مصطلحات موضوعية: statistical seismology earthquake size-distribution faulting styles Anderson’s theory of faulting Mohr-Coulomb failure criterion, Anderson’s theory of faulting, faulting styles, earthquake size-distribution, statistical seismology, Mohr-Coulomb failure criterion, 04. Solid Earth
وصف الملف: application/pdf; application/vnd.openxmlformats-officedocument.wordprocessingml.document
Relation: Earth and Planetary Science Letters; /527 (2019); Aki, K., 1965. Maximum likelihood estimate of bin the formula logN=_a −bMand its confidence limits. Bull. Earthq. Res. Inst. Univ. Tokyo. Amitrano, D., 2003. Brittle-ductile transition and associated seismicity: experimental and numerical studies and relationship with the bvalue. J. Geophys. Res.108, 1–15. https://doi .org /10 .1029 /2001JB000680. Amitrano, D., 2012. Variability in the power-law distributions of rupture events. Eur. Phys. J. Spec. Top.205, 199–215. https://doi .org /10 .1140 /epjst /e2012 -01571 -9. Anderson, E.M., 1905. The dynamics of faulting. Trans. Edinb. Geol. Soc.8, 387–402. https://doi .org /10 .1144 /transed .8 .3 .387. Bird, P., 2003. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst.4. https://doi .org /10 .1029 /2001GC000252. Boettcher, M.S., Jordan, T.H., 2004. Earthquake scaling relations for mid-ocean ridge transform faults. J. Geophys. Res., Solid Earth. https://doi .org /10 .1029 /2004JB003110. Célérier, B., 2010. Remarks on the relationship between the tectonic regime, the rake of the slip vectors, the dip of the nodal planes, and the plunges of the P, B, and T axes of earthquake focal mechanisms. Tectonophysics482, 42–49. https://doi .org /10 .1016 /j .tecto .2009 .03 .006. Collettini, C., Tesei, T., Scuderi, M.M., Carpenter, B.M., Viti, C., 2019. Beyond Byer-lee friction, weak faults and implications for slip behavior. Earth Planet. Sci. Lett.519, 245–263. https://doi .org /10 .1016 /J .EPSL .2019 .05 .011. Copley, A., 2018. The strength of earthquake-generating faults. Q. J. Geol. Soc. Lond. https://doi .org /10 .1144 /jgs2017 -037. Coulomb, C.A., 1776. Essai sur une application des regles des maximis et minimis a quelquels problemesde statique relatifs, a la architecture. Mem. Acad. Roy. Div. Sav.7, 343–387. Dziewonski, A.M., Chou, T.-A., Woodhouse, J.H., 1981. Determination of earth-quake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res.86, 2825–2852. https://doi .org /10 .1029 /JB086iB04p02825. Ekström, G., Nettles, M., Dziewo´nski, A.M., 2012. The global CMT project 2004-2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. In-ter.200–201, 1–9. https://doi .org /10 .1016 /j .pepi .2012 .04 .002. Frohlich, C., 2001. Display and quantitative assessment of distributions of earthquake focal mechanisms. Geophys. J. Int.144, 300–308. https://doi .org /10 .1046 /j .1365 -246X .2001.00341.x. Frohlich, C., Apperson, K.D., 1992. Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics11, 279–296. https://doi .org /10 .1029 /91TC02888. Gasperini, P., Vannucci, G., 2003. FPSPACK: a package of FORTRAN subroutines to manage earthquake focal mechanism data. Comput. Geosci.29, 893–901. https://doi .org /10 .1016 /S0098 -3004(03 )00096 -7. Ghosh, A., Newman, A.V., Thomas, A.M., Farmer, G.T., 2008. Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula, Costa Rica. Geophys. Res. Lett.35. https://doi .org /10 .1029 /2007GL031617. Goebel, T.H.W., Schorlemmer, D., Becker, T.W., Dresen, G., Sammis, C.G., 2013. Acous-tic emissions document stress changes over many seismic cycles in stick-slip ex-periments. Geophys. Res. Lett.40, 2049–2054. https://doi .org /10 .1002 /grl .50507. Gulia, L., Wiemer, S., 2010. The influence of tectonic regimes on the earthquake size distribution: a case study for Italy. Geophys. Res. Lett.37. https://doi .org /10 .1029 /2010GL043066. Gutenberg, B., Richter, C.F., 1944. Frequency of earthquakes in California. Bull. Seis-mol. Soc. Am.34, 185–188. Hayes, G.P., Wald, D.J., Johnson, R.L., 2012. Slab1.0: a three-dimensional model of global subduction zone geometries. J. Geophys. Res., Solid Earth117. https://doi .org /10 .1029 /2011JB008524. Hubbert, B.M., Rubey, W.W., 1959. Role of fluid pressure in mechanics of overthrust faulting, 1: Mechanics of fluid-filled porous solids and its application to over-thrust faulting. Kagan, Y.Y., 1997. Seismic moment-frequency relation for shallow earthquakes: regional comparison. J. Geophys. Res.102, 2835. https://doi .org /10 .1029 /96JB03386. Kagan, Y.Y., 1999. Universality of the seismic moment-frequency relation. Pure Appl. Geophys.155, 537–573. https://doi .org /10 .1007 /s000240050277. Kagan, Y.Y., 2010. Earthquake size distribution: power-law with exponent β≡1/2? Tectonophysics490, 103–114. https://doi .org /10 .1016 /j .tecto .2010 .04 .034. Mogi, K., 1962. Study of elastic shocks caused by the fracture of heterogeneous ma-terials and its relation to earthquake phenomena. Bull. Earthq. Res. Inst. Univ. Tokyo40, 125–173. Nishikawa, T., Ide, S., 2014. Earthquake size distribution in subduction zones linked to slab buoyancy. Nat. Geosci.7, 904–908. https://doi .org /10 .1038 /ngeo2279. Okal, E.A., Romanowicz, B.A., 1994. On the variation of b-values with earthquake size. Phys. Earth Planet. Inter.87, 55–76. https://doi .org /10 .1016 /0031 -9201(94 )90021 -3. Petruccelli, A., Vannucci, G., Lolli, B., Gasperini, P., 2018. Harmonic fluctuation of the slope of the frequency–magnitude distribution (b-value) as a function of the angle of rake. Bull. Seismol. Soc. Am.108. https://doi .org /10 .1785 /0120170328. Roberts, N.S., Bell, A.F., Main, I.G., 2016. Mode switching in volcanic seismicity: El Hierro 2011-2013. Geophys. Res. Lett.43, 4288–4296. https://doi .org /10 .1002 /2016GL068809. Roberts, N.S., Bell, A.F., Main, I.G., 2015. Are volcanic seismic b-values high, and if so when? J. Volcanol. Geotherm. Res. https://doi .org /10 .1016 /j .jvolgeores .2015 .10 .021. Sammonds, P.R., Meredith, P.G., Main, I.G., 1992. Role of pore fluids in the generation of seismic precursors to shear fracture. Nature359, 228–230. https://doi .org /10 .1038 /359228a0. Samowitz, I.R., Forsyth, D.W., 1981. Double seismic zone beneath the Mariana Is-land Arc. J. Geophys. Res., Solid Earth86, 7013–7021. https://doi .org /10 .1029 /JB086iB08p07013. Scholz, C.H., 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am.58, 399–415. Scholz, C.H., 2002. The Mechanics of Earthquakes and Faulting, 2nd edition. Cam-bridge University Press. Scholz, C.H., 2015. On the stress dependence of the earthquake bvalue. Geophys. Res. Lett.42, 1399–1402. https://doi .org /10 .1002 /2014GL062863. Schorlemmer, D., Wiemer, S., 2005. Earth science: microseismicity data forecast rup-ture area. Nature434, 1086. https://doi .org /10 .1038 /4341086a. Schorlemmer, D., Wiemer, S., Wyss, M., 2005. Variations in earthquake-size distri-bution across different stress regimes. Nature437, 539–542. https://doi .org /10 .1038 /nature04094 Schorlemmer, D., Wiemer, S., Wyss, M., 2004. Earthquake statistics at Parkfield, 1: stationarity of bvalues. J. Geophys. Res., Solid Earth109, 1–17. https://doi .org /10 .1029 /2004JB003234. Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., Baldi, P., Gasperini, P., 2007. Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys. J. Int.169, 1180–1200. https://doi .org /10 .1111 /j .1365 -246X .2007.03367.x. Shi, Y., Bolt, B., 1982. The standarderror of the magnitude-frequency b-value. Bull. Seismol. Soc. Am.72, 1677–1687. Sibson, R.H., 2004. Controls on maximum fluid overpressure defining conditions for mesozonal mineralisation. J. Struct. Geol. https://doi .org /10 .1016 /j .jsg .2003 .11.003. Sibson, R.H., 2014. Earthquake rupturing in fluid-overpressured crust: how com-mon? Pure Appl. Geophys.171, 2867–2885. https://doi .org /10 .1007 /s00024 -014 -0838 -3. Spada, M., Tormann, T., Wiemer, S., Enescu, B., 2013. Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophys. Res. Lett.40, 709–714. https://doi .org /10 .1029 /2012GL054198. Stein, S., Okal, E.A., 2007. Ultralong period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the sub-duction process. Bull. Seismol. Soc. Am.97. https://doi .org /10 .1785 /0120050617. Stern, R.J., Fouch, M.J., Klemperer, S.L., 2003. An overview of the Izu-Bonin-Mariana subduction factory. Insid. Subduction Fact.138, 175–222. https://doi .org /10 .1029 /138GM10. Tormann, T., Enescu, B., Woessner, J., Wiemer, S., 2015. Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nat. Geosci.8, 152–158. https://doi .org /10 .1038 /ngeo2343. Tormann, T., Wiemer, S., Hardebeck, J.L., 2012. Earthquake recurrence models fail when earthquakes fail to reset the stress field. Geophys. Res. Lett.39. https://doi .org /10 .1029 /2012GL052913. Tormann, T., Wiemer, S., Mignan, A., 2014. Systematic survey of high-resolution bvalue imaging along Californian faults: inference on asperities. J. Geophys. Res., Solid Earth. https://doi .org /10 .1002 /2013JB010867. Townend, J., Zoback, M.D., 2000. How faulting keeps the crust strong. Geology. https://doi .org /10 .1130 /0091 -7613(2000 )0282 .3 .CO ;2. Turcotte, D.L., Schubert, G., 2002. Geodynamics, 2nd edition. Cambridge University Press. Utsu, T., 1966. A statistical significance test of the difference in b-value between two earthquake groups. J. Phys. Earth14, 37–40. https://doi .org /10 .4294 /jpe1952 .14 .37. Uyeda, S., 1982. Subduction zones: an introduction to comparative subductology. Tectonophysics81, 133–159. https://doi .org /10 .1016 /0040 -1951(82 )90126 -3. Uyeda, S., Kanamori, H., 1979. Back-arc opening and the mode of subduction. J. Geo-phys. Res.84, 1049. https://doi .org /10 .1029 /JB084iB03p01049. Wiemer, S., Wyss, M., 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States and Japan. Bull. Seis-mol. Soc. Am.90, 859–869. https://doi .org /10 .1785 /0119990114. Wiemer, S., Wyss, M., 2002. Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Adv. Geophys.45. https://doi .org /10 .1016 /S0065 -2687(02 )80007 -3. Woessner, J., Wiemer, S., 2005. Assessing the quality of earthquake catalogues: es-timating the magnitude of completeness and its uncertainty. Bull. Seismol. Soc. Am.95, 684–698. https://doi .org /10 .1785 /0120040007. Yang, W., Hauksson, E., Shearer, P.M., 2012. Computing a large refined catalog of fo-cal mechanisms for southern California (1981-2010): temporal stability of the style of faulting. Bull